Life is a chemical process

Size: px
Start display at page:

Download "Life is a chemical process"

Transcription

1 CHEMISTRY FOR LIFE

2 Life is a chemical process Relies on and is subject to chemistry Must obey the laws of physics

3 Biologists study Chemistry because all living things are made of matter. Matter undergoes chemical changes. Chemical changes are essential and intrinsic is all life processes.

4 LEVELS OF ORGANIZATION IN LIVING SYSTEMS The simplest level of organization in living systems is the chemical level, which is composed of atoms and molecules. 1. What is an atom? Atoms are the smallest units of matter. Molecules are the simplest structural unit of an 2. element What is or a compound molecule?.

5 element A substance made up of only 1 type of atom, that cannot be broken down by chemical changes. Each element has unique characteristic properties.

6 ATOMS OF DIFFERENT ELEMENTS COMBINE TO FORM COMPOUNDS.

7 ELEMENTS, ATOMS, AND MOLECULES Of the over 100 elements, only about 25 are vitally important to living things.

8 Trace elements are essential to life, but occur in very small amounts

9 Combinations (molecules) of: carbon, hydrogen, oxygen, and nitrogen Make up over 90% of the mass of living matter

10

11 PROPERTIES OF WATER A special and important biological compound

12 WATER Water is the most abundant molecule in the human body. It makes up around 65% of the body s weight. It is the most critical molecule for life. A water molecule is composed of one atom of oxygen and two atoms of hydrogen held together by covalent bonds.

13 H O H

14 The structure of a water molecule give it very special properties that allows it to have a variety of unique and special characteristics.

15 SPECIAL PROPERTIES OF WATER. Polar- H bonding, adhesion and cohesion. High specific heat. Universal Solvent. High Surface Tension. Capillary action.

16 The shape of the water molecule and the atoms in it give water a special property called polarity. + This means that one end of the molecule is slightly positive while the other end is slightly negative.

17 Water is polar covalently bonded In living systems, polar covalent bonds are important because of the unique properties exhibited by molecules with these kinds of bonds.

18 POLARITY PROPERTIES Polarity gives water several special properties that are very useful for living organisms : COHESION ADHESION HYDROGEN BONDING

19 COHESION Water is attracted to other water. This is called cohesion. This is caused by hydrogen bonds that form between the slightly positive and negative ends of neighboring water molecules. This is the reason why water is found in drops; perfect spheres.

20 ADHESION Water can also be attracted to other materials. This is called adhesion. (Remember Adhesive tape picks up things)

21 SURFACE TENSION Surface tension is the name we give to the cohesion of water molecules at the surface of a body of water. Water Strider

22 UNIVERSAL SOLVENT The body contains many substances in solution. Water is so effective at dissolving substances that it is referred to as the universal solvent.

23

24 What did you observe when you placed a drop of water onto a piece of wax paper? What shape was it? Why do you think it is this shape?

25 WHAT IS HAPPENING?! Water is not attracted to wax paper (there is no adhesion between the drop and the wax paper). Each molecule in the water drop is attracted to the other water molecules around it. This causes the water to pull itself into a shape with the smallest amount of surface area, a bead (sphere). All the water molecules on the surface of the bead are 'holding' each other together (cohesion).

26 COULD YOU FLOAT THE PAPER CLIP? Scientific Reason: surface tension water has the ability to support small objects. The hydrogen bonds between neighboring molecules cause a film to develop at the surface.

27 BREAKING THE SURFACE TENSION What happened when you added a drop of detergent? Scientific Reason? The detergent has phosphate in it. The phosphate attracts to the water molecules and breaks the surface tension.

28 ADHESION AND SOLUBILITY Lets see what happens to the ink on this paper towel if we stick just the bottom of the paper towel in the water. Predictions..

29 CAPILLARY ACTION Capillary action is related to the adhesive properties of water. Capillary action is when water moves up a cylinder.

30 What is happening with the straw demonstration? the water molecules are attracted to the straw molecules. When one water molecule moves closer to the straw molecules the other water molecules (which are cohesively attracted to that water molecule) also move up into the straw.

31 MORE CAPILLARY ACTION Capillary action is limited by gravity and the size of the straw. The thinner the straw or tube the higher up capillary action will pull the water. This explains how a meniscus forms in a cylander.

32 Apply these properties to answer WHY the meniscus is different. glass plastic (wax)

33 PLANTS AND CAPILLARY ACTION Plants take advantage of capillary action to pull water from the soil into themselves. From the roots water is drawn through the plant by another force, transpiration.

34 SPECIFIC HEAT Water has a high heat capacity. Specific heat (a measure of heat capacity), is the heat required to raise the temperature of 1 gram of water 1 C. Water, with its high heat capacity, changes temperature more slowly than other compounds that gain or lose energy.

35 Water As a Habitat. Water s resistance to sudden changes in temperature makes it an excellent habitat (organisms adapted to narrow temperature ranges may die if the temperature fluctuates widely). The heat retaining properties of water provide a much more stable environment than is found in terrestrial situations. AND Fluctuations in water temperature occur very gradually (seasonal extremes are small).

36 The shape of the water molecule and the atoms in it give water a special property called polarity. This means that one end of the molecule is slightly positive while the other end is slightly negative.

37 UNIVERSAL SOLVENT The water of the body contains many substances in solution. In a solution one or more substances are dissolved. The dissolved substances are called solutes. The water which dissolves the solutes is called the solvent. Water is so effective at dissolving substances that it is referred to as the universal solvent. Notice how the negative ends of water attract sodium and the positive ends attract chloride.

38 Hydrophilic: Hydrophobic: Example: mix salad oil with water shake to break H bonds but as these bonds reform between water molecules, they push the oil molecules out of the way-the oil tends to cluster together in drops or as a layer on the water s surface-thereby exposing less surface area to the water

39 ELECTROLYTES Substances that form ions in solutions are called electrolytes. When electrolytes such as sodium chloride dissolve in water, their ions will conduct electricity through the solution. (A substance such as table sugar will not form ions in solution and will not conduct electricity.) A demonstration in class will allow you to see if a substance is an electrolyte or not.

