Istituto di Biochimica ed Ecofisiologia Vegetale, Consiglio Nazionale delle Ricerche, via Salaria km , Monterotondo Scalo (Roma), Italy

Size: px
Start display at page:

Download "Istituto di Biochimica ed Ecofisiologia Vegetale, Consiglio Nazionale delle Ricerche, via Salaria km , Monterotondo Scalo (Roma), Italy"

Transcription

1 Tree Physiology 19, Heron Publishing----Victoria, Canada Long-term effects of elevated carbon dioxide concentration and provenance on four clones of Sitka spruce (Picea sitchensis). II. Photosynthetic capacity and nitrogen use efficiency MAURO CENTRITTO 1 and PAUL G. JARVIS 2 1 Istituto di Biochimica ed Ecofisiologia Vegetale, Consiglio Nazionale delle Ricerche, via Salaria km , Monterotondo Scalo (Roma), Italy 2 Institute of Ecology and Resource Management, University of Edinburgh, Darwin Building, King s Buildings, Mayfield Road, Edinburgh, EH9 3JU, Scotland Received November 17, 1998 Summary Four clones of Sitka spruce (Picea sitchensis (Bong.) Carr.) from two provenances, at 53.2 N (Skidegate a and Skidegate b) and at 41.3 N (North Bend a and North Bend b), were grown for three growing seasons in ambient (~350 µmol mol 1 ) and elevated (~700 µmol mol 1 ) CO 2 concentrations. The clones were grown in stress-free conditions (adequate nutrition and water) to assess the effect of elevated [CO 2 ] on tree physiology. Growth in elevated [CO 2 ] significantly increased instantaneous photosynthetic rates of the clonal Sitka spruce saplings by about 62%. Downward acclimation of photosynthesis (A) was found in all four clones grown in elevated [CO 2 ]. Rubisco activity and total chlorophyll concentration were also significantly reduced in elevated [CO 2 ]. Provenance did not influence photosynthetic capacity. Best-fit estimates of J max (maximum rate of electron transport), V cmax (RuBP-saturated rate of Rubisco) and A max (maximum rate of assimilation) were derived from responses of A to intercellular [CO 2 ] by using the model of Farquhar et al. (1980). At any leaf N concentration, the photosynthetic parameters were reduced by growth in elevated [CO 2 ]. However, the ratio between J max and V cmax was unaffected by CO 2 growth concentration, indicating a tight coordination in the allocation of N between thylakoid and soluble proteins. In elevated [CO 2 ], the more southerly clones had a higher initial N use efficiency (more carbon assimilated per unit of leaf N) than the more northerly clones, so that they had more N available for those processes or organs that were most limiting to growth at a particular time. This may explain the initial higher growth stimulation by elevated [CO 2 ] in the North Bend clones than in the Skidegate clones. Keywords: acclimation, chlorophyll, electron transport, elevated [CO 2], photosynthesis, Rubisco. Introduction Predicted changes in atmospheric [CO 2 ] are expected to increase photosynthetic rates in C 3 plants both by increasing the rate of carbon fixation and by reducing photorespiratory loss of carbon. Generally, photosynthetic rates of woody plants are increased by a doubling in CO 2 concentration (Eamus and Jarvis 1989, Amthor 1995). Gunderson and Wullschleger (1994), in surveying studies of 39 tree species, reported an average increase of photosynthetic rates of 44% when measured at the growth [CO 2 ] concentrations. Ceulemans and Mousseau (1994) observed that, in short-term experiments, elevated [CO 2 ] stimulates photosynthesis on average about 40% in conifers and 61% in broad-leaved species. However, long-term growth in elevated [CO 2 ] often results in a variable decrease (depending on the species) in the amounts of photosynthetic pigments and enzymes, for instance, amount and activation state of Rubisco, and, thus, acclimation of the photosynthetic apparatus (Long and Drake 1992). Apparently, this decrease may occur even when the supply of nitrogen is adequate and rooting volume is large (Drake et al. 1997). Acclimatory depression of photosynthetic capacity has come to the fore as a process that regulates source--sink interactions (Sheen 1994). This study reports the effects of stress-free (adequate nutrition, water, pot space) growth in a CO 2 concentration of 700 µmol mol 1 on gas exchange, and carbon and nitrogen relationships of four clones of Sitka spruce (Picea sitchensis (Bong.) Carr.) of two provenance after three years of CO 2 exposure. It has been shown in a companion paper (Centritto et al. 1999) that the dry mass of all four clones was increased by elevated [CO 2 ], but that the more northerly clones, despite being grown at a latitude close to their latitudinal provenance, were significantly less responsive than the more southerly clones. To understand whether these differences in growth resulted from a direct effect of elevated [CO 2 ] on photosynthesis, the photosynthetic capacity of the clones was analyzed in relation to leaf nitrogen concentration. Clones from two provenances were used because in the temperate and northerly regions the contribution of clones to the fitness of the populations is relevant (Callaghan et al. 1992). However, climate change is thought to give rise to mass migration of plants, thereby modifying composition of plant communities by changing the intraspecific as well as interspecific competitive performances. Understanding specific ways in which different

2 808 CENTRITTO AND JARVIS genotypes respond to elevated [CO 2 ] is necessary to predict the likely impact of global change on vegetation. Materials and methods Saplings of four clones of Sitka spruce (Picea sitchensis (Bong.) Carr.) from two provenances, at 53.2 N (Skidegate a and Skidegate b) and at 41.3 N (North Bend a and North Bend b), were grown for three growing seasons in open top chambers (OTCs) with ambient [CO 2 ] (~350 µmol mol 1 ) or elevated [CO 2 ] (ambient + ~350 µmol mol 1 ). The OTCs were located at the Institute of Terrestrial Ecology (ITE), Bush Estate, near Edinburgh, U.K. The saplings were potted in standard potting compost, watered every other day to pot water capacity and regularly fertilized in both growing seasons following Ingestad s principles (Ingestad and Ågren 1992). Full details of the growth conditions, and of the statistical analysis used to test the data are described in a companion paper (Centritto et al. 1999). Gas exchange measurements were made in a glasshouse at the University of Edinburgh, on the central section of currentyear branches with a portable gas exchange system (ADC- LCA-3, Analytical Development Co. Ltd., Hoddesdon, U.K.) equipped with a conifer leaf chamber (PLC-3, Analytical Development Co. Ltd., Hoddesdon, U.K.). To enable measurements of PPFD-saturated photosynthetic rates, illumination of the leaf cuvette by natural sunlight was supplemented with artificial light (provided by a white fluorescent lamp) to maintain PPFD incident on the needles above 1700 µmol m 2 s 1. The planar area of needles on each sample was determined by removing all the needles enclosed by the leaf cuvette and passing them through a leaf area meter (LI 3000, Li-Cor, Inc., Lincoln, NE). Instantaneous leaf CO 2 assimilation rates (A) were measured between 1100 and 1300 h at the end of July 1993 on 20 saplings (five plants per clone) per [CO 2 ] treatment, at the growth CO 2 concentrations. Rates of short-term (10 min) PPFD-saturated ( µmol m 2 s 1 ) CO 2 assimilation were measured at leaf internal CO 2 concentrations (A--C i ) ranging from 40 to 1200 µmol mol 1. Observations were made in August 1993 between 1000 and 1700 h, on twelve saplings (three per clone) per [CO 2 ] treatment. The initial slope of the A--C i curves is an estimate of the carboxylation efficiency (V cmax, RuBP-saturation rate of Rubisco), whereas the maximum rate of assimilation (A max ) (the net CO 2 assimilation rate under conditions of PPFD and CO 2 saturation) is indicative of the role of RuBP regeneration, and is related to electron transport under conditions of PPFD-saturation (J max ). Parameters J max, V cmax, and A max, were estimated by fitting the C 3 photosynthesis model of Farquhar et al. (1980) to individual A--C i response curves following the procedure outlined by Wullschleger (1993). Total Rubisco activity was assayed spectrophotometrically by a coupled enzyme method (Besford 1984, Van Oosten et al. 1995). Five needles from one plant from each clone (i.e., 100 needles per [CO 2 ] treatment) were sampled in July 1993 for Rubisco activity assays. The needles were removed from midway along current-year branches. Needle mass and area were rapidly measured before plunging the needles in liquid nitrogen. Needle concentrations of chlorophylls a, b, and a + b were measured on different needles sampled as described above. The concentration of chlorophylls was measured in intact leaf tissues by immersion in N,N-dimethylformamide (DMF) following the techniques described by Porra et al. (1989). The saplings were sampled once a month from March to October in the second growing season, and from February to October in the third growing season. Needles were removed from midway down a current-year branch and their area rapidly measured before they were plunged in liquid nitrogen. Samples for determination of sugar and starch concentrations of roots and current-year needles were taken at each harvest during the second and third growing seasons (see Centritto et al. 1999). The numbers of root and leaf samples taken were 24 per [CO 2 ] treatment (six per clone) on Day 381, 40 per [CO 2 ] treatment (10 per clone) on Day 551, and 20 per [CO 2 ] treatment (five per clone) on Days 719 and 972. Soluble sugars were measured by high pressure liquid chromatography (HPLC). Five cm 3 of NaOH solution ( mol m 3 ) was added to freeze-dried, ground tissue of the sapling samples ranging in mass between and g. The samples were incubated for 15 minutes in a water bath at 30 C. The solutions were then centrifuged for 15 minutes at 3000 g, and the supernatant collected and vacuum filtered using a 0.2 µm nitrocellulose filter (Whatman International Ltd., Maidstone, U.K.). The amount of soluble sugars present in the sample was determined by HPLC (Dionex DX 500, Dionex Corp., Sunnyvale, CA). Starch concentration was determined by the iodometric method (Allen 1989). Results Elevated CO 2 significantly (P < 0.001) increased CO 2 assimilation rate of Sitka spruce saplings by about 62% at the end of July of the third growing season, when measured at the growth CO 2 concentration (Table 1). Stimulation occurred in all clones, and was higher, though not significantly, in the Skidegate a and b clones (about 95% and 76%, respectively) than in the North Bend clones (about 43%) (Table 2). The relationship between PPFD-saturated CO 2 assimilation rate and leaf internal CO 2 concentration was used to ascertain the Table 1. Total Rubisco activity (on a leaf area basis), measured with saturating CO 2 in vitro, and assimilation rate (A) of the Sitka spruce saplings (all clones) in ambient or elevated [CO 2 ]. Data are means of 20 plants per [CO 2 ] treatment ± 1 SEM. Measurements of A were made at the growth CO 2 concentrations, with a mean temperature of 24.9 ± 0.28 C (1 SEM) in saturating PPFD (> 1700 µmol m 2 s 1 ) between 1100 and 1300 h. Rubisco (µmol m 2 s 1 ) A (µmol m 2 s 1 ) Elevated ± ± 0.44 Ambient ± ± 0.37 Significance: CO 2 P < P < TREE PHYSIOLOGY VOLUME 19, 1999

