Growth and Defoliation of Pasture Plants: how the biology of pasture plants relates to grazing levels and pasture productivity

Size: px
Start display at page:

Download "Growth and Defoliation of Pasture Plants: how the biology of pasture plants relates to grazing levels and pasture productivity"

Transcription

1 Growth and Defoliation of Pasture Plants: how the biology of pasture plants relates to grazing levels and pasture productivity David B. Hannaway Forage Program Director Crop & Soil Science Department Oregon State University

2 Biology and Application The biology part is learning about the various parts of grasses and legumes and how they are important in maintaining growth potential. The application part is helping land managers gain the most from their land while maintaining the health of the pasture ecosystem.

3 Specific Purpose Statement This afternoon, we will learn the basic concepts of grass growth and regrowth along with management implications for forage-livestock enterprises. The goal is to increase the understanding of regrowth mechanisms of grasses (and legumes) and thereby improve the management, profitability and sustainability of croplands, pasturelands, and rangelands.

4 Goal: Improved Defoliation Management Pastures have higher yields and better quality when they are grazed or cut at the optimal time. Understanding grass growth and regrowth will maximize pasture potential through improved management.

5 Importance and Multiple Uses Grasses are often considered of little importance due to their presence all around us. Nevertheless, they are of great importance as: Human feed (rice, wheat, corn) Livestock feed (pasture, hay, and silage) Erosion reducing plants Water filtering plants Air purifying plants Beautification Recreation

6 Biology of the Grass Plant A grass plant is a collection of tillers or shoots that arise from buds at the base of the plant called the crown. Each tiller is composed of a series of repeating units of leaf, stem node, stem internode, and a bud. Each leaf is attached to the stem at a node.

7 Biology of the Grass Plant (cont.) Early in the development of a grass plant, the distance between nodes (internodes) is very short and the stem remains compact at the base of the plant. At the top or apex of the stem is the growing point where new leaves and stems are originated. As long as this growing point remains intact it is capable of initiating new leaves.

8 Biology of the Grass Plant (cont.) Later in the development of the tiller, the growing point will undergo a change and cease initiating leaves and begin developing the inflorescence or reproductive structure of the plant. Once this transition occurs, some of the upper internodes will begin to elongate and raise the inflorescence to the top of the tiller.

9 Biology of the Grass Plant (cont.) There are three primary growth stages in grasses that you need to be able to recognize for grazing management: 1) vegetative 2) elongation 3) and reproductive.

10 Biology of the Grass Plant (cont.) Vegetative Stage In the vegetative phase, shoots consist predominantly of leaf blades. Leaf blade collars remain nested in the base of the shoot and there is no evidence of sheath elongation or culm development.

11 Biology of the Grass Plant (cont.) Elongation / Transition / Jointing Stage In response to critical temperature regimes, daylengths, and necessary leaf blade area for sensing these climatic variables, the apical meristem is gradually converted from a vegetative bud to a floral bud. This is called floral induction. This conversion phase is termed the transition phase.

12 Biology of the Grass Plant (cont.) Elongation / Transition / Jointing Stage (continued) During the transition phase, leaf sheaths begin to elongate, raising the meristematic collar zone to a grazable height. Culm internodes also commence elongation in an "un-telescoping" manner beginning with the lowermost internode thereby raising the meristematic zone (floral bud and leaf bases) to a vulnerable position.

13 Two key points: Grass Growth 1. Grasses grow by capturing light energy and fixing carbon (photosynthesis). 2. Growing points (meristems) must be protected during critical periods. As a manager, your decisions greatly impact both keys to optimal grass growth and regrowth.

14 Photosynthesis Photosynthesis is the basic reaction in green plants that converts solar energy to chemical energy. This reaction is directly or indirectly responsible for all life on earth. Photosynthesis provides the energy (as carbohydrates) for plant growth. Plants then provide the energy (as structural and nonstructural carbohydrates) for animal growth.