40 A CLOSER LOOK AT WATER Inquiry lab

41 REVIEW! What s the matter?

42 ALL LIVING THINGS ARE MADE OF MATTER

43 What is matter? Matter is anything that occupies space and has mass

44 ALL MATTER IS MADE OF ATOMS.

45 THE ATOMS THAT MAKE UP EACH ELEMENT ARE UNIQUE FROM ONE ANOTHER.

46 THE ATOM Each atom is made up of smaller parts called protons, electrons and neutrons. Protons and neutrons are found in the central portion of the atom called the nucleus. Electrons are found in energy shells moving around the nucleus.

47 EACH ATOM HAS A SPECIFIC NUMBER OF PROTONS (AND ELECTRONS). In general: atoms are electrically neutral Meaning the # of protons (+) = # of electrons (-) Protons have a positive (+) electrical charge. Neutrons have no charge (are neutral). Electrons have a (-) negative electric charge.

48 THE NUMBER OF PROTONS DETERMINES AN ATOM S IDENTITY boron carbon nitrogen 5 protons 6 protons 7 protons

49

50 Elements are arranged in the Periodic table based on their atomic number (# of protons) the atomic number identifies the element

51 ATOMS ARE ELECTRICALLY NEUTRAL # of protons = # of electrons Net electrical charge = 0

52 ELECTRONS Electrons are high energy particles with very little mass. They move around the nucleus of the atom at high speeds in different energy levels.

53 Electrons in outer levels have more energy than those in inner levels.

54 THE REACTIONS/ACTIONS OF ELEMENTS

55 A property of almost all elements is their ability to combine with other elements and form compounds* Hydrogen peroxide Glucose C 6 H 12 O 6 *the combination of two or more different elements.

56 In a compound, the different elements lose their individual chemical properties. For example, sodium is an explosive, dangerous substance. Chlorine is a highly poisonous gas. When the two are combined chemically they form sodium chloride, a nonpoisonous substance we commonly sprinkle on our food.

57 Compounds and Chemical Formula Compounds often have common names such as water or salt - but are also named by their formula which tell what elements make up the compound and in what proportion. For example, a molecule of water is made up of two hydrogen atoms for every one oxygen atom and is technically called dihydrogen monoxide. H 2 O

58 COMPOUNDS ARE REPRESENTED BY CHEMICAL FORMULAS 2 Cl Cl 2 2Cl 2 Molecules may also have brackets to indicate numbers of atoms. E.g. Ca(OH) 2 Notice that the OH is a group The 2 refers to both H and O H O Ca O H

59 Electron number and arrangement determines how different elements will combine to form compounds.

60 HOW COMPOUNDS FORM

61 BONDING When an atom shares, gains or loses electrons to achieve an octet by partnering with another atom.

62 There are 2 main bond types: ionic and covalent In ionic bonding one atom has a stronger attraction for electrons than the other, and steals an electron from that atom In covalent bonding the attraction for electrons is similar for two atoms. They share their electrons to obtain an octet.

63 e - move around the nucleus in specific energy levels (shells) BOHR S MODEL

64 Each energy level (shell) is numbered starting closest to the nucleus. This is called the energy level s quantum number There is a max. # of electrons that each energy level can hold.

65 When you look at the Periodic Table, the energy levels of the atoms correspond to the groups (rows) of the table. The two elements in group 1, hydrogen and helium, are filling their first energy level. The eight elements of the second row are filling their second energy level.

66

67 It is the outermost electrons that determine the chemical properties of the element. (very important)

68 *The electrons in the outermost (highest) E level.

69 These outermost electrons are the one s that are more likely to feel the presence of other atoms and hence the one s involved in bonding. Chemistry of an element depends almost entirely on the number of its valence electrons. (very important)

70 Atoms will gain or loose share Valence electrons to make a filled or empty outer most energy level.

71 Atoms bond to achieve stability reach a stable OCTET Atoms are the most stable when they fill their outermost energy level with 8 electrons*. * Special exception is H and He with only 2 electrons for a full 1 st energy level.

72 ELEMENTS BOND IN ORDER TO REACH AN OCTET IN THEIR VALENCE SHELL

73 ionization When an atom gains or loses an electron, the atom becomes charged what would the charge be on an atom that lost an electron? +1 (because your losing an electron) Gained two electrons? -2 (because you gain 2 electrons)

74 cation An ion is an atom that has either a net positive or net negative charge. anion

75 cation

76 IONS AND THE OCTET RULE Br I Ne K Ca gain or lose? how many? gain 1 gain 1 none lose lose 1 2 Ion Br P 3 none K 1+ Ca 2+ Elements will ionize (and bond) in order to achieve an octet in their valence shell.

77 Ions in families

78 Losing/gaining electrons is called ionization An ion is an atom that has either a net positive or net negative charge.

79 Electrons can be pulled out of the valence shell if an element with a larger attractive force* is near. *electron affinity

80 IONIC BONDING Ionic bonding involves 3 steps (3 energies) 1) loss of an electron(s) by one element, 2) gain of electron(s) by a second element, 3) attraction between positive and negative ions e 1) 2) Na 3) Cl Na + Na Cl +

81 Electron affinity as move across the periodic table

82

83 The ratio of combining atoms results in a neutral compound Example: sodium and chlorine Na can loose 1 e-, sodium can gain 1 e- and they will both have achieved an octet in their valence shells SO.. They combine in a 1:1 ration and the resulting compound is [Na] + [Cl] - or NaCl What about calcium and fluorine? Calcium looses 2 e-, fluorine only gains 1 e- SO the ratio to get a neutral molecule must be 1 calcium atom: 2 fluorine atoms or CaF 2

84 3 BIOLOGICALLY IMPORTANT PROPERTIES OF IONIC COMPOUNDS Ionic compounds are soluble in water.

85 In aqueous solution, an ionic compound dissociates into its ions. (eg. when NaCl dissolves in water, the solution contains Na + ions and Cl ions.

86 The dissociated ions in aqueous solution give the solution the ability to conduct electricity.

87 ELECTROLYTES

88

89 COVALENT BONDS A chemical bond that involves sharing a pair of electrons between neutral atoms in a molecule in order to achieve an octet in the valence shell.