3 EFFECTS OF CO2 AND PROVENANCE ON SPRUCE PHYSIOLOGY 809 Table 2. Assimilation rate (A) measured at the growth CO 2 concentrations, A max (from A--C i curves), and total Rubisco activity in vitro (on a leaf area basis), of the four Sitka spruce clones. Data are means of three to five plants per treatment ± 1 SEM. The significance levels (* = P < 0.05, ** = P < 0.01, *** = P < 0.001) apply to the within-clone difference in response to [CO 2 ]. A (µmol m 2 s 1 ) A max (µmol m 2 s 1 ) Rubisco (µmol m 2 s 1 ) Elevated Ambient Elevated Ambient Elevated Ambient Skidegate a ± ± 0.52 *** ± ± 0.69 ** ± ± 7.48 ** Skidegate b ± ± 0.11 ** ± ± 0.95 * ± ± 2.77 * North Bend a ± ± 0.23 *** ± ± 0.92 * ± ± 6.35 * North Bend b ± ± 1.28 ** ± ± 0.57 ** ± ± 5.33 * Figure 1. The relationship between net CO 2 assimilation rate (A) of Sitka spruce saplings of the four clones and intercellular CO 2 concentration (C i ) in saturating PPFD (> 1700 µmol m 2 s 1 ). The measurements were made on shoots of twelve saplings per [CO 2 ] treatment. Mean A max, averaged across the four clones, was statistically different between treatments (P < 0.001). biochemical limitation to photosynthesis. These A--C i measurements showed some downward acclimation of photosynthesis in the saplings grown in elevated [CO 2 ] (Figure 1). The decrease in A max in the elevated [CO 2 ] treatment was about 25% (P < 0.001). A downward acclimation of A max was observed in all four clones grown in elevated [CO 2 ] (Table 2). There were no differences in A max among clones in either elevated or ambient [CO 2 ]. The A--C i response curves also showed that ambient [CO 2 ]- grown saplings had higher carboxylation efficiencies than elevated [CO 2 ]-grown saplings (Figure 1). Carboxylation efficiency is generally interpreted as a limitation by Rubisco activity, which was significantly reduced in vitro by 36% by elevated [CO 2 ] (Table 1). All clones in elevated [CO 2 ] showed downward acclimation of carboxylation efficiency (data not shown). In parallel, Rubisco activity in vitro significantly decreased in response to long-term growth in elevated [CO 2 ] by about 22% in Skidegate b, 36% in North Bend b, 39% in North Bend a, and 43% in Skidegate a (Table 2). However, there were no significant differences in Rubisco activity among the clones in either [CO 2 ] treatment. Total chlorophyll concentration was significantly lower at all sampling times in saplings grown in elevated [CO 2 ] compared with saplings grown in ambient [CO 2 ] in both growing seasons (Table 3). Figure 2 shows needle and root sugar concentrations per unit of dry mass of the Sitka spruce saplings harvested at the beginning and end of both the second and third growing seasons. The sugar concentration was greater in both needles (Figure 2a) and roots (Figure 2b) of plants grown in elevated [CO 2 ] compared with plants grown in ambient [CO 2 ], but the differences were significant only in needles harvested on Day 382. There was a significant increase in starch concentration at the end of both the second and third growing season (Days 551 and 972, respectively) in needles (Figure 3a) and roots (Figure 3b) of saplings grown in elevated [CO 2 ] compared with ambient [CO 2 ]-grown saplings. Figure 4 shows the relationships between leaf N concentration and mean total dry mass of the saplings in both ambient and elevated [CO 2 ]. Growth in different CO 2 concentrations affected the nitrogen concentrations when the saplings were the same size, as demonstrated by the linear relationships between mean total dry mass and nitrogen concentration of leaves (R 2 = for the elevated [CO 2 ] saplings, and R 2 = for the ambient [CO 2 ] saplings). Growth in elevated [CO 2 ] also affected foliar nitrogen concentration of the four Table 3. Total chlorophyll concentration (mg cm 2 ), measured at monthly intervals in the second and third growing seasons, in needles of Sitka spruce saplings grown in ambient or elevated [CO 2 ]. Data are means of 20 plants per treatment ± 1 SEM. Abbreviation: ns = not significant. Second growing season Third growing season Elevated Ambient Elevated Ambient February ± ± 5.51 March ± ± ± ± 4.88 April ± ± ± ± 7.16 May ± ± ± ± 7.39 June ± ± ± ± 1.72 July ± ± ± ± 2.92 August ± ± ± ± 3.73 September ± ± ± ± 4.31 October ± ± ± ± 2.97 Statistical significance: CO 2 P < P < Time P < P < Interaction ns ns TREE PHYSIOLOGY ON-LINE at

4 810 CENTRITTO AND JARVIS Figure 4. Linear relationships between the combined mean foliar nitrogen concentration and total dry mass of the Sitka spruce saplings grown in ambient or elevated [CO 2 ]. Data are means of 20 to 40 plants per treatment ± 1 SEM. clones when the saplings were the same size (Figure 5). There was a trend to produce more biomass with a lower foliar N concentration in the more southerly clones when they were younger. Foliar N concentration decreased to similar values in all four clones as they grew larger, although the North Bend clones maintained a greater total dry mass than the Skidegate clones. There was a positive linear relationship between best-fit estimates of J max, V cmax, and A max and leaf nitrogen concentration when expressed on a leaf area basis in both elevated and ambient [CO2] (Figure 6). However, saplings grown in elevated [CO 2 ] had lower values of all three parameters per unit of foliar nitrogen on a leaf area basis than saplings grown in ambient [CO 2 ]. The values of V cmax and J max were similar in magnitude to those reported by Walcroft et al. (1997) for Pinus radiata D. Don, when based on projected leaf area. A strong positive, linear correlation was also observed between the best-fit estimates of J max and V cmax (Figure 7); i.e., J max = 2.39V cmax. Discussion Figure 2. Needle (a) and root (b) sugar concentrations per unit of dry mass in the Sitka spruce saplings grown in ambient or elevated [CO 2 ], plotted against time since the beginning of the experiment. Data are means of 20 to 40 plants per treatment ± 1 SEM. The significance level (** = P < 0.01) shows the difference in sugar concentration in response to the [CO 2 ] treatments. Figure 3. Needle (a) and root (b) starch concentrations per unit of dry mass in the Sitka spruce saplings grown in ambient or elevated [CO 2 ], plotted against time since the beginning of the experiment. Data are means of 20 to 40 plants per treatment ± 1 SEM. The significance levels (* = P < 0.05, ** = P < 0.01, *** = P < 0.001) show the difference in starch concentration in response to the [CO 2 ] treatments. Figure 5. Relationships between foliar nitrogen concentration and total dry mass of the four clones of Sitka spruce grown in elevated [CO 2 ]. Data are means of five to 10 plants per treatment ± 1 SEM. The four clones of Sitka spruce were grown in stress-free conditions (adequate nutrition and water) to assess the effect of elevated [CO 2 ] on tree physiology, thus ruling out any TREE PHYSIOLOGY VOLUME 19, 1999