15 Photosynthesis (2) Different Systems: 1. Cool season plants grow best at C (C 3 system; RUBPCase) 2. Warm season plants grow best at C (C 4 system; PEPCase) Cool-season pastures are more productive in the cool, moist spring and fall months. Warm-season pastures are more productive in hot, dry summer months. Cool Season Warm Season

16 Photosynthesis (3) Management Decisions: 1. Plant type selection (C 3 vs C 4, species and cultivars) affects seasonal production profile. 2. Defoliation intensity (number of animals for how long) affects light capturing capacity (solar panels).

17 Meristems Second Fundamental Key: 1. Grasses have a variety of growing mechanisms (meristems). 2. These meristems permit multiple harvests within a season if protected during critical periods. 3. Grasses benefit from timely, moderate defoliation.

18 Meristems (2) Apical and Intercalary Meristems Main growing point consists of the apical and intercalary meristems: 1. Apical meristem allows for plant maturation (development of a seedhead or inflorescence) is low in the plant canopy during vegetative growth is elevated as the plant prepares for reproduction 2. Intercalary meristem allows for leaf blade formation and expansion located at the blade base (collar)

19 Other Meristems: 1. Buds allows plant to develop daughter plants (tillers) are found in various locations (leaf axil, crown) 2. Rhizomes and stolons allow for lateral tiller development Meristems (3) (a) shoot apical meristem, (b) leaf primordia, (c) axillary bud primoridum, (d) leaf, (e) stem;

20 Regrowth Depends On: 1. Growth phase Vegetative phase regrowth is rapid providing that adequate leaf area is maintained for photosynthesis. Transition phase is critical even moderate grazing may destroy the apical meristem if internode elongation has begun. 2. Plant structure Grass Shoot Regrowth Intercalary meristems may be elevated to a vulnerable height removal will cause leaf death (no regrowth meristem).

21 Grass Shoot Regrowth (2) Grasses Vary Widely, Two Types: 1. Regrowth culms with elevated apical meristems Same sensitivity as with initial culm development period Even moderate grazing may destroy the apical meristem if elevated within culm 2. Culmless sterile regrowth Meristems remain near the soil (not vulnerable to removal)

22 Grass Shoot Regrowth (3) Species with more defoliation tolerance/rapid recovery after cutting vegetative tillers: Orchardgrass Tall fescue Meadow brome Perennial & Italian ryegrasses Kentucky bluegrass Creeping & meadow foxtails Crested & Siberian wheatgrasses White clover Red clover

23 Species with less defoliation tolerance/slower recovery after cutting vegetative tillers: Smooth brome Timothy Reed canarygrass Intermediate & pubescent wheatgrasses Quackgrass Bluebunch wheatgrass Warm-season perennial grasses Alfalfa Grass Shoot Regrowth (4) Birdsfoot trefoil

24 Plant growth above ground is a mirror to what is occurring below ground A small root system can only support a small amount of plant growth Grass Root Growth

25 Leaf Removal Effect on Root Growth (Adapted from Grassroots, Bob Kingsberry) Leaf Volume Removed (%) Root Growth Stoppage (%) 10 to to to

26 Relative Below and Above Ground Perennial Grass Growth Rate Root Regeneration Occurs two times during the year. Fall and spring, but fall is the most critical time. Old roots are shed and new roots grow. above ground growth root activity Summer Fall Winter Spring Summer Primary root growth period Secondary root growth period Root shedding

27 Grass Root Growth New, white roots grow in the fall and spring

28 Management Implications (1) Key Points: 1. Managers must understand the specific growth and regrowth mechanisms of their grasses: Phasic development (vegetative, transition, reproductive) Type, location, and vulnerability of meristems 2. Grazing (defoliation) must Be controlled (severity and timing) to ensure continued growth and regrowth Apical meristem

29 Management Implications (2) Key Points (continued): 3. Managers must examine plants and make decisions based on plant (and animal) conditions rather than calendar date or historical traditions (or need): Locate growing points Determine available forage Adjust grazing pressure accordingly 4. Pastures of mixed species are more difficult to manage: Culmed and culmless regrowth

30 Summary Management Implications (3) The plant needs two things: (1) photosynthetic leaf area and (2) regrowth meristems. How much leaf area? (sigmoid growth curve) What are the end points? i.e. on offer and residual dry matter?