90

91 COVALENT bonds result from a strong interaction between atoms of similar electron affinity. Each atom donates an electron resulting in a pair of electrons that are SHARED between the two atoms

92 Generally, elements with similar electronegativity form covalent bonds

93 BIOLOGICALLY IMPORTANT PROPERTIES OF COVALENT BONDS A covalent bond STORES energy so breaking those bonds releases energy that can be used for the needs of living organisms.

94 In biological systems, covalent bonds are called strong bonds. This means that they are not normally broken under biological conditions. This is in opposition to weak bonds like ionic bonds which are easily broken under normal biological conditions of temperature and pressure. (very important)

95 Atoms can bond forming single, double, triple and even quadruple covalent bonds. ethene

96 The angles formed between covalently bonded atoms are specific and defined. This means that biological molecules formed with covalent bonds have definite and predicable shapes. (very important) glucose

97 O Structural formulas indicate kind, number and arrangement of bonds using a line to represent a shared e- pair H H

98 Don t forget when forming compounds, that ions combine in whole number ratios to achieve a neutrally charged compound.

99 PREDICTING TYPES OF BONDS How do you predict whether atoms will form ionic or covalent bonds? Notice the location of the elements in the Periodic Table. As a rule, elements on the right (non-metals) share electrons with each other (covalent bonds) and elements on the left tend to donate electrons to elements on the right (ionic bonds).

100 One word of warning: hydrogen behaves with a divided personality. While it is traditionally placed in the periodic table above lithium, there are good reasons to put it above fluorine instead (or as well). And remember: As with all generalizations, there are exceptions.

101 POLAR COVALENT BONDS Consider, carbon (C) and chlorine (Cl). Chlorine is clearly to the right of carbon. Carbon is however fairly central. Electrons in a bond between these two elements are shared (covalent), but they are not shared equally. The shared electrons (one from Cl, one from C) would spend more of their time under the influence of chlorine, being farther right, but are not completely lost to carbon (as they would be to sodium).

102 The electrons being shared are held closer to the Cl than to the C giving the molecules slightly charged areas.

103 POLAR AND NON-POLAR COVALENT BONDS There is a type of covalent bond called a polar covalent bond. In human body systems, polar covalent bonds are important because of the unique properties exhibited by molecules with these kinds of bonds.

104 The result of this pattern of unequal electron association is a charge separation in the molecule, where one part of the molecule has a partial negative charge and the other has a partial positive charge. (You should note this molecule is not an ion because there is no exchange of electrons, but there is a simple charge separation in this electrically neutral molecule.)

105 In addition to polar covalent bonds, there are nonpolar covalent bonds. In biological systems, if a molecules has a predominance of nonpolar covalent bonds, that substance is hydrophobic. (very important)

106 The interaction between polar and nonpolar molecules is very important in biological systems.

107 HYDROGEN BONDS

108 Electrons can be bumped up to a higher shell if hit by an electron or a photon of light.

Life is a chemical process

Life is a chemical process CHEMISTRY FOR LIFE WHY STUDY CHEMISTRY? Chemistry is the ultimate (basic) cause of all physiological processes Interactions of atoms produce chemical changes Chemical reactions involve a transfer of energy

More information

Chemistry of covalent bonds. Unit 2: SMELLS Molecular Structure and Properties

Chemistry of covalent bonds. Unit 2: SMELLS Molecular Structure and Properties Chemistry of covalent bonds Unit 2: SMELLS Molecular Structure and Properties How do elements combine that have similar electronegativities? Property of almost all elements the ability to combine with

More information

What is this? Electrons: charge, mass? Atom. Negative charge(-), mass = 0. The basic unit of matter. Made of subatomic particles:

What is this? Electrons: charge, mass? Atom. Negative charge(-), mass = 0. The basic unit of matter. Made of subatomic particles: Chemical Bonds What is this? Atom The basic unit of matter. Electrons: charge, mass? Negative charge(-), mass = 0 Made of subatomic particles: Protons: charge, mass? Positive charge (+), mass = 1 Neutrons:

More information

SBI4U BIOCHEMISTRY. Atoms, Bonding & Molecular Polarity

SBI4U BIOCHEMISTRY. Atoms, Bonding & Molecular Polarity SBI4U BIOCHEMISTRY Atoms, Bonding & Molecular Polarity 6 types of atoms make up 99% of all living organisms Naturally Occurring Elements in the Human Body Element Symbol Atomic # % of human body weight

More information

Atoms. Smallest particles that retain properties of an element. Made up of subatomic particles: Protons (+) Electrons (-) Neutrons (no charge)

Atoms. Smallest particles that retain properties of an element. Made up of subatomic particles: Protons (+) Electrons (-) Neutrons (no charge) Basic Chemistry Atoms Smallest particles that retain properties of an element Made up of subatomic particles: Protons (+) Electrons (-) Neutrons (no charge) Examples of Atoms electron proton neutron Hydrogen

More information

Atoms, Molecules, and Life

Atoms, Molecules, and Life 1 Atoms, Molecules, and Life The Nature of Matter: Atoms and Molecules Elements All matter is composed of chemical elements, substances that cannot be broken down to other substances by ordinary chemical

More information

Chapter 2 Chemistry of Life

Chapter 2 Chemistry of Life Chapter 2 Chemistry of Life 1 21- Atoms, Ions and Molecules An Atom is the smallest basic unit of matter. All atoms share the same basic structure. 2 Atoms consist of three types of particles: Protons,

More information

Chapter: Atomic Structure and Chemical Bonds

Chapter: Atomic Structure and Chemical Bonds Table of Contents Chapter: Atomic Structure and Chemical Bonds Section 1: Why do atoms combine? Section 2: How Elements Bond Table of Contents Chapter: Atomic Structure and Chemical Bonds Section 1: Why

More information

Chapter: Atomic Structure and Chemical Bonds

Chapter: Atomic Structure and Chemical Bonds Table of Contents Chapter: Atomic Structure and Chemical Bonds Section 1: Why do atoms combine? Section 2: How Elements Bond Table of Contents Chapter: Atomic Structure and Chemical Bonds Section 1: Why

More information

Learning Objectives. Learning Objectives (cont.) Chapter 2: Basic Chemistry 1. Lectures by Tariq Alalwan, Ph.D.