5 EFFECTS OF CO2 AND PROVENANCE ON SPRUCE PHYSIOLOGY 811 Figure 6. Linear relationships between best-fit estimates of the photosynthetic parameters derived from individual A--C i curves (using the model of Farquhar et al. 1980) and foliar nitrogen concentration on a leaf area basis; (a) J max (R 2 = for the elevated [CO 2 ] plants, R 2 = for the ambient [CO 2 ] plants), (b) V cmax (R 2 = for the elevated [CO 2 ] plants, R 2 = for the ambient [CO 2 ] plants), and (c) A max (R 2 = for the elevated [CO 2 ] plants, R 2 = for the ambient [CO 2 ] plants). Figure 7. Linear relationship (R 2 = 0.934) between the maximum rate of electron transport (J max ) and the maximum rate of carboxylation (V cmax ), derived as best-fit estimates from individual A--C i curves. effects that insufficient water or nutrient supply might have caused. Recently, Drake et al. (1997) have stressed the importance of available nutrients in determining the extent of the stimulation of A in elevated [CO 2 ]; in a review of eight experiments the average stimulation dropped from 57% when nitrogen availability was high to 23% when nitrogen availability was low. Long-term growth in elevated [CO 2 ] increased instantaneous photosynthetic rates of the clonal Sitka spruce saplings by about 62% (Table 1). Similar increases in assimilation rate were found in juvenile foliage of nine-year-old Pinus taeda L. trees exposed for the second year to a doubling of CO 2 concentration (Murthy et al. 1997). In two-year-old Sitka spruce clones, Townend (1993) found a significant effect of growth in elevated [CO 2 ] (600 µmol mol 1 ) on the response of A to PPFD, but did not quantify this increase. Lucas (1998) found that A of 3-year-old Sitka spruce seedlings was 35% higher in elevated [CO 2 ] (700 µmol mol 1 ) than in ambient [CO 2 ]. Barton (1997) found that A of both current-year and 1-year-old shoots of mature Sitka spruce doubled in response to elevated [CO 2 ] (700 µmol mol 1 ) in a branch bag experiment. The more southerly clones (North Bend a and b) showed an increase in assimilation rate of about 43%, which is close to the average increase for conifers reported in the survey by Gunderson and Wullschleger (1994), whereas the increases in photosynthetic rates of the more northerly clones (Skidegate a and b) were well above the average (Table 2). However, the Skidegate a and b clones produced significantly less total dry mass than the North Bend clones in elevated [CO 2 ] at the end of the third growing season (Centritto et al. 1999). Either the increases in instantaneous assimilation rates of each clone, measured at the beginning of August in the third growing season, were not representative of the average increase over the entire growth period studied, or there were large losses of carbon in respiration, volatilization, root exudation and fine root turnover in the more northerly clones. These processes were not studied in this work, but they can account for a large proportion of assimilates lost (Wang et al. 1998). Furthermore, other important factors, including mutual leaf shading, leaf area per plant and respiratory costs, affect growth responses. Oleksyn et al. (1992) found that, in Pinus sylvestris L., root respiration accounted for about two-thirds of total respiratory cost. At the beginning of the growth period, the Skidegate clones allocated proportionally more dry mass to the roots compared with the North Bend clones (data not shown), which might have increased whole-plant respiratory losses and led to an initially smaller growth stimulation by [CO 2 ] than in the North Bend clones. Long-term growth in elevated [CO 2 ] may result in reduced amounts of photosynthetic pigments and enzymes (Eamus and Jarvis 1989). However, Arp (1991) showed that downward acclimation of photosynthetic capacity and size of pot were highly correlated, and that constrained rooting caused by inadequate pot volume may cause downward acclimation of photosynthetic capacity in elevated [CO 2 ]. In contrast, plants rooted in the ground show little acclimation of photosynthetic capability (Liu and Teskey 1995, Curtis and Wang 1998). A three-year exposure to elevated [CO 2 ] of branches of mature Sitka spruce in a stand did not cause acclimation of A in current-year needles, but caused some downward acclimation in one-year-old needles (Barton 1997). There were no significant changes in the A--C i relationship measured in branches exposed to elevated [CO 2 ] of 22-year-old Pinus taeda trees in all the three years of growth, indicating that elevated [CO 2 ] (ambient µmol mol 1 ) did not alter the photosynthetic TREE PHYSIOLOGY ON-LINE at

6 812 CENTRITTO AND JARVIS capacity of the foliage when adequate sinks were available (Teskey 1997). There were no significant differences in A--C i curves between Betula pendula Roth plants grown in elevated (700 µmol mol 1 ) and ambient [CO 2 ] in Ingestad units with steady-state nutrition (Pettersson and McDonald 1992). In the present experiment, the Sitka spruce saplings were supplied with free access to nutrients, and dry mass allocation was identical when the plants were the same size suggesting that they were not pot limited (Centritto et al. 1999). Yet, downward acclimation of photosynthetic capacity occurred (Figure 1) in each clone (Table 3), as was also found by Lucas (1998) in three Sitka spruce clones and Barton (1997) in 2-year-old seedlings of Sitka spruce. The A--C i response curves showed both a decrease in A max, which is a function of photosynthetic electron transport and regeneration of RuBP, and in carboxylation efficiency, which is limited by Rubisco activity. The latter observation is consistent with the in vitro Rubisco activities, which decreased in elevated [CO 2 ]-grown saplings (Table 1). This decline of photosynthesis was in agreement with the downward acclimation of Rubisco (Van Oosten et al. 1995), which may result from both lowered enzyme activation and enzyme amount (Tissue et al. 1993, Vu et al. 1997). Nitrogen concentration was affected by growth in elevated [CO 2 ] (Centritto et al. 1999). Reduction in leaf N concentration in elevated [CO 2 ] was only partially caused by starch dilution, because starch concentration was not always affected (Figure 3a). There are several processes by which elevated [CO 2 ] can lead to decreased leaf N concentration. These include inhibition of photorespiration and reduced amounts of photosynthetic pigments and enzymes. Rubisco is the largest pool of nitrogen in leaves (Drake et al. 1997), and its content can be reduced by about 35% in elevated [CO 2 ] before there is co-limitation of A (Long and Drake 1992). Carbon assimilation rate of the four clones was increased by about 51% in elevated [CO 2 ] (Table 2) despite a reduction in V cmax per unit of leaf nitrogen (Figure 6b). Thus, because less Rubisco was required in elevated [CO 2 ] (Table 1), increased carbon assimilation per unit of leaf N led to increased nitrogen use efficiency (NUE). The chlorophyll--protein complexes also constitute major pools of N in leaves (Evans 1997), and are usually decreased by elevated [CO 2 ] (Drake et al. 1997), as found here (Table 3). Wullschleger (1993) found that, in a retrospective analysis of the A--C i curves from a large number of C 3 species, the carboxylation and light-harvesting capabilities were closely coupled. Coordinated regulation of the biochemical limitations to photosynthesis has also been shown in elevated [CO 2 ]. Van Oosten et al. (1995) reported that downward acclimation of the light-harvesting complexes in tomato plants grown in elevated [CO 2 ] followed the decline in carboxylation capacity. In our study, a strong positive linear relationship between the best-fit estimates of J max and V cmax was also found (Figure 7). This may indicate that the decline in chlorophyll concentration (on a leaf area basis) and the downward acclimation of J max per unit of leaf N (also expressed on a leaf area basis) in elevated [CO 2 ] (Figure 6a), resulted from the tight coordination of the activities of thylakoid proteins and soluble proteins to match each other. The ability to maintain a constant ratio between the carboxylation and light-harvesting activities across a wide range of environmental conditions (Wullschleger 1993) originates from a functional balance in the allocation of N between thylakoid and soluble proteins. This allows optimization of resource allocation (Evans 1997) and leads to a more efficient use of N (Von Caemmerer and Farquhar 1981). Furthermore, inhibition of photorespiration in plants grown in elevated [CO 2 ] may also reduce the amount of nitrogen required per unit of dry mass produced (Conroy and Hocking 1993). Thus, changes in the biochemistry of photosynthesis and photorespiration, which usually occur when N uptake does not keep pace with carbon uptake (Jarvis 1995), may be regarded as an optimization process that involves reallocation of nitrogen away from non-limiting components to more limiting processes or organs (i.e., additional or larger sinks for the extra carbon assimilated), and consequently leading to increased NUE. The lower N concentration per unit of leaf area in elevated [CO 2 ] may account for the acclimation of the photosynthetic capability of the four clones, despite free access to nitrogen and the large rooting volume (10 dm 3 ), although, as Drake et al. (1997) pointed out, downward acclimation of A is the exception rather than the rule when the rooting volume exceeds 10 dm 3. However, a recent study on the interactive effects of elevated [CO 2 ] (700 µmol mol 1 ) and N supply in field-grown rice has shown that reduced foliage concentration of N (even if calculated as a percentage of structural dry mass) was always associated with increased [CO 2 ] (Ziska et al. 1996). This is a common observation in many species and is hard to explain. In the Sitka spruce saplings, leaf N concentration was clearly lower when the plants were the same size in the two [CO 2 ] treatments (Figure 4), indicating that growth in elevated [CO 2 ] increased the dry mass produced per unit of nitrogen taken up. Increased growth per unit of plant nitrogen and phosphorus was also noted with seedlings of Pinus ponderosa Dougl. ex Laws. grown in 700 µmol mol 1 of CO 2 (DeLucia et al. 1997). Van Oosten and Besford (1996) have described a molecular model for photosynthetic acclimation. The model invokes metabolite regulation of gene expression, which probably occurs when the production of new assimilates is larger than the capacity to handle them. This can involve a source--sink imbalance leading to feedback effects on photosynthesis by endproduct accumulation (Stitt 1991). The cytoplasmatic pool of glucose may provide a regulatory signal for coarse control, which determines the amount of photosynthetic systems by repressing photosynthetic gene expression (rbcs, cab-7, cab- 3C, rca), thereby triggering a cascade of reactions that lead to acclimation of the photosynthetic apparatus. However, sugar concentration in needles of the Sitka spruce saplings was not increased significantly at the beginning or end of the third growing season (Figure 2), when photosynthetic acclimation in elevated [CO 2 ] was detected (Figure 1). This finding seems to conflict with the model put forward by Van Oosten and Besford (1996). However, Paul and Driscoll (1997) have recently shown that loss of photosynthetic activity is better correlated with an increase in the C/N ratio than with carbohy- TREE PHYSIOLOGY VOLUME 19, 1999