31 Management Implications (4)

32 Management Implications (5) Vegetative Stage Grazing Early spring growth is from vegetative tillers. This means that the apical meristem is in the crown or even below the soil surface and protected from removal. Thus, the primary concern is with photosynthetic leaf for regrowth.

33 Management Implications (6) Transition Stage Grazing All grasses have a transition phase during which time the vegetative shoot apex is transformed into a floral bud. During this phase the sheaths of flowering shoots elongate raising their respective leaf collars to the extent that the leaf could be severed by grazing or cutting below the meristematic zone. By this stage internode elongation may have raised the shoot apex to a vulnerable height. This meristem represents the currently active regrowth mechanism, if it is destroyed (decapitated), there will be no further production from the shoot. Recovery growth depends largely on an alternative under-ground regrowth mechanism (basal buds in the crown zone).

34 Management Implications (7) Reproductive Stage Grazing Grazing before seedheads emerge and plants flower is important to stimulate summer tiller density and persistence. Clipping a pasture as seedheads emerge can redirect plant energy from reproductive growth to other areas.

35 Summary Key Issues Maintain sufficient leaf area for photosynthesis. Maintain regrowth meristems (apical, intercalary, bud, rhizome, stolon). Manage to remain in Exponential Growth Phase by monitoring on offer and residual dry matter levels. Ensure adequate fall regrowth period for root growth and energy restoration. Sigmoidal growth curve of a typical forage stand indicates how yield, growth rates and rest periods change over the growing season. (Voisin 1988).

36 Web segment: Additional Information Comprehensive web segment regarding growth and regrowth

37 Publications: Additional Information (2) Barnhart, Stephen K How Pasture Plants Grow. Iowa State University Extension. PM Fransen, S. and T. Griggs Growth, Development, and Defoliation Responses of Pasture Plants. Chapter 5 of Pasture and Grazing Management in the Northwest. PNW Kallenbach, Robert L Dairy Grazing: Growth of Pasture Plants. University of Missouri Extension Service, M Moore Ken Watching Grass Grow: The Key to Successful Grazing. Iowa State University.

38 Acknowledgements Special grant from Western SARE USDA s Sustainable Agriculture Research & Education program: wsare.usu.edu Merle Teel (Professor Emeritus, University of Delaware and Purdue University) Kimberly Japhet (Education Specialist, Instructor C&SS Department)

39 Acknowledgements (2) Slide sets from: Steve Fransen, Washington State University Tom Griggs, West Virginia University Glenn Shewmaker, University of Idaho

Crop Development and Components of Seed Yield. Thomas G Chastain CSS 460/560 Seed Production

Crop Development and Components of Seed Yield. Thomas G Chastain CSS 460/560 Seed Production Crop Development and Components of Seed Yield Thomas G Chastain CSS 460/560 Seed Production White clover seed field Seed Yield Seed yield results from the interaction of the following factors: 1. Genetic

More information

Turf Growth and Development

Turf Growth and Development Turf Growth and Development Germination and Seedling Development Spikelet borne in Inflorescence Germination and Seedling Development Leaf and Stem Formation Inflorescence Roots Spikelet s Apex Caryopsis

More information

Forage Growth and Its Relationship. to Grazing Management

Forage Growth and Its Relationship. to Grazing Management 1 of 5 4/9/2007 8:31 AM Forage Growth and Its Relationship to Grazing Management H. Alan DeRamus Department of Renewable Resources University of Southwestern Louisiana, Lafayette Introduction All green

More information

Seed Development and Yield Components. Thomas G Chastain CROP 460/560 Seed Production

Seed Development and Yield Components. Thomas G Chastain CROP 460/560 Seed Production Seed Development and Yield Components Thomas G Chastain CROP 460/560 Seed Production The Seed The zygote develops into the embryo which contains a shoot (covered by the coleoptile) and a root (radicle).