Learning Objectives. Learning Objectives (cont.) Chapter 2: Basic Chemistry 1. Lectures by Tariq Alalwan, Ph.D. Biology, 10e Mader Lectures by Tariq Alalwan, Ph.D. Learning Objectives Name the principal chemical elements in living things. Compare the physical properties (mass and charge) and locations of electrons,

More information

Chapter 3. Chemistry of Life

Chapter 3. Chemistry of Life Chapter 3 Chemistry of Life Content Objectives Write these down! I will be able to identify: The make-up of matter. Why atoms form bonds. Some important interactions between substances in living things.

More information

Chapter 02 The Chemical Basis of Life I: Atoms, Molecules, and Water

Chapter 02 The Chemical Basis of Life I: Atoms, Molecules, and Water Chapter 02 The Chemical Basis of Life I: Atoms, Molecules, and Water Multiple Choice Questions 1. The atomic number of an atom is A. the number of protons in the atom. B. the number of neutrons in the

More information

Life s Chemical Basis. Chapter 2

Life s Chemical Basis. Chapter 2 Life s Chemical Basis Chapter 2 Why are we studying chemistry? Chemistry is the foundation of biology Atoms Determine the behavior of elements make up all living things Building blocks of all substances

More information

What Are Atoms? Chapter 2: Atoms, Molecules & Life

What Are Atoms? Chapter 2: Atoms, Molecules & Life Chapter 2: Atoms, Molecules & Life What Are Atoms? An atom are the smallest unit of matter. Atoms are composed of Electrons = negatively charged particles. Neutrons = particles with no charge (neutral).

More information

The living world has a hierarchy of organizational levels - from molecules to ecosystems

The living world has a hierarchy of organizational levels - from molecules to ecosystems The living world has a hierarchy of organizational levels - from molecules to ecosystems In order to understand the whole, biologists study the parts (reductionism) With each level, new properties EMERGE

More information

Definition of Matter. Subatomic particles 8/20/2012

Definition of Matter. Subatomic particles 8/20/2012 Interplay of Biology and Chemistry Here is a link to the video these beetles are fairly common locally an amazing adaptation, and a good example of chemistry and physics in biology. Also look for creationist-evolutionist

More information

Chapter 2: Chemistry & Life

Chapter 2: Chemistry & Life Chapter 2: Chemistry & Life 1. Atoms 2. Molecules 3. Water 1. Atoms A Generic Atom All Matter is made of Atoms Atoms are the smallest indivisible unit of matter 92 different types of atoms: ELEMENTS Atoms

More information

Chapter 2: Chemistry & Life. 1. Atoms. 2. Molecules. 3. Water. 1. Atoms. A Generic Atom

Chapter 2: Chemistry & Life. 1. Atoms. 2. Molecules. 3. Water. 1. Atoms. A Generic Atom Chapter 2: Chemistry & Life 1. Atoms 2. Molecules 3. Water 1. Atoms A Generic Atom 1 All Matter is made of Atoms Atoms are the smallest indivisible unit of matter 92 different types of atoms: ELEMENTS

More information

Electrons In an electrically neutral atom, positive charges of protons are balanced by the negative charges of electrons. Orbital is the volume of spa

Electrons In an electrically neutral atom, positive charges of protons are balanced by the negative charges of electrons. Orbital is the volume of spa Outline Basic Chemistry Chapter 2 Chemical Elements Atoms Isotopes Molecules and Compounds Chemical Bonding Ionic and Covalent Acids and Bases Chemical Elements Matter refers to anything that has mass

More information

Life s Chemical Basis

Life s Chemical Basis Life s Chemical Basis Life s Chemical Basis Ø Atoms and Elements Ø Why Electrons Matter Ø Atomic Bonds Ø Water molecule properties Ø Hydrogen Power (ph) Matter & Elements Ø Matter is anything that occupies

More information

Nature of Molecules. Chapter 2. All matter: composed of atoms

Nature of Molecules. Chapter 2. All matter: composed of atoms Nature of Molecules Chapter 2 Atomic Structure All matter: composed of atoms Understanding structure of atoms critical to understanding nature of biological molecules 2 1 Atomic Structure Atoms composed

More information

Chapter Chemical Elements Matter solid, liquid, and gas elements atoms. atomic symbol protons, neutrons, electrons. atomic mass atomic number

Chapter Chemical Elements Matter solid, liquid, and gas elements atoms. atomic symbol protons, neutrons, electrons. atomic mass atomic number Chapter 2 2.1 Chemical Elements 1. Matter is defined as anything that takes up space and has mass. 2. Matter exists in three states: solid, liquid, and gas. A. Elements 1. All matter (both living and non-living)

More information

Chapter 2: Chemical Basis of Life

Chapter 2: Chemical Basis of Life Chapter 2: Chemical Basis of Life Honors Biology 2011 1 Chemistry of Life Living organisms are composed of about 25 chemical elements Matter - anything that occupies space and has mass Matter is composed

More information

The Chemistry of Life 2007-

The Chemistry of Life 2007- The Chemistry of Life 2007- Why are we studying chemistry? Chemistry is the foundation of Biology The World of Elements H NaMg K Ca C N O P S Different kinds of atoms = elements Life requires ~25 chemical

More information

THE CHEMISTRY OF LIFE

THE CHEMISTRY OF LIFE THE CHEMISTRY OF LIFE ATOMS All living things are made up of matter Atoms are the smallest unit of matter Made up of 3 subatomic particles: 1. Protons- positively charged, found in the nucleus, has mass

More information

Four elements make up about 90% of the mass of organisms O, C, H, and N

Four elements make up about 90% of the mass of organisms O, C, H, and N Chapter 2 Chemistry of Life 2-1 Composition of Matter -Mass- quantity of matter- use a balance to measure mass -Weight- pull of gravity on an object- use a scale Elements -cannot be broken down into simpler

More information

Atoms with a complete outer shell do not react with other atoms. The outer shell is called the valence shell. Its electrons are valence electrons.