7 EFFECTS OF CO2 AND PROVENANCE ON SPRUCE PHYSIOLOGY 813 drate status. Our results accord with this view. The higher leaf C/N ratio in needles at the end of both the second and third growing seasons (Days 719 and 972), as a result of similar sugar concentrations (Figure 2a) but lower nitrogen concentrations (Centritto et al. 1999), may explain photosynthetic downward acclimation in elevated [CO 2 ]. This result is consistent with findings in several other studies. For instance, A of two full-sib families of Pinus ponderosa seedlings was lower in elevated [CO 2 ] than in ambient [CO 2 ] after about 39 days from germination, but the C/N ratio of the needles had already increased in elevated [CO 2 ] (Grulke et al. 1993). Reductions in Rubisco activity and chlorophyll concentration led to improved nitrogen use efficiency in elevated [CO 2 ], because A max, J max, and V cmax scaled linearly with leaf N concentration (Figure 6), and the ratio between J max and V cmax was not changed by growth in elevated [CO 2 ] (Figure 7). Wullschleger (1993) has shown that these two parameters describing photosynthetic capacity are species-specific. Furthermore, despite their importance in mechanistic models predicting the effects of global change on growth processes, there are few values of these parameters for different species in the literature (Walcroft et al. 1997). As far as we know, there are no published values of J max and V cmax, determined from A--C i curves, in relation to leaf N concentration for Picea sitchensis (Bong.) Carr. grown in elevated [CO 2 ]. In conclusion, the amount of N needed for growth was less when Sitka spruce saplings growing in elevated [CO 2 ] were the same size as saplings in ambient [CO 2 ] (Figure 4), and this is likely to result in an advantage for plants growing in a nitrogen-limited environment. Provenance did not significantly influence either photosynthetic capacity or A measured at the growth CO 2 concentrations in the clonal Sitka spruce saplings (Table 2), although, the more northerly clones were significantly less responsive to elevated [CO 2 ] than the southerly clones (Centritto et al. 1999). Genetic differences in growth response to elevated [CO 2 ] were already evident after the first year of growth, and they were magnified over time becoming significant after three full growing seasons. The more southerly clones had higher initial NUE than the more northerly clones (Figure 5), showing that they had more N available for those processes or organs that were most limiting to growth. Clonal provenance affected growth in elevated [CO 2 ] and plant nitrogen use efficiency may have played an important role. This finding is particularly important for northern countries where N is the most limiting resource and will, therefore, affect Sitka spruce growth as the atmospheric CO 2 concentration rises, unless compensated by wet and dry N deposition. Acknowledgments This research was done within the EU Project ECOCRAFT (Contract No. ENV4-CT ) The likely impact of rising CO 2 and temperature on European forests. Mauro Centritto was supported by an agreement between Consiglio Nazionale delle Ricerche and British Council. We would like to thank Dr R. Besford (then at Horticulture Research International Institute, Littlehampton, U.K.) for the analyses of Rubisco activity. References Allen, S.E Chemical analysis of ecological materials. 2nd Edn. Blackwell Science, Oxford, 384 p. Amthor, J.S Terrestrial higher-plant response to increasing atmospheric [CO 2 ] in relation to the global carbon cycle. Global Change Biol. 1: Arp, W.J Effects of source--sink relations on photosynthetic acclimation to elevated CO 2. Plant Cell Environ. 14: Barton, C.V.M Effects of elevated atmospheric carbon dioxide concentrations on growth and physiology of Sitka spruce (Picea sitchensis (Bong.) Carr). PhD Thesis, Univ. Edinburgh, 203 p. Besford, R.T Some properties of ribulose bisphosphate carboxylase extracted from tomato leaves. J. Exp. Bot. 35: Callaghan, T.V., B.Å. Carlsson, I.S. Jónsdóttir, B.M. Svensson and S. Jonasson Clonal plants and environmental change: introduction to the proceedings and summary. Oikos 63: Centritto, M., H.S.J. Lee and P.G. Jarvis Long-term effect of elevated carbon dioxide concentrations and provenance on four clones of Sitka spruce (Picea sitchensis). I. Plant growth, allocation and ontogeny. Tree Physiol. 19: Ceulemans, R. and M. Mousseau Effects of elevated atmospheric CO 2 on woody plants. New Phytol. 127: Conroy, J. and P. Hocking Nitrogen nutrition of C 3 plants at elevated atmospheric CO 2 concentrations. Physiol. Plant. 89: Curtis, P.S. and X. Wang A meta-analysis of elevated CO 2 effects on woody plant mass, form and physiology. Oecologia 113: De Lucia, E.H., R.M. Callaway, E.M. Thomas and W.H. Schlesinger Mechanisms of phosphorus acquisition for ponderosa pine seedlings under high CO 2 and temperature. Ann. Bot. 79: Drake, B.G., M.A. Gonzàlez-Meler and S.P. Long More efficient plants: a consequence of rising atmospheric CO 2? Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: Eamus, D. and P.G. Jarvis The direct effects of increase in the global atmospheric CO 2 concentration on natural and commercial temperate trees and forest. Adv. Ecol. Res. 19: Evans, J.R Developmental constraints on photosynthesis: effects of light and nutrition. In Photosynthesis and the Environment. Ed. N.R. Baker. Kluwer Academic Publishers, Dordrecht, pp Farquhar, G.D., S. Von Caemmerer and J.A. Berry A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta 149: Grulke, N.E., J.L. Hom and S.W. Roberts Physiological adjustment of two full-sib families of ponderosa pine to elevated CO 2. Tree Physiol. 104: Gunderson, C.A. and S.D. Wullschleger Photosynthetic acclimation in trees to rising atmospheric CO 2 : a broader perspective. Photosynth. Res. 39: Ingestad, T. and G.I. Ågren Theories and methods on plant nutrition and growth. Physiol. Plant. 84: Jarvis, P.G The role of temperate trees and forests in CO 2 fixation. Vegetatio 21: Liu, S. and R.O. Teskey Responses of foliar gas exchange to long-term elevated CO 2 concentration in mature loblolly pine trees. Tree Physiol. 15: Long, S.P. and B.G. Drake Photosynthetic CO 2 assimilation and rising atmospheric CO 2 concentrations. In Crop Photosynthesis: Spatial and Temporal Determinants. Eds. N.R. Baker and H. Thomas. Elsevier Science Publishers B.V., Amsterdam, pp Lucas, M Allocation in tree seedlings. PhD Thesis, Univ. Edinburgh, 300 p. TREE PHYSIOLOGY ON-LINE at

8 814 CENTRITTO AND JARVIS Murthy, R., S.J. Zarnoch and P.M. Dougherty Seasonal trends of light-saturated net photosynthesis and stomatal conductance of loblolly pine trees grown in contrasting environments of nutrition, water and carbon dioxide. Plant Cell Environ. 20: Oleksyn, J., M.G. Tjoelker and P.B. Reich Whole-plant CO 2 exchange of seedlings of two Pinus sylvestris L. provenances grown under stimulated photoperiodic conditions of 50 and 60 N. Trees 6: Paul, M.J. and S.P. Driscoll Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen deficiency through source:sink imbalance. Plant Cell Environ. 20: Pettersson, R. and A.J.S. McDonald Effects of elevated carbon dioxide concentration on photosynthesis and growth of small birch plants (Betula pendula Roth.) at optimal nutrition. Plant Cell Environ. 15: Porra, R.J., W.A. Thompson and P.E. Kriedemann Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975: Sheen, J Feedback-control of gene expression. Photosynth. Res. 39: Stitt, M Rising CO 2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ. 14: Teskey, R.O Combined effects of elevated CO 2 and air temperature on carbon assimilation of Pinus taeda trees. Plant Cell Environ. 20: Tissue, D.T., R.B. Thomas and B.R. Strain Long-term effects of elevated CO 2 and nutrients on photosynthesis and Rubisco in loblolly pine seedlings. Plant Cell Environ. 16: Townend, J Effects of elevated carbon dioxide and drought on the growth and physiology of clonal Sitka spruce plants (Picea sitchensis (Bong.) Carr.). Tree Physiol. 13: Van Oosten, J.-J. and R.T. Besford Acclimation of photosynthesis to elevated CO 2 through feedback regulation of gene expression: climate of opinion. Photosynth. Res. 48: Van Oosten, J.-J., D. Wilkins and R.T. Besford Acclimation of tomato to different carbon dioxide concentrations. Relationship between biochemistry and gas exchange during leaf development. New Phytol. 130: Von Caemmerer, S. and G.D. Farquhar Some relationships between the biochemistry of photosynthesis and gas exchange of leaves. Planta 159: Vu, J.C.V., L.H. Allen, Jr., K.J. Boote and G. Bowes Effects of elevated CO 2 and temperature on photosynthesis and Rubisco in rice and soybean. Plant Cell Environ. 20: Walcroft, A.S., D. Whitehead, W.B. Silvester and F.M. Kelliher The response of photosynthetic model parameters to temperature and nitrogen concentration in Pinus radiata D. Don. Plant Cell Environ. 20: Wang, Y.-P., A. Rey and P.G. Jarvis Carbon balance of young birch trees grown in ambient and elevated atmospheric CO 2 concentrations. Global Change Biol. 4: Wullschleger, S.D Biochemical limitations to carbon assimilation in C 3 plants----a retrospective analysis of the A--C i curves from 109 species. J. Exp. Bot. 44: Ziska, L.H., W. Weerakoon, O.S. Namuco and R. Pamplona The influence of nitrogen on the of elevated CO 2 response in fieldgrown rice. Aust. J. Plant Physiol. 23: TREE PHYSIOLOGY VOLUME 19, 1999

Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences

Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences Environmental Plant Physiology Photosynthesis - Aging krreddy@ra.msstate.edu Department of Plant and Soil Sciences Photosynthesis and Environment Leaf and Canopy Aging Goals and Learning Objectives: To

More information

Photosynthesis - Aging Leaf Level. Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences

Photosynthesis - Aging Leaf Level. Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences Environmental Plant Physiology Photosynthesis and Environment Leaf and Canopy Aging krreddy@ra.msstate.edu Department of Plant and Soil Sciences Goals and Learning Objectives: To understand the effects

More information

Ecological Modelling 106 (1998)

Ecological Modelling 106 (1998) Ecological Modelling 106 (1998) 247 259 Leaf and canopy photosynthesis of C 3 plants at elevated CO 2 in relation to optimal partitioning of nitrogen among photosynthetic components: theoretical prediction

More information

CLINT J. SPRINGER 1 3 and RICHARD B. THOMAS 1 1 Department of Biology, West Virginia University, Morgantown, WV 26506, USA