More information

Biologically Effective Grazing Management

Biologically Effective Grazing Management Biologically Effective Grazing Management Llewellyn L. Manske PhD Range Scientist North Dakota State University Dickinson Research Extension Center Beneficial Relationships of Grazing and Grass Growth

More information

Growth and Seed Yield in Kentucky Bluegrass. Thomas G Chastain George Hyslop Professor of Crop and Soil Science

Growth and Seed Yield in Kentucky Bluegrass. Thomas G Chastain George Hyslop Professor of Crop and Soil Science Growth and Seed Yield in Kentucky Bluegrass Thomas G Chastain George Hyslop Professor of Crop and Soil Science Central Oregon Grass Seed Urban Grass Seed Winter Wheat Spring Wheat Barley Corn Beans Peas

More information

PLANT RESPONSE TO DISTURBANCE

PLANT RESPONSE TO DISTURBANCE PLANT RESPONSE TO DISTURBANCE This discussion is based on: Briske, D. D. 1991. Developmental morphology and physiology of grasses. p. 85-108. In: Grazing Management: An Ecological Perspective. R. K. Heitschmidt

More information

Thorns, Prickles, Spines - The characteristics make the plant less likely to be grazed by large herbivores; not effective against insect herbivores.

Thorns, Prickles, Spines - The characteristics make the plant less likely to be grazed by large herbivores; not effective against insect herbivores. PLANT RESPONSE TO DISTURBANCE This discussion is based on: Briske, D. D. 1991. Developmental morphology and physiology of grasses. p. 85-108. In: Grazing Management: An Ecological Perspective. R. K. Heitschmidt

More information

Types and Categories of

Types and Categories of Types and Categories of Range Plants Plants are the "ultimate" source of organic energy in ecosystems Plants produce their through Photosynthesis: Get raw material from soil. When leaves are removed from

More information

Plant Growth and Development Part I. Levels of Organization

Plant Growth and Development Part I. Levels of Organization Plant Growth and Development Part I Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules 1

More information

Wheat Rice Corn The parts are often very small Diagnostic microscope Magnifies to 45 x Compound microscope Magnifies to 400 x

Wheat Rice Corn The parts are often very small Diagnostic microscope Magnifies to 45 x Compound microscope Magnifies to 400 x Turf and Weed Grasses Identification and Management World consumption Wheat, Corn & Rice 206 Turf Pest Control Pest Management Workshop February 19, 2013 Wheat Corn Rice Grasses are monocots 644 genera

More information

Growth Stages of Wheat: Identification and Understanding Improve Crop Management

Growth Stages of Wheat: Identification and Understanding Improve Crop Management Growth Stages of Wheat: Identification and Understanding Improve Crop Management B y Travis D. Miller Understanding growth stages of wheat is important in matching management decisions and inputs with

More information

Identifying Wheat Growth Stages

Identifying Wheat Growth Stages AGR-224 Identifying Wheat Growth Stages Carrie A. Knott, Plant and Soil Sciences University of Kentucky College of Agriculture, Food and Environment Cooperative Extension Service Identifying growth stages

More information

Pollination and Seed Yield in Grass Seed Crops. Thomas G Chastain Oregon State University

Pollination and Seed Yield in Grass Seed Crops. Thomas G Chastain Oregon State University Pollination and Seed Yield in Grass Seed Crops Thomas G Chastain Oregon State University Seed Yield Potential vs. Actual Yield An example for perennial ryegrass Florets not pollinated, fertilized, or aborted

More information

Levels of Organization

Levels of Organization Plant Growth and Development Part I Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules Plant