Atoms with a complete outer shell do not react with other atoms. The outer shell is called the valence shell. Its electrons are valence electrons. Bonding and the Outer Shell Use this table for reference: http://www.dreamwv.com/primer/page/s_pertab.html Atoms with incomplete shells react with others in a way that allows it to complete the outer shell.

More information

Valence Electrons. 1. The electrons responsible for the chemical properties of atoms, and are those in the outer energy level, the valence level.

Valence Electrons. 1. The electrons responsible for the chemical properties of atoms, and are those in the outer energy level, the valence level. Valence Electrons 1. The electrons responsible for the chemical properties of atoms, and are those in the outer energy level, the valence level. 2. Electrons that make bonds are called valence electrons.

More information

CHAPTER 2 LIFE'S CHEMICAL BASIS MULTIPLE CHOICE. ANS: C PTS: 1 DIF: Moderate OBJ: Bloom's Taxonomy: Knowledge. Mercury Rising

CHAPTER 2 LIFE'S CHEMICAL BASIS MULTIPLE CHOICE. ANS: C PTS: 1 DIF: Moderate OBJ: Bloom's Taxonomy: Knowledge. Mercury Rising TEST BANK FOR BIOLOGY THE UNITY AND DIVERSITY OF LIFE 13TH EDITION BY CECEI STARR Link download full:https://digitalcontentmarket.org/download/test-bank-for-biology-the-unity-and-div ersity-of-life-13th-edition-by-cecei-starr

More information

2.1 The Nature of Matter

2.1 The Nature of Matter 2.1 The Nature of Matter Lesson Objectives Identify the three subatomic particles found in atoms. Explain how all of the isotopes of an element are similar and how they are different. Explain how compounds

More information

Introduction to Chemistry (includes bonding, water, and ph) C1

Introduction to Chemistry (includes bonding, water, and ph) C1 Introduction to Chemistry (includes bonding, water, and ph) C1 Do Now: What are atoms made up of and list the location of each particle. Finish up Labs Chemistry review Homework: Read, take notes on 2.1

More information

Unit 11 Bonding. Identifying the type of bonding involved in a molecule will allow us to predict certain general properties of a compound.

Unit 11 Bonding. Identifying the type of bonding involved in a molecule will allow us to predict certain general properties of a compound. Unit 11 Bonding INTRODUCTION Within molecules, there are forces that hold atoms together These forces are called bonds There are different types of bonds, or more correctly, variations Identifying the

More information

Water is one of the few compounds found in a liquid state over most of Earth s surface.

Water is one of the few compounds found in a liquid state over most of Earth s surface. The Water Molecule Water is one of the few compounds found in a liquid state over most of Earth s surface. Like other molecules, water (H2O) is neutral. The positive charges on its 10 protons balance out

More information

CHAPTER 6--- CHEMISTRY IN BIOLOGY. Miss Queen

CHAPTER 6--- CHEMISTRY IN BIOLOGY. Miss Queen CHAPTER 6--- CHEMISTRY IN BIOLOGY Miss Queen SECTION 6.1 Atoms, Elements, Compounds COMPOSITION OF MATTER Matter - Everything in universe is composed of matter Matter is anything that occupies space or

More information

REVIEW element compound atom Neutrons Protons Electrons atomic nucleus daltons atomic number mass number Atomic mass

REVIEW element compound atom Neutrons Protons Electrons atomic nucleus daltons atomic number mass number Atomic mass Domain 2: Matter REVIEW Matter is made up of elements An element is a substance that cannot be broken down to other substances by chemical reactions A compound is a substance consisting of two or more

More information

Human Biology Chapter 2.2: The Building Blocks of Molecules *

Human Biology Chapter 2.2: The Building Blocks of Molecules * OpenStax-CNX module: m57963 1 Human Biology Chapter 2.2: The Building Blocks of Molecules * Willy Cushwa Based on The Building Blocks of Molecules by OpenStax This work is produced by OpenStax-CNX and

More information

CHAPTER 2--LIFE, CHEMISTRY, AND WATER

CHAPTER 2--LIFE, CHEMISTRY, AND WATER CHAPTER 2--LIFE, CHEMISTRY, AND WATER Student: 1. According to studies by Norman Terry and coworkers, some plants can perform a version of bioremediation of selenium in wastewater by A. converting selenium

More information

What is Bonding? The Octet Rule. Getting an Octet. Chemical Bonding and Molecular Shapes. (Chapter Three, Part Two)

What is Bonding? The Octet Rule. Getting an Octet. Chemical Bonding and Molecular Shapes. (Chapter Three, Part Two) Chemical Bonding and Molecular Shapes (Chapter Three, Part Two) What is Bonding? Bonding describes how atoms interact with each other in an attractive sense. There are three types of bonding: Ionic bonding

More information

Compounds Bonded Elements Made up of two or more Types of atoms bonded together In a fixed ratio NEW SUBSTANCE Different Properties

Compounds Bonded Elements Made up of two or more Types of atoms bonded together In a fixed ratio NEW SUBSTANCE Different Properties Lecture 2 8/31/05 The Chemical Context of Life Atoms, Bonding, Molecules Before we start Website to get LECTURE NOTES http://www.uvm.edu/~dstratto/bcor011_handouts/ Questions from last time? Elements Pure

More information

Chemistry 6/15/2015. Outline. Why study chemistry? Chemistry is the basis for studying much of biology.

Chemistry 6/15/2015. Outline. Why study chemistry? Chemistry is the basis for studying much of biology. Chemistry Biology 105 Lecture 2 Reading: Chapter 2 (pages 20-29) Outline Why study chemistry??? Elements Atoms Periodic Table Electrons Bonding Bonds Covalent bonds Polarity Ionic bonds Hydrogen bonding

More information

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 2 Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge Roadmap 2 In this chapter you will learn that Chemistry is

More information

AP Biology. Why are we studying chemistry? Chapter 2. The Chemical Context of Life. The Basics. The World of Elements.