CLINT J. SPRINGER 1 3 and RICHARD B. THOMAS 1 1 Department of Biology, West Virginia University, Morgantown, WV 26506, USA Tree Physiology 27, 25 32 2007 Heron Publishing Victoria, Canada Photosynthetic responses of forest understory tree species to long-term exposure to elevated carbon dioxide concentration at the Duke Forest

More information

Introduction. Populus trichocarpa TORR. and GRAY. By M. G. R. CANNELL and S. C. WILLETT

Introduction. Populus trichocarpa TORR. and GRAY. By M. G. R. CANNELL and S. C. WILLETT Shoot Growth Phenology, Dry Matter Distribution and Root: Shoot Ratios of Provenances of Populus trichocarpa, Picea sitchensis and Pinus contorta growing in Scotland By M. G. R. CANNELL and S. C. WILLETT

More information

MODELLING NET PHOTOSYNTHETIC RATE OF TEMPERATE DRY GRASSLAND SPECIES AND WINTER WHEAT AT ELEVATED AIR CO 2 CONCENTRATION

MODELLING NET PHOTOSYNTHETIC RATE OF TEMPERATE DRY GRASSLAND SPECIES AND WINTER WHEAT AT ELEVATED AIR CO 2 CONCENTRATION Harnos et al.: Modelling net photosynthetic rate of grassland species and wheat at elevated CO concentration - 7 - MODELLING NET PHOTOSYNTHETIC RATE OF TEMPERATE DRY GRASSLAND SPECIES AND WINTER WHEAT

More information

Composition and Genetics of Monoterpenes from Cortical Oleoresin of Norway Spruce and their Significance for Clone Identification

Composition and Genetics of Monoterpenes from Cortical Oleoresin of Norway Spruce and their Significance for Clone Identification D. F. W., TEICH, A. H. and LOGAN, K. T.: Seedling shoot and bud development in provenances of Sitka spruce, Picea sitchensis (BoNG.) CARR. Can. J. Forest Res. 5: 18-25 (1975). - PROMNITZ, L. C.: A photosynthate

More information

% FOREST LEAF AREA. Figure I. Structure of the forest in proximity of the Proctor Maple Research Center -~--~ ~

% FOREST LEAF AREA. Figure I. Structure of the forest in proximity of the Proctor Maple Research Center -~--~ ~ NTRODUCTON There is a critical need to develop methods to address issues of forest canopy productivity and the role of environmental conditions in regulating forest productivity. Recent observations of

More information

Basic stoichiometric equation on photosynthesis and the production of sugar and oxygen via the consumption of CO2, water, and light

Basic stoichiometric equation on photosynthesis and the production of sugar and oxygen via the consumption of CO2, water, and light 1 2 Basic stoichiometric equation on photosynthesis and the production of sugar and oxygen via the consumption of CO2, water, and light 3 Several pathways exist for fixing CO2 into sugar 4 Photosynthesis

More information

Carbon Cycle, part 2 Ecophysiology of Leaves. ESPM 111 Ecosystem Ecology. Outline

Carbon Cycle, part 2 Ecophysiology of Leaves. ESPM 111 Ecosystem Ecology. Outline Carbon Cycle, part 2 Ecophysiology of Leaves Dennis Baldocchi ESPM UC Berkeley Courtesy of Rob Jackson, Duke 3/13/2013 Outline Photosynthetic Pathways and Cycles Environmental Physiology of Photosynthesis

More information

Carbon Input to Ecosystems

Carbon Input to Ecosystems Objectives Carbon Input Leaves Photosynthetic pathways Canopies (i.e., ecosystems) Controls over carbon input Leaves Canopies (i.e., ecosystems) Terminology Photosynthesis vs. net photosynthesis vs. gross

More information

Growth response of branches of Picea sitchensis to four years exposure to elevated atmospheric carbon dioxide concentration

Growth response of branches of Picea sitchensis to four years exposure to elevated atmospheric carbon dioxide concentration New Phytol. (1999), 144, 233 243 Growth response of branches of Picea sitchensis to four years exposure to elevated atmospheric carbon dioxide concentration C. V. M. BARTON AND P. G. JARVIS Institute of

More information

Effects of rising temperatures and [CO 2 ] on physiology of tropical forests

Effects of rising temperatures and [CO 2 ] on physiology of tropical forests Effects of rising temperatures and [CO 2 ] on physiology of tropical forests We are happy to advise that reports of our impending demise may have been very much exaggerated Jon Lloyd and Graham Farquhar

More information

Parametrization of a biochemical CO 2 exchange model for birch (Betula pendula Roth.)

Parametrization of a biochemical CO 2 exchange model for birch (Betula pendula Roth.) BOREAL ENVIRONMENT RESEARCH 6: 53 64 ISSN 1239-6095 Helsinki 30 March 2001 2001 Parametrization of a biochemical CO 2 exchange model for birch (Betula pendula Roth.) Tuula Aalto 1) * and Eija Juurola 2)

More information

TREES. Functions, structure, physiology

TREES. Functions, structure, physiology TREES Functions, structure, physiology Trees in Agroecosystems - 1 Microclimate effects lower soil temperature alter soil moisture reduce temperature fluctuations Maintain or increase soil fertility biological

More information

POTASSIUM IN PLANT GROWTH AND YIELD. by Ismail Cakmak Sabanci University Istanbul, Turkey

POTASSIUM IN PLANT GROWTH AND YIELD. by Ismail Cakmak Sabanci University Istanbul, Turkey POTASSIUM IN PLANT GROWTH AND YIELD by Ismail Cakmak Sabanci University Istanbul, Turkey Low K High K High K Low K Low K High K Low K High K Control K Deficiency Cakmak et al., 1994, J. Experimental Bot.

More information

ASSESSMENT OF WATER STATUS IN TREES FROM MEASUREMENTS OF STOMATAL CONDUCTANCE AND WATER POTENTIAL

ASSESSMENT OF WATER STATUS IN TREES FROM MEASUREMENTS OF STOMATAL CONDUCTANCE AND WATER POTENTIAL No. 1 159 ASSESSMENT OF WATER STATUS IN TREES FROM MEASUREMENTS OF STOMATAL CONDUCTANCE AND WATER POTENTIAL DAVID WHITEHEAD Forest Research Institute, Rotorua, New Zealand (Received for publication 24

More information

Does photosynthesis drive growth? Hendrik Poorter Plant Sciences, FZJ

Does photosynthesis drive growth? Hendrik Poorter Plant Sciences, FZJ Does photosynthesis drive growth? Hendrik Poorter Plant Sciences, FZJ Research center Jülich (Germany): Focusing on high-throughput phenotyping at a range of integration levels Light CO 2 fixation Sugars

More information

VOCABULARY COMPTETENCIES. Students, after mastering the materials of Plant Physiology course, should be able to:

VOCABULARY COMPTETENCIES. Students, after mastering the materials of Plant Physiology course, should be able to: 1 VOCABULARY Forget not, exam includes ENGLISH WORDS 1. Involve 2. Bundle 3. Sheath 4. Subsequent 5. Ambient 6. Stick together 7. Determine 8. Evolution 9. Thrive 10. Allow COMPTETENCIES Students, after

More information

The Effects of Increased Atmospheric Carbon Dioxide on Growth, Carbohydrates, and Photosynthesis in Radish, Raphanus sativus

The Effects of Increased Atmospheric Carbon Dioxide on Growth, Carbohydrates, and Photosynthesis in Radish, Raphanus sativus Plant Cell Physiol. 39(1): 1-7 (1998) JSPP 1998 The Effects of Increased Atmospheric Carbon Dioxide on Growth, Carbohydrates, and Photosynthesis in Radish, Raphanus sativus Hideaki Usuda and Kousuke Shimogawara

More information

Effects of nitrogen and phosphorus on photosynthesis and growth of silver birch (Betula pendula Roth.) and sunflower (Helianthus annuus L.

Effects of nitrogen and phosphorus on photosynthesis and growth of silver birch (Betula pendula Roth.) and sunflower (Helianthus annuus L. Effects of nitrogen and phosphorus on photosynthesis and growth of silver birch (Betula pendula Roth.) and sunflower (Helianthus annuus L.) Felix Ekwe Degree project for Master of Science (Two Years) in

More information

Changes in Plant Metabolism Induced by Climate Change

Changes in Plant Metabolism Induced by Climate Change Changes in Plant Metabolism Induced by Climate Change Lisa Ainsworth USDA ARS Global Change and Photosynthesis Research Unit Department of Plant Biology, Univ of Illinois, Urbana-Champaign ainswort@illinois.edu

More information

Department of Dendrology, University of Forestry, 10 Kl. Ohridski blvd., Sofia 1756, Bulgaria, tel.: *441

Department of Dendrology, University of Forestry, 10 Kl. Ohridski blvd., Sofia 1756, Bulgaria, tel.: *441 General and Applied Plant Physiology 2009, Volume 35 (3 4), pp. 122 126 2009 ISSN 1312-8183 Published by the Institute of Plant Physiology Bulgarian Academy of Sciences Available online at http://www.bio21.bas.bg/ipp/

More information

Response of leaf dark respiration of winter wheat to changes in CO 2 concentration and temperature

Response of leaf dark respiration of winter wheat to changes in CO 2 concentration and temperature Article Atmospheric Science May 2013 Vol.58 No.15: 1795 1800 doi: 10.1007/s11434-012-5605-1 Response of leaf dark respiration of winter wheat to changes in CO 2 concentration and temperature TAN KaiYan

More information

Biology Article Assignment #2 Rising Carbon Dioxide Levels and Plants

Biology Article Assignment #2 Rising Carbon Dioxide Levels and Plants Name Biology Article Assignment #2 Rising Carbon Dioxide Levels and Plants 1. What is the atmospheric concentration of CO2 expected to be by the year 2100? 2. What percentage of the dry mass of plants

More information

Regenerating temperate forests under elevated CO

Regenerating temperate forests under elevated CO Regenerating temperate forests under elevated CO Blackwell Science Ltd 2 and nitrogen deposition: comparing biochemical and stomatal limitation of photosynthesis G. A. Bauer 1, G. M. Berntson 2 and F.