More information

Response of Annual and Perennial Grass Growth, Energy Reserves and Fuels Accumulation to Climatic Variation

Response of Annual and Perennial Grass Growth, Energy Reserves and Fuels Accumulation to Climatic Variation Response of Annual and Perennial Grass Growth, Energy Reserves and Fuels Accumulation to Climatic Variation Brad Schultz Extension Educator University of Nevada Cooperative Extension Winnemucca, NV Types

More information

LESSON FOUR: Rangeland Plant Classification

LESSON FOUR: Rangeland Plant Classification LESSON FOUR: Rangeland Plant Classification Classification of Range Plants Plant Type: The anatomical type of plant Origin: Where the plant developed Life Span: How long a plant lives Season of Growth:

More information

KNOW YOUR WEEDS Anil Shrestha, IPM Weed Ecologist, Kearney Agricultural Center

KNOW YOUR WEEDS Anil Shrestha, IPM Weed Ecologist, Kearney Agricultural Center KNOW YOUR WEEDS Anil Shrestha, IPM Weed Ecologist, Kearney Agricultural Center Correct identification of weeds is an important key to effective weed control. The first step in understanding any problem

More information

Oregon Certification Activity Summary 2008

Oregon Certification Activity Summary 2008 Oregon Seed Certification Service Tel: (541) 737-4513 Department of Crop and Soil Science Fax: (541) 737-2624 31 Crop Science Bldg seed-cert@oscs.oregonstate.edu Corvallis, Oregon 97331 www.oscs.oregonstate.edu

More information

Oregon Certification Activity Summary 2017

Oregon Certification Activity Summary 2017 Oregon Seed Certification Service Department of Crop and Soil Science 31 Crop Science Bldg Corvallis, Oregon 97331 Tel: (541) 737-4513 Fax: (541) 737-2624 osu-cert@oregonstate.edu seedcert.oregonstate.edu

More information

Evaluation of Plant Species Shift on Fertilized Native Rangeland

Evaluation of Plant Species Shift on Fertilized Native Rangeland Evaluation of Plant Species Shift on Fertilized Native Rangeland Report DREC 09-1011 Llewellyn L. Manske PhD Range Scientist North Dakota State University Dickinson Research Extension Center Nitrogen fertilization

More information

Thompson Nicola Fraser Middle Grasslands

Thompson Nicola Fraser Middle Grasslands Description This type occurs as a transition between the lower grassland and the upper grasslands. At PNC it is dominated by a combination of Bluebunch wheatgrass and rough fescue in all areas and with

More information

Weed Competition and Interference

Weed Competition and Interference Weed Competition and Interference Definition two organisms need essential materials for growth and the one best suited for the environment will succeed (humans usually manipulate so that crops succeed)

More information

VEGETATIVE MORPHOLOGY OF FLOWERING PLANTS

VEGETATIVE MORPHOLOGY OF FLOWERING PLANTS VEGETATIVE MORPHOLOGY OF FLOWERING PLANTS Stems, roots, and leaves are the vegetative parts of vascular plants. Stems are the basic organs, as they give rise to other plant organs, such as roots, leaves,

More information

Control. Crabgrass. in Georgia Hayfields

Control. Crabgrass. in Georgia Hayfields Crabgrass Control in Georgia Hayfields Patrick McCullough, Extension specialist Crabgrass (Digitaria spp.) is a warm season annual grass that is commonly found in pastures and hayfields in Georgia. Relative

More information

1 Rice Growth and Development

1 Rice Growth and Development 1 Rice Growth and Development Karen Moldenhauer and Nathan Slaton Rice is an annual grass (Figure 1-1) with round, hollow, jointed culms; narrow, flat, sessile leaf blades joined to the leaf sheaths with

More information

(Taeniatherum caput-medusae)

(Taeniatherum caput-medusae) Medusahead (Taeniatherum caput-medusae) Jane Mangold Montana State University Photo: Kirk Davies, USDA-ARS Identification Distribution Biology/Ecology Management Prevention Herbicides Prescribed fire Grazing