AP Biology. Why are we studying chemistry? Chapter 2. The Chemical Context of Life. The Basics. The World of Elements. Chapter 2. The Chemical Context of Life Why are we studying chemistry? Biology has chemistry at its foundation The Basics The World of Elements Everything is made of matter Matter is made of atoms Atoms

More information

Concept 2.1: Matter consists of chemical elements in pure form and in combinations called compounds

Concept 2.1: Matter consists of chemical elements in pure form and in combinations called compounds Concept 2.1: Matter consists of chemical elements in pure form and in combinations called compounds Organisms are composed of matter Matter is anything that takes up space and has mass The Chemical Context

More information

Unit 1 Review: Matter and Chemical Bonding

Unit 1 Review: Matter and Chemical Bonding Unit 1 Review: Matter and Chemical Bonding 1. Do you think DHMO should be banned? Justify your answer. Write the formula for dihydrogen monoxide. H 2 O 2. Name these groups on the periodic table: 1, 2,

More information

Chemistry Concepts for Biology

Chemistry Concepts for Biology Biology Learning Centre Chemistry Concepts for Biology How to learn this material: Because so much of this material can't be seen or touched, many students find learning the vocabulary and concepts of

More information

Science 10 Chapter 4 Atomic Theory Explains the Formation of Compounds

Science 10 Chapter 4 Atomic Theory Explains the Formation of Compounds What is a pure substance? -contains only 1 kind of matter What are the 2 categories of pure substances? -elements -compounds What is an element? -a pure substance that cannot be broken down into simpler

More information

CHEMISTRY OF LIFE. Composition of Matter. Composition of Matter 10/3/14

CHEMISTRY OF LIFE. Composition of Matter. Composition of Matter 10/3/14 CHEMISTRY OF LIFE Matter- occupies space and has mass Mass- the quantity of matter an object has Weight- the quantity of matter multiplied by the gravity of the planet you are on. Earth s gravity is 9.8

More information

Copy into Note Packet and Return to Teacher

Copy into Note Packet and Return to Teacher Copy into Note Packet and Return to Teacher Section 1: Nature of Matter Objectives: Differentiate between atoms and elements. Analyze how compounds are formed. Distinguish between covalent bonds, hydrogen

More information

Why are we studying chemistry?

Why are we studying chemistry? The Chemistry of Life Why are we studying chemistry? Chemistry is the foundation of Biology 1 Everything is made of matter Matter is made of atoms Hydrogen 1 proton 1 electron Oxygen 8 protons 8 neutrons

More information

Lone pairs as thieves

Lone pairs as thieves Lone pairs These are valence orbitals that are full, but that does not mean that they do not participate in bonding If an ion with a positive charge comes close enough, the lone pair may attract it and

More information

The Molecules of Cells (Part A: Chemistry)

The Molecules of Cells (Part A: Chemistry) The Molecules of Cells (Part A: Chemistry) Mader: Chapter 2A Introduction: Who Tends This Garden?! Chemicals are the stuff that make up our bodies and those of other organisms They make up the physical

More information

2-2 Properties of Water

2-2 Properties of Water 22 Properties of Water Polarity As for most molecules, the and charges in a water molecule are equal so that overall the molecule is neutral. However, note that the molecule is not linear. The water molecule

More information

The Chemistry of Life

The Chemistry of Life The Chemistry of Life 2007-2008 Why are we studying chemistry? Chemistry is the foundation of Biology Everything is made of matter Matter is made of atoms Hydrogen 1 proton 1 electron Oxygen 8 protons

More information

Chapter 8: Bonding. Section 8.1: Lewis Dot Symbols

Chapter 8: Bonding. Section 8.1: Lewis Dot Symbols Chapter 8: Bonding Section 8.1: Lewis Dot Symbols The Lewis electron dot symbol is named after Gilbert Lewis. In the Lewis dot symbol, the element symbol represents the nucleus and the inner electrons.

More information

There are two main requirements for atoms to form a covalent bond and make a molecule:

There are two main requirements for atoms to form a covalent bond and make a molecule: HOW ATOMS BOND TO EACH OTHER Covalent bonding Remember that a hydrogen atom has 1 proton and 1 electron and that the electron and the proton are attracted to each other. But if the atoms get close enough

More information

Chapter Two (Chemistry of Life)

Chapter Two (Chemistry of Life) 1 Chapter Two (Chemistry of Life) SECTION ONE: THE COMPOSITION OF MATTER MATTER Everything in the universe is made of matter. Matter is anything that occupies space and has mass. Mass is the quantity of

More information

Chemistry is taking place in your body all the time. Your body is made up of a variety of chemicals, and chemical reactions that take place within

Chemistry is taking place in your body all the time. Your body is made up of a variety of chemicals, and chemical reactions that take place within Basic Chemistry Chemistry is taking place in your body all the time. Your body is made up of a variety of chemicals, and chemical reactions that take place within you. There is also chemistry taking place

More information

Types of bonding: OVERVIEW

Types of bonding: OVERVIEW 1 of 43 Boardworks Ltd 2009 Types of bonding: OVERVIEW 2 of 43 Boardworks Ltd 2009 There are three types of bond that can occur between atoms: an ionic bond occurs between a metal and non-metal atom (e.g.

More information

The Chemistry of Microbiology

The Chemistry of Microbiology PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 2 The Chemistry of Microbiology Atoms Matter anything that takes up space and has mass

More information

Chemistry of Life 9/16/15. Chemistry s Building Block: The Atom. Ch 2 BIOL 160

Chemistry of Life 9/16/15. Chemistry s Building Block: The Atom. Ch 2 BIOL 160 Ch 2 Chemistry of Life BIOL 160 1 Chemistry s Building Block: The Atom Structural Hierarchy (reviewed) Atom Molecule Organelle Cell Tissue Organ The atom is the fundamental unit of matter. Elements Chemistry

More information

7.4 Using the Bohr Theory

7.4 Using the Bohr Theory 7.4 Using the Bohr Theory BOHR DIAGRAMS Practice (worksheet) First shell: 2 electrons Second shell: 8 electrons Third shell: 8 electrons Fourth shell: 8 electrons Draw Bohr Diagrams for: hydrogen sodium

More information

THE CHEMISTRY OF LIFE. The Nature of Matter

THE CHEMISTRY OF LIFE. The Nature of Matter THE CHEMISTRY OF LIFE The Nature of Matter What do all of These Pictures Have in Common? And last, but not least GEICO S Gecko! MATTER All matter is made up of different combinations of elements.