More information

Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter Vol. 45 Fasc. 4 (139)-(144) 1.10.

Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter   Vol. 45 Fasc. 4 (139)-(144) 1.10. Phyton (Austria) Special issue: "APGC 2004" Vol. 45 Fasc. 4 (139)-(144) 1.10.2005 Mycorrhizal Activities in Pinus densiflora^ P. koraiensis and Larix kaempferi Native to Korea Raised under High CO 2 Concentrations

More information

Winter photosynthesis of red spruce from three Vermont seed sources

Winter photosynthesis of red spruce from three Vermont seed sources Tree Physiology 15, 345--350 1995 Heron Publishing----Victoria, Canada Winter photosynthesis of red spruce from three Vermont seed sources P. G. SCHABERG, 1 R. C. WILKINSON, 1 J. B. SHANE, 2 J. R. DONNELLY

More information

Profiles of isoprene emission and photosynthetic parameters in hybrid poplars exposed to free-air CO 2 enrichment

Profiles of isoprene emission and photosynthetic parameters in hybrid poplars exposed to free-air CO 2 enrichment Blackwell Science, LtdOxford, UKPCEPlant, Cell and Environment0016-8025Blackwell Science Ltd 2004? 2004 274403412 Original Article Isoprene emission and photosynthetic parameters of poplars exposed to

More information

Elevated COZ in a Prototype Free-air COZ Enrichment Facility Affects Photosynthetic Nitrogen Relations in a Maturing Pine Forest

Elevated COZ in a Prototype Free-air COZ Enrichment Facility Affects Photosynthetic Nitrogen Relations in a Maturing Pine Forest BNL 52545 Formal Report. Elevated COZ in a Prototype Free-air COZ Enrichment Facility Affects Photosynthetic Nitrogen Relations in a Maturing Pine Forest D.S. Ellsworth, J. LaRoche, and G.R. Hendrey I

More information

ABSTRACT INTRODUCTION. West Virginia University, Morgantown, WV 26506, USA

ABSTRACT INTRODUCTION. West Virginia University, Morgantown, WV 26506, USA Plant, Cell and Environment (2001) 24, 53 64 No photosynthetic down-regulation in sweetgum trees (Liquidambar styraciflua L.) after three years of CO 2 enrichment at the Duke Forest FACE experiment J.

More information

Effects of Rising Atmospheric Concentrations of Carbon Dioxide on Plants

Effects of Rising Atmospheric Concentrations of Carbon Dioxide on Plants Effects of Rising Atmospheric Concentrations of Carbon Dioxide on Plants Photosynthetic assimilation of CO2 is central to the metabolism of plants. As atmospheric concentrations of CO2 rise, how will this

More information

Analysis and modeling of gas exchange processes in Scaevola aemula

Analysis and modeling of gas exchange processes in Scaevola aemula Scientia Horticulturae 114 (2007) 170 176 www.elsevier.com/locate/scihorti Analysis and modeling of gas exchange processes in Scaevola aemula Soo-Hyung Kim a, *, Paul R. Fisher b, J. Heinrich Lieth c a

More information

BRIEF COMMUNICATION BULG. J. PLANT PHYSIOL., 2001, 27(3 4), Introduction

BRIEF COMMUNICATION BULG. J. PLANT PHYSIOL., 2001, 27(3 4), Introduction 104 BULG. J. PLANT PHYSIOL., 2001, 27(3 4), 104 108 BRIEF COMMUNICATION EXPERIMENTAL DATA FROM THREE NATIVE REPRESENTATIVES OF NATURAL COMMUNITIES IN NORTH-EAST RUSSIA: DOES THE ACTIVITY OF THE ALTERNATIVE

More information

Photosynthetic acclimation to elevated C0 2 in poplar grown in glasshouse cabinets or in open top chambers depends on duration of exposure

Photosynthetic acclimation to elevated C0 2 in poplar grown in glasshouse cabinets or in open top chambers depends on duration of exposure Journal of Experimental Botany, Vol. 48, No. 314, pp. 1681-1689, September 1997 Journal of Experimental Botany Photosynthetic acclimation to elevated C0 2 in poplar grown in glasshouse cabinets or in open

More information

Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings

Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings Tree Physiology 26, 1457 1467 2006 Heron Publishing Victoria, Canada Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings SHOUREN ZHANG 1,2 and QING-LAI

More information

Interactive effects of elevated CO2 and mineral nutrition on growth and CO2 exchange of sweet chestnut seedlings (Castanea

Interactive effects of elevated CO2 and mineral nutrition on growth and CO2 exchange of sweet chestnut seedlings (Castanea Tree Physiology 14,679-690 0 1994 Heron Publishing-Victoria, Canada Interactive effects of elevated CO2 and mineral nutrition on growth and CO2 exchange of sweet chestnut seedlings (Castanea sativa) A.

More information

Biogeographic Processes

Biogeographic Processes Biogeographic Processes Energy and Matter Flow in Ecosystems Ecological Biogeography Ecological Succession Historical Biogeography Biogeographic Processes Biogeography examines the distribution of plants

More information

Effects of elevated [CO 2 ] on photosynthesis in European forest species: a meta-analysis of model parameters

Effects of elevated [CO 2 ] on photosynthesis in European forest species: a meta-analysis of model parameters Plant, Cell and Environment (1999) 22, 1475 1495 Effects of elevated [CO 2 ] on photosynthesis in European forest species: a meta-analysis of model parameters B. E. MEDLYN, 1 F. -W. BADECK, 2 D. G. G.

More information

Salinity effects on the stomatal behaviour of grapevine

Salinity effects on the stomatal behaviour of grapevine New Phytol. (1990), 116, 499-503 Salinity effects on the stomatal behaviour of grapevine BY W. J. S. DOWNTON, B. R. LOVEYS AND W. J. R. GRANT CSIRO Division of Horticulture, GPO Box 350, Adelaide, 5001,

More information

Phenotyping for Photosynthetic Traits

Phenotyping for Photosynthetic Traits Phenotyping for Photosynthetic Traits Elizabete Carmo-Silva Michael E Salvucci Martin AJ Parry OPTICHINA 2nd Workshop, Barcelona, September 212 Why Photosynthesis? Photosynthetic assimilation of carbon

More information

Published Research in Journal: Plant and Soil - PLANT SOIL, vol. 332, no. 1, pp , 2010

Published Research in Journal: Plant and Soil - PLANT SOIL, vol. 332, no. 1, pp , 2010 Published Research in Journal: Plant and Soil - PLANT SOIL, vol. 332, no. 1, pp. 147-162, 2010 Enhancement of morphological, anatomical and physiological characteristics of seedlings of the mangrove Avicennia

More information

Impact of genetic variation in stomatal conductance on water use efficiency in Quercus robur. Oliver Brendel. INRA Nancy France

Impact of genetic variation in stomatal conductance on water use efficiency in Quercus robur. Oliver Brendel. INRA Nancy France Impact of genetic variation in stomatal conductance on water use efficiency in Quercus robur Oliver Brendel INRA Nancy France Unit of Forest Ecology and Ecophysiology In collaboration with INRA Pierroton

More information

Mycorrhizal Fungi. Symbiotic relationship with plants -- form sheath around fine roots and extend hyphae into soil and sometimes into root cells

Mycorrhizal Fungi. Symbiotic relationship with plants -- form sheath around fine roots and extend hyphae into soil and sometimes into root cells Mycorrhizal Fungi Symbiotic relationship with plants -- form sheath around fine roots and extend hyphae into soil and sometimes into root cells Mycorrhizae transfer nutrients to roots (important in infertile

More information

Breeding for Drought Resistance in Cacao Paul Hadley

Breeding for Drought Resistance in Cacao Paul Hadley Breeding for Drought Resistance in Cacao Paul Hadley University of Reading Second American Cocoa Breeders Meeting, El Salvador, 9-11 September 215 9 September 215 University of Reading 26 www.reading.ac.uk

More information

Physiological Ecology. Physiological Ecology. Physiological Ecology. Nutrient and Energy Transfer. Introduction to Ecology

Physiological Ecology. Physiological Ecology. Physiological Ecology. Nutrient and Energy Transfer. Introduction to Ecology Physiological Ecology Outline Introduction to Ecology Evolution and Natural Selection Physiological Ecology Behavioural Ecology Physiological Ecology study of species needs and tolerances that determine

More information

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg Energy Conversions Photosynthesis Chapter 10 Pg. 184 205 Life on Earth is solar-powered by autotrophs Autotrophs make their own food and have no need to consume other organisms. They are the ultimate source

More information

P. B. REICH, M. B. WALTERS, M. G. TJOELKER, D. VANDERKLEIN and C. BUSCHENA

P. B. REICH, M. B. WALTERS, M. G. TJOELKER, D. VANDERKLEIN and C. BUSCHENA Functional Ecology 1998 ORIGINAL ARTICLE OA 000 EN Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth

More information

Nutrient Cycling in Land Vegetation and Soils

Nutrient Cycling in Land Vegetation and Soils Nutrient Cycling in Land Vegetation and Soils OCN 401 - Biogeochemical Systems 13 September 2012 Reading: Schlesinger, Chapter 6 Outline 1. The annual Intrasystem Nutrient Cycle 2. Mass balance of the

More information

1 (a) Fig. 1.1 is a diagram representing a three-dimensional view of a chloroplast. space B. Fig (i) Name parts A to C in Fig A... B...