More information

The Chemical Context of Life

The Chemical Context of Life Elements and Compounds The Chemical Context of Life Sodium Chlorine! Sodium chloride! An element is a substance that cannot be broken down to other substances by chemical reactions A compound is a substance

More information

Chapter 2 The Chemical Basis of Life

Chapter 2 The Chemical Basis of Life Chapter 2 The Chemical Basis of Life PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Figure 2.0_2 Chapter

More information

Chapter 2 The Chemical Basis of Life

Chapter 2 The Chemical Basis of Life Chapter 2 The Chemical Basis of Life Figure 2.0_2 Chapter 2: Big Ideas PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Elements, Atoms,

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6.1: Introduction to Chemical Bonding Things That You Should Know What is a chemical bond? Why do atoms form chemical bonds? What is the difference between ionic and

More information

may contain one or more neutrons

may contain one or more neutrons Biology 115 Fall 2001 Campos/Saupe Atoms and Molecules I. Introduction - living things are composed of the same chemical elements as the nonliving world and obey the same physical and chemical laws - living

More information

Chapter 2 Chemistry. The World of Elements. Why are we studying chemistry? Models of atoms. The Basics. Atomic structure determines behavior

Chapter 2 Chemistry. The World of Elements. Why are we studying chemistry? Models of atoms. The Basics. Atomic structure determines behavior Chapter 2 Chemistry The World of Elements What? You thought you were all done with the Periodic Table? NEVER! Why are we studying chemistry? Biology has chemistry at its foundation Models of atoms Yeah,

More information

19.1 Bonding and Molecules

19.1 Bonding and Molecules Most of the matter around you and inside of you is in the form of compounds. For example, your body is about 80 percent water. You learned in the last unit that water, H 2 O, is made up of hydrogen and

More information

Chemical Bonding: Chemical Formulas OL

Chemical Bonding: Chemical Formulas OL Name: Chemical Bonding 5. Chemical Bonding: Chemical Formulas Ionic Bonding Covalent Bonding Electronegativity Shapes of Molecules and Intermolecular Forces Objectives -understand that compounds can be

More information

Campbell's Biology, 9e (Reece et al.) Chapter 2 The Chemical Context of Life

Campbell's Biology, 9e (Reece et al.) Chapter 2 The Chemical Context of Life Campbell's Biology, 9e (Reece et al.) Chapter 2 The Chemical Context of Life This chapter presents basic chemical principles for understanding the chemical context of living organisms, from atomic structure

More information

Let s Review Bonding. Chapter 3 Water and Life 7/19/2016 WATER AND SOLUTIONS. Properties of Water

Let s Review Bonding. Chapter 3 Water and Life 7/19/2016 WATER AND SOLUTIONS. Properties of Water Let s Review Bonding Chapter 3 Water and Life Covalent Ionic Hydrogen Van der Waals Interactions Between nonmetals Between metal and non-metal All important to life H bonds to other electronegative atoms

More information

Ionic Bonding Ionic bonding occurs when metals and nonmetals trade one or more electrons and the resulting opposite charges attract each other. Metals

Ionic Bonding Ionic bonding occurs when metals and nonmetals trade one or more electrons and the resulting opposite charges attract each other. Metals Chemical Bonding Now that we know what atoms look like A very small (less than 0.001% of the volume) and massive (more than 99.99% of the mass) nucleus with protons (+) and neutrons (neutral) and electrons

More information

General Chemistry. Lecture 3

General Chemistry. Lecture 3 General Chemistry Lecture 3 Electrons Protons and neutrons are found in the nucleus Electrons surround the nucleus in energy levels or shell at certain distances around the nucleus The number of electrons

More information

Chemistry Review CHAPTER 2 IN TEXT

Chemistry Review CHAPTER 2 IN TEXT Chemistry Review CHAPTER 2 IN TEXT Chemistry of Life Living organisms and the world they live in are subject to the basic laws of physics and chemistry. Life can be organized into a hierarchy of structural

More information

1. Ionic bonding - chemical bond resulting from the attraction of positive and negative ions

1. Ionic bonding - chemical bond resulting from the attraction of positive and negative ions Bonding Bonding can occur in 2 ways: 1. Electron transfer (ionic) 2. Electron sharing (covalent) 1. Ionic bonding - chemical bond resulting from the attraction of positive and negative ions Cation- positive

More information

Elements and Chemical Bonds. Chapter 11

Elements and Chemical Bonds. Chapter 11 Elements and Chemical Bonds Chapter 11 Essential Question How does understanding periodic trends allow us to predict properties of different elements? Vocabulary Ionic bond Covalent bond Compounds, Chemical

More information

2 Ionic and Covalent Bonding

2 Ionic and Covalent Bonding CHAPTER 6 2 Ionic and Covalent Bonding SECTION The Structure of Matter KEY IDEAS As you read this section, keep these questions in mind: Why do atoms form bonds? How do ionic bonds and covalent bonds differ?

More information

CHAPTER 2--LIFE'S CHEMICAL BASIS

CHAPTER 2--LIFE'S CHEMICAL BASIS CHAPTER 2--LIFE'S CHEMICAL BASIS Student: 1. People are most likely to ingest large amounts of mercury by eating A. soy products. B. chicken. C. beef. D. large predatory fish. E. small herbivorous fish.

More information

Scientists learned that elements in same group on PT react in a similar way. Why?

Scientists learned that elements in same group on PT react in a similar way. Why? Unit 5: Bonding Scientists learned that elements in same group on PT react in a similar way Why? They all have the same number of valence electrons.which are electrons in the highest occupied energy level

More information

AP Biology. Chapter 2

AP Biology. Chapter 2 AP Biology Chapter 2 Matter is anything that has weight and takes up space 1. Mass is a measure of how much matter is present in a body 2. Weight is a measure of the gravitational force exerted on an object

More information

Chemical Bond An attraction between the nuclei and valence electrons of different atoms, which binds the atoms together

Chemical Bond An attraction between the nuclei and valence electrons of different atoms, which binds the atoms together Chemical Bond An attraction between the nuclei and valence electrons of different atoms, which binds the atoms together When atoms form chemical bonds their valence electrons move around. This makes atoms

More information

Section Objectives: Section Objectives: Distinguish mixtures and solutions. Define acids and bases and relate their importance to biological systems.