1 (a) Fig. 1.1 is a diagram representing a three-dimensional view of a chloroplast. space B. Fig (i) Name parts A to C in Fig A... B... 1 (a) Fig. 1.1 is a diagram representing a three-dimensional view of a chloroplast. A space B C Fig. 1.1 (i) Name parts A to C in Fig. 1.1. A... B... C... [3] (ii) Describe two ways in which the structure

More information

Terrestrial land surfacesa pot pourri

Terrestrial land surfacesa pot pourri CALTECH JPL Center for Climate Sciences March 26, 2018 Terrestrial land surfacesa pot pourri Graham Farquhar Australian National University What do we want from our models? Timescale is a key issue What

More information

BY ROBERT T. FURBANK AND DAVID A. WALKER Research Institute for Photosynthesis, University of Sheffield, Sheffield SIO 2TN, UK

BY ROBERT T. FURBANK AND DAVID A. WALKER Research Institute for Photosynthesis, University of Sheffield, Sheffield SIO 2TN, UK New Phytol. (1986) 104, 207-213 2O7 CHLOROPHYLL A FLUORESCENCE AS A QUANTITATIVE PROBE OF PHOTOSYNTHESIS: EFFECTS OF CO^ CONCENTRATION DURING GAS TRANSIENTS ON CHLOROPHYLL FLUORESCENCE IN SPINACH LEAVES

More information

5/08/ :49 PM 28/02/13. Lecture 2: Photosynthesis:

5/08/ :49 PM 28/02/13. Lecture 2: Photosynthesis: 5/08/2014 10:49 PM 28/02/13 Lecture 2: Photosynthesis: Two types of chlorophyll in plants (green pigments in the thylakoids that are responsible for the absorption of Photosynthetically active radiation

More information

PHYSIOLOGY. Carbon Dioxide Exchange Rate of Cotton After Complete Boll Removal. Richard Jasoni,* Tom Cothren, and Carlos Fernández

PHYSIOLOGY. Carbon Dioxide Exchange Rate of Cotton After Complete Boll Removal. Richard Jasoni,* Tom Cothren, and Carlos Fernández The Journal of Cotton Science 4:91-96 (2000) http://journal.cotton.org, The Cotton Foundation 2000 91 PHYSIOLOGY Carbon Dioxide Exchange Rate of Cotton After Complete Boll Removal Richard Jasoni,* Tom

More information

Research Article Effect of Pot Size on Various Characteristics Related to Photosynthetic Matter Production in Soybean Plants

Research Article Effect of Pot Size on Various Characteristics Related to Photosynthetic Matter Production in Soybean Plants Agronomy Volume 212, Article ID 751731, 7 pages doi:1.1155/212/751731 Research Article Effect of Pot Size on Various Characteristics Related to Photosynthetic Matter Production in Soybean Plants Minobu

More information

Common Effects of Abiotic Stress Factors on Plants

Common Effects of Abiotic Stress Factors on Plants Common Effects of Abiotic Stress Factors on Plants Plants are living organisms which lack ability of locomotion. Animals can move easily from one location to other. Immovable property of plants makes it

More information

A. Structures of PS. Site of PS in plants: mostly in leaves in chloroplasts. Leaf cross section. Vein. Mesophyll CO 2 O 2. Stomata

A. Structures of PS. Site of PS in plants: mostly in leaves in chloroplasts. Leaf cross section. Vein. Mesophyll CO 2 O 2. Stomata PS Lecture Outline I. Introduction A. Structures B. Net Reaction II. Overview of PS A. Rxns in the chloroplast B. pigments III. Closer looks A. LD Rxns B. LI Rxns 1. non-cyclic e- flow 2. cyclic e- flow

More information

EFFECTS OF CROP LOAD ON VEGETATIVE GROWTH OF CITRUS

EFFECTS OF CROP LOAD ON VEGETATIVE GROWTH OF CITRUS EFFECTS OF CROP LOAD ON VEGETATIVE GROWTH OF CITRUS HOS 6545 ADVANCED CITRICULTURE I Regulation of Vegetative Growth L. GENE ALBRIGO Smith, P.F. 1976. Collapse of Murcott tangerine trees. J. Amer. Soc.

More information

Rice carbon balance under elevated CO

Rice carbon balance under elevated CO Research Rice carbon balance under elevated CO Blackwell Science Ltd 2 Hidemitsu Sakai 1, Kazuyuki Yagi 2, Kazuhiko Kobayashi 1 and Shigeto Kawashima 1 1 National Institute of Agro-Environmental Sciences,

More information

Biogeography. Fig. 12-6a, p. 276

Biogeography. Fig. 12-6a, p. 276 Biogeography Fig. 12-6a, p. 276 Biogeographic Processes Energy and Matter Flow in Ecosystems Ecological Biogeography Ecological Succession Historical Biogeography Biogeographic Processes Biogeography examines

More information

1 Soil Factors Affecting Nutrient Bioavailability... 1 N.B. Comerford

1 Soil Factors Affecting Nutrient Bioavailability... 1 N.B. Comerford Contents 1 Soil Factors Affecting Nutrient Bioavailability........ 1 N.B. Comerford 1.1 Introduction........................... 1 1.2 Release of Nutrients from the Soil Solid Phase........ 2 1.3 Nutrient

More information

Impacts of seasonal air and soil temperatures on photosynthesis in Scots pine trees

Impacts of seasonal air and soil temperatures on photosynthesis in Scots pine trees Tree Physiology 22, 839 847 2002 Heron Publishing Victoria, Canada Impacts of seasonal air and soil temperatures on photosynthesis in Scots pine trees MARTIN STRAND, 1,2 TOMAS LUNDMARK, 3 INGRID SÖDERBERGH

More information

Nutrient Cycling in Land Vegetation and Soils

Nutrient Cycling in Land Vegetation and Soils Nutrient Cycling in Land Vegetation and Soils OCN 401 - Biogeochemical Systems 15 September 2016 Reading: Schlesinger & Bernhardt, Chapter 6 2016 Frank Sansone Outline 1. The annual Intrasystem Nutrient

More information

Relationship between light use efficiency and photochemical reflectance index in soybean leaves as affected by soil water content

Relationship between light use efficiency and photochemical reflectance index in soybean leaves as affected by soil water content International Journal of Remote Sensing Vol. 27, No. 22, 20 November 2006, 5109 5114 Relationship between light use efficiency and photochemical reflectance index in soybean leaves as affected by soil

More information

Stomatal conductance of forest species after long-term

Stomatal conductance of forest species after long-term Research Stomatal conductance of forest species after long-term Blackwell Science Ltd exposure to elevated CO 2 concentration: a synthesis B. E. Medlyn 1,*, C. V. M. Barton 1, M. S. J. Broadmeadow 2, R.

More information

Plant Ecophysiology in a Restoration Context

Plant Ecophysiology in a Restoration Context Objectives: How can the foundations of and theory in plant ecophysiological restoration ecology ecological restoration? Light and energy relations Photosynthesis Microclimate Belowground resource availability

More information

Received: October Accepted: November. Abstract

Received: October Accepted: November. Abstract Using an Infrared Gas Analyzer for Evaluation of Photosynthetic Activity in Some Iranian Pistachio Cultivars H. R. Roosta*, A.R. Sajjadinia. Department of Horticultural Sciences, Vali-e-Asr University

More information

LECTURE 03: PLANT GROWTH PARAMETERS

LECTURE 03: PLANT GROWTH PARAMETERS http://smtom.lecture.ub.ac.id/ Password: https://syukur16tom.wordpress.com/ Password: LECTURE 03: PLANT GROWTH PARAMETERS The most elementary processes of growth is cell growth and division that bring

More information

Studies on the Bulb Development and Its Physiological Mechanisms in Lilium Oriental Hybrids

Studies on the Bulb Development and Its Physiological Mechanisms in Lilium Oriental Hybrids Studies on the Bulb Development and Its Physiological Mechanisms in Lilium Oriental Hybrids Y.P. Xia, H.J. Zheng and C.H. Huang Department of Horticulture College of Agriculture and Biotechnology Zhejiang

More information

The Two Phases of Photosynthesis

The Two Phases of Photosynthesis : light reactions & carbon fixation Global Importance of by green plants and algae provides nearly all of the energy and organic carbon required by living organisms. provides all of the oxygen required

More information

GAS EXCHANGE IN LEAVES OF Coffea arabica IRRIGATED

GAS EXCHANGE IN LEAVES OF Coffea arabica IRRIGATED GAS EXCHANGE IN LEAVES OF Coffea arabica IRRIGATED C. C. Ronquim 1, J. F. Leivas 2, A. H. de C. Teixeira ABSTRACT - We determined maximum net photosynthesis (PNmax) in Coffea arabica L. (cultivars Catuaí

More information

Understanding how vines deal with heat and water deficit

Understanding how vines deal with heat and water deficit Understanding how vines deal with heat and water deficit Everard Edwards CSIRO AGRICULTURE & FOOD How hot is too hot? Cell death will occur in any vine tissue beyond a threshold (lethal) temperature cell

More information

The Effect of Night Temperature on Cotton Reproductive Development

The Effect of Night Temperature on Cotton Reproductive Development The Effect of Night Temperature on Cotton Reproductive Development Item Type text; Article Authors Zeiher, Carolyn A.; Brown, Paul W.; Silvertooth, Jeffrey C.; Matumba, Nkonko; Mitton, Nancy Publisher

More information

Figure 1. Identification of UGT74E2 as an IBA glycosyltransferase. (A) Relative conversion rates of different plant hormones to their glucosylated

Figure 1. Identification of UGT74E2 as an IBA glycosyltransferase. (A) Relative conversion rates of different plant hormones to their glucosylated Figure 1. Identification of UGT74E2 as an IBA glycosyltransferase. (A) Relative conversion rates of different plant hormones to their glucosylated form by recombinant UGT74E2. The naturally occurring auxin