Section Objectives: Section Objectives: Distinguish mixtures and solutions. Define acids and bases and relate their importance to biological systems. Section Objectives: Relate the structure of an atom to the identity of elements. Relate the formation of covalent and ionic chemical bonds to the stability of atoms. Section Objectives: Distinguish mixtures

More information

How do Elements Combine to Form Compounds?

How do Elements Combine to Form Compounds? How do Elements Combine to Form Compounds? ACTIVITY What is it made of? Compounds account for the huge variety of matter on Earth All the compounds that exist on Earth are built from elements 118 elements

More information

Basic Chemistry. Chapter 2 BIOL1000 Dr. Mohamad H. Termos

Basic Chemistry. Chapter 2 BIOL1000 Dr. Mohamad H. Termos Basic Chemistry Chapter 2 BIOL1000 Dr. Mohamad H. Termos Chapter 2 Objectives Following this chapter, you should be able to describe: - Atoms, molecules, and ions - Composition and properties - Types of

More information

Proper&es of Water. Lesson Overview. Lesson Overview. 2.2 Properties of Water

Proper&es of Water. Lesson Overview. Lesson Overview. 2.2 Properties of Water Lesson Overview Proper&es of Water Lesson Overview 2.2 Properties of Water THINK ABOUT IT Looking back at Earth from space, an astronaut called it the blue planet, referring to the oceans of water that

More information

General Chemistry Notes Name

General Chemistry Notes Name Bio Honors General Chemistry Notes Name Directions: Carefully read the following information. Look for the ** directions in italics** for prompts where you can do some work. Use the information you have

More information

I. ELEMENTS & ATOMS: Name: Period: Date:

I. ELEMENTS & ATOMS: Name: Period: Date: Name: Period: Date: I. ELEMENTS & ATOMS: = A substance that cannot be broken down into simpler substances o Periodic Table 1-92 occur in (natural elements) 93 and above are (man-made) Natural Elements:

More information

The maintenance of a relatively constant internal environment in is termed: Which of the following is an organ?

The maintenance of a relatively constant internal environment in is termed: Which of the following is an organ? The maintenance of a relatively constant internal environment in is termed: A. Positive Feedback B. Homeostasis C. Negative Feedback D. Homeopathy E. Osmosis Which of the following is an organ? A. Mitochondria

More information

CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS

CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS Metallic Bonds How atoms are held together in solid metals. Metals hold onto their valence electrons very weakly. Think of them as positive ions

More information

8/24/2018. Bio 1101 Lecture 2 (guided) Chapters 2: Essential Chemistry. Chapter 2: Essential Chemistry for Biology

8/24/2018. Bio 1101 Lecture 2 (guided) Chapters 2: Essential Chemistry. Chapter 2: Essential Chemistry for Biology 1 2 3 4 5 Bio 1101 Lecture 2 (guided) Chapters 2: Essential Chemistry Chapter 2: Essential Chemistry for Biology Levels of biological organization Ecosystem (e.g. savanna) Community (e.g. the organisms

More information

Matter: Elements and Compounds

Matter: Elements and Compounds Matter: Elements and Compounds Matter is defined as anything that takes up space and has mass. Matter exists in many diverse forms, each with its own characteristics. Rock, metals, and glass are just few

More information

CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS

CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS IONIC BONDING When an atom of a nonmetal takes one or more electrons from an atom of a metal so both atoms end up with eight valence

More information

What does the word BOND mean to you?

What does the word BOND mean to you? Chemical Bonds What does the word BOND mean to you? Chemical Bond attractive force between atoms or ions in a molecule or compound. Formed by: transferring e - (losing or gaining) sharing e - What do you

More information

BIOLOGY 101. CHAPTERS 1 and 2: Introduction, and The Chemical Context of Life:

BIOLOGY 101. CHAPTERS 1 and 2: Introduction, and The Chemical Context of Life: BIOLOGY 101 CHAPTERS 1 and 2: Introduction, and The Chemical Context of Life: BIOLOGY 101 CHAPTER 1: Introduction: Themes in the Study of Life Natural Selection and change: Focus What is science, and what

More information

Chapter 2. The Chemical Context of Life

Chapter 2. The Chemical Context of Life Chapter 2 The Chemical Context of Life 1 Matter Takes up space and has mass Exists as elements (pure form) and in chemical combinations called compounds 2 Elements Can t be broken down into simpler substances

More information

Chapter 02 The Basics of Life: Chemistry

Chapter 02 The Basics of Life: Chemistry Chapter 02 The Basics of Life: Chemistry Multiple Choice Questions 1. An atom that has gained electrons is a A. reactant. B. negative ion. C. positive ion. D. compound ion. 2. An atom with twelve electrons,

More information

BIOLOGY 101. CHAPTER 3: Water and Life: The Molecule that supports all Live

BIOLOGY 101. CHAPTER 3: Water and Life: The Molecule that supports all Live BIOLOGY 101 CHAPTER 3: Water and Life: The Molecule that supports all Live The Molecule that Supports all Life CONCEPTS: 3.1 Polar covalent bonds in water molecules result in hydrogen bonding 3.2 Four

More information

Chapter 2 Basic Chemistry Outline

Chapter 2 Basic Chemistry Outline Chapter 2 Basic Chemistry Outline 1.0 COMPOSITION OF MATTER 1.1 Atom 1.2 Elements 1.21 Isotopes 1.22 Radioisotopes 1.3 Compounds 1.31 Compounds Formed by Ionic Bonding 1.32 Compounds Formed by Covalent

More information

Chapter 02 Chemical Basis of Life. Multiple Choice Questions

Chapter 02 Chemical Basis of Life. Multiple Choice Questions Seeleys Essentials of Anatomy and Physiology 8th Edition VanPutte Test Bank Full Download: http://testbanklive.com/download/seeleys-essentials-of-anatomy-and-physiology-8th-edition-vanputte-test-bank/

More information