More information

Cold-Hardiness Testing of Conifer Seedlings1

Cold-Hardiness Testing of Conifer Seedlings1 Cold-Hardiness Testing of Conifer Seedlings1 Karen E. Burr, Stephen J. Wallner, and Richard W. Tinus 2 Abstract.--This paper briefly describes the results of preliminary experiments designed to test four

More information

Photosynthetic Characteristics of Spinach Leaves Grown with Different Nitrogen Treatments

Photosynthetic Characteristics of Spinach Leaves Grown with Different Nitrogen Treatments Plant Cell Physiol. 29(1): 157-165 (1988) JSPP 1988 Photosynthetic Characteristics of Spinach Leaves Grown with Different Nitrogen Treatments John R. Evans 12 and Ichiro Terashima 3 ' Division of Plant

More information

enrichment Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 1735 Neil Avenue, Columbus, OH , USA

enrichment Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 1735 Neil Avenue, Columbus, OH , USA Research Gender-specific responses of Populus tremuloides to Blackwell Science Ltd atmospheric enrichment Xianzhong Wang and Peter S Curtis Department of Evolution, Ecology and Organismal Biology, The

More information

Role of mycorrhizal fungi in belowground C and N cycling

Role of mycorrhizal fungi in belowground C and N cycling Role of mycorrhizal fungi in belowground C and N cycling Doc. Jussi Heinonsalo Department of Forest Sciences, University of Helsinki Finnish Meteorological Institute Finland The aim and learning goals

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature06059 SUPPLEMENTARY INFORMATION Plant Ozone Effects The first order effect of chronic ozone exposure is to reduce photosynthetic capacity 5,13,31 (e.g. by enhanced Rubisco degradation

More information

The fraction of expanding to expanded leaves determines the biomass response of Populus to elevated CO 2

The fraction of expanding to expanded leaves determines the biomass response of Populus to elevated CO 2 Oecologia (1999) 121:193±200 Ó Springer-Verlag 1999 D. Alexander Wait á Clive G. Jones á Jules Wynn F. Ian Woodward The fraction of expanding to expanded leaves determines the biomass response of Populus

More information

CHAPTER XI PHOTOSYNTHESIS. DMA: Chapter 11 Hartmann's 1

CHAPTER XI PHOTOSYNTHESIS. DMA: Chapter 11 Hartmann's 1 CHAPTER XI PHOTOSYNTHESIS DMA: Chapter 11 Hartmann's 1 The nature of light The sun's energy travels through space to the earth as electromagnetic radiation waves at the speed of light, about 300,000 Km/s.

More information

Major Nutrients Trends and some Statistics

Major Nutrients Trends and some Statistics Environmental Factors Nutrients K. Raja Reddy Krreddy@pss.msstate.edu Environmental and Cultural Factors Limiting Potential Yields Atmospheric Carbon Dioxide Temperature (Extremes) Solar Radiation Water

More information

CHAPTER 8 PHOTOSYNTHESIS

CHAPTER 8 PHOTOSYNTHESIS CHAPTER 8 PHOTOSYNTHESIS Con. 8.1 Photosynthesis process by which plants use light to make food molecules from carbon dioxide and water (chlorophyll) 6CO 2 + 12H 2 O + Light C 6 H 12 O 6 + 6O 2 + 6H 2

More information

Received 1 February Accepted in revised form 23 August 1996

Received 1 February Accepted in revised form 23 August 1996 Plant and Soil 187:111-118, 1996. 111 @ 1996 Kluwercademic Publishers. Printed in the Netherlands. cclimation of photosynthesis, respiration and ecosystem carbon flux of a wetland on Chesapeake Bay, Maryland

More information

PLANT PHYSIOLOGY. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

PLANT PHYSIOLOGY. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A PLANT PHYSIOLOGY Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Carbon reactions of the photosynthesis Photosynthetic activity and the environmental factors Overview 1. Carbon

More information

Elevated CO2 concentration affects leaf photosynthesis nitrogen relationships in Pinus taeda over nine years in FACE

Elevated CO2 concentration affects leaf photosynthesis nitrogen relationships in Pinus taeda over nine years in FACE Tree Physiology 28, 607 614 2008 Heron Publishing Victoria, Canada Elevated CO2 concentration affects leaf photosynthesis nitrogen relationships in Pinus taeda over nine years in FACE KRISTINE Y. CROUS,

More information

Effect of irradiance and vapour pressure deficit on stomatal response to CO 2 enrichment of four tree species

Effect of irradiance and vapour pressure deficit on stomatal response to CO 2 enrichment of four tree species Journal of Experimental Botany, Vol. 48, No. 317, pp. 2095-2102, December 1997 Journal of Experimental Botany Effect of irradiance and vapour pressure deficit on stomatal response to CO 2 enrichment of

More information

Draw a ring around the correct answer to complete each sentence. The energy needed for photosynthesis comes from

Draw a ring around the correct answer to complete each sentence. The energy needed for photosynthesis comes from Q1. (a) Complete the word equation for photosynthesis. carbon dioxide + water energy glucose +... (b) Draw a ring around the correct answer to complete each sentence. (i) The energy needed for photosynthesis

More information

Light form the sun is composed of a range of wavelengths (colors). The visible spectrum to the left illustrates the wavelengths and associated color

Light form the sun is composed of a range of wavelengths (colors). The visible spectrum to the left illustrates the wavelengths and associated color Photosynthesis Englemann Experiment In 1883, Thomas Engelmann of Germany used a combination of aerobic bacteria and a filamentous alga to study the effect of various colors of the visible light spectrum

More information

Interactions Between Rising CO, Concentration and Nitrogen Supply in Cotton. I. Growth and Leaf Nitrogen Concentration

Interactions Between Rising CO, Concentration and Nitrogen Supply in Cotton. I. Growth and Leaf Nitrogen Concentration Aust. J. Plant Physiol., 1996, 23, 119-125 Interactions Between Rising CO, Concentration and Nitrogen Supply in Cotton. I. Growth and Leaf Nitrogen Concentration G. S. ~ o ~ e rp. s J. ~ ~ilharn~, ~, and

More information

37 Modelling and experimental evidence for two separate steady states in the photosynthetic Calvin cycle

37 Modelling and experimental evidence for two separate steady states in the photosynthetic Calvin cycle 37 Modelling and experimental evidence for two separate steady states in the photosynthetic Calvin cycle M.G. Poolman and D.A. Fell School of Biology and Molecular Science, Oxford Brookes University, Headington,

More information

Pridacha V.B. 1, Sazonova Т.А. 1, Оlchev А.V. 2

Pridacha V.B. 1, Sazonova Т.А. 1, Оlchev А.V. 2 EFFECTS OF ENVIRONMENTAL CONDITIONS ON СО 2 / Н 2 О EXCHANGE OF BETULA SPECIES IN THE TAIGA ZONE OF NORTH-WEST RUSSIA Pridacha V.B. 1, Sazonova Т.А. 1, Оlchev А.V. 2 1 Forest Research Institute of Karelian

More information

Q1. The diagram shows a summary of the light-independent reaction of photosynthesis.

Q1. The diagram shows a summary of the light-independent reaction of photosynthesis. Q1. The diagram shows a summary of the light-independent reaction of photosynthesis. (a) (i) Complete the boxes to show the number of carbon atoms in the molecules. (ii) In which part of a chloroplast

More information

Temperature and light as ecological factors for plants

Temperature and light as ecological factors for plants PLB/EVE 117 Plant Ecology Fall 2005 1 Temperature and light as ecological factors for plants I. Temperature as an environmental factor A. The influence of temperature as an environmental factor is pervasive

More information

Acclimation of photosynthesis to light: a mechanistic approach

Acclimation of photosynthesis to light: a mechanistic approach Functional Ecology 1999 13, 24 36 ORIGINAL ARTICLE OA 000 EN Acclimation of photosynthesis to light: a mechanistic approach O. KULL* and B. KRUIJT *Institute of Ecology, Riia 181, EE2400 Tartu, Estonia

More information

Relationship between Leaf Water Potential and Photosynthesis in Rice Plants

Relationship between Leaf Water Potential and Photosynthesis in Rice Plants Relationship between Leaf Water Potential and Photosynthesis in Rice Plants By KUNI ISHIHARA and HIDEO SAITO Faculty of Agriculture, Tokyo University of Agriculture and Technology (Saiwaicho,Fuchu, Tokyo,

More information

Irrigation water salinity limits faba bean (Vicia faba L.) photosynthesis

Irrigation water salinity limits faba bean (Vicia faba L.) photosynthesis 5 th CASEE Conference Healthy Food Production and Environmental Preservation The Role of Agriculture, Forestry and Applied Biology Irrigation water salinity limits faba bean (Vicia faba L.) photosynthesis

More information

Photosynthesis Definition and Superficial Overview

Photosynthesis Definition and Superficial Overview Photosynthesis Photosynthesis Definition and Superficial Overview Photosynthesis is the process used by plants to convert light energy from the sun into chemical energy that can be later released to fuel

More information

Atmospheric CO 2 Enrichment, Root Restriction, Photosynthesis, and Dry-matter Partitioning in Subtropical. and tropical fruit crops.

Atmospheric CO 2 Enrichment, Root Restriction, Photosynthesis, and Dry-matter Partitioning in Subtropical. and tropical fruit crops. Atmospheric CO 2 Enrichment, Root Restriction, Photosynthesis, and Dry-matter Partitioning in Subtropical and Tropical Fruit Crops Bruce Schaffer Tropical Research and Education Center, Institute of Food

More information

Photosynthesis: Life from Light AP Biology

Photosynthesis: Life from Light AP Biology Photosynthesis: Life from Light Supporting a biosphere On global scale, photosynthesis is the most important process for the continuation of life on Earth u each year photosynthesis synthesizes 160 billion

More information