More information

7. Summary of avocado tree architecture.

7. Summary of avocado tree architecture. 53 7. Summary of avocado tree architecture. Architectural tree models, defined by F. Hallé, R.A.A. Oldeman and P.B. Tomlinson (1978), are relatively new concepts in plant morphology that have gained wide

More information

Eelgrass biomass and production

Eelgrass biomass and production Eelgrass biomass and production Objectives To introduce methods for assessing basic parameters fundamental to many seagrass studies such as shoot size and stand structure expressed as biomass and shoot

More information

Variability of Crested Wheatgrass Production

Variability of Crested Wheatgrass Production RANGELANDS 1(3), June 199 153 Variability of Crested Wheatgrass Production over 35 Years Lee A. Sharp, Ken Sanders, and Neil Rimbey In the fall of 195, the Burley Idaho District of the Bureau of Land Management,

More information

Description This type exists as two distinct communities:

Description This type exists as two distinct communities: Description This type exists as two distinct communities: A) Bluebunch wheatgrass -- big sage This community is dominated by bluebunch wheatgrass with a low (5-10%) cover of big sage brush. The big sage

More information

Measurements of quantitative characters yield continuous data (value ranges) (Ex: plant height),

Measurements of quantitative characters yield continuous data (value ranges) (Ex: plant height), Taxonomic Evidence- Vegetative Characteristics Character and Character States An aspect of a plant, such as leaf shape or petal color is a character. Each character can have a character state, such as

More information

STEMS Anytime you use something made of wood, you re using something made from the stem of a plant. Stems are linear structures with attached leaves

STEMS Anytime you use something made of wood, you re using something made from the stem of a plant. Stems are linear structures with attached leaves STEMS OUTLINE External Form of a Woody Twig Stem Origin and Development Stem Tissue Patterns Herbaceous Dicotyledonous Stems Woody Dicotyledonous Stems Monocotyledonous Stems Specialized Stems Wood and

More information

The mode of development in animals and plants is different

The mode of development in animals and plants is different The mode of development in animals and plants is different Outcome of animal embryogenesis is a mini edition of the adult Outcome of plant embryogenesis is a simple structure with -root apical meristem

More information

Is that artificial turf or real grass? Its thicker than Bermuda!

Is that artificial turf or real grass? Its thicker than Bermuda! Is that artificial turf or real grass? Its thicker than Bermuda! 1 Using Plant Growth Regulators Growth regulators DO NOT interfere with plant respiration, photosynthesis, or other internal plant functions

More information

Corn Growth & Development Related to Herbicide Use

Corn Growth & Development Related to Herbicide Use Corn Growth & Development Related to Herbicide Use Bob Nielsen Purdue University Email: rnielsen@purdue.edu Web: www.kingcorn.org 2003, Purdue Univ. 1 Post-Emergence Herbicides The application of many

More information

TREES. Functions, structure, physiology

TREES. Functions, structure, physiology TREES Functions, structure, physiology Trees in Agroecosystems - 1 Microclimate effects lower soil temperature alter soil moisture reduce temperature fluctuations Maintain or increase soil fertility biological

More information

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants.

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants. Useful Propagation Terms Propagation The application of specific biological principles and concepts in the multiplication of plants. Adventitious Typically describes new organs such as roots that develop

More information

Respiration and Carbon Partitioning. Thomas G Chastain CROP 200 Crop Ecology and Morphology

Respiration and Carbon Partitioning. Thomas G Chastain CROP 200 Crop Ecology and Morphology Respiration and Carbon Partitioning Thomas G Chastain CROP 200 Crop Ecology and Morphology Respiration Aerobic respiration is the controlled oxidation of reduced carbon substrates such as a carbohydrate

More information

Primary Plant Body: Embryogenesis and the Seedling

Primary Plant Body: Embryogenesis and the Seedling BIOL 221 Concepts of Botany Primary Plant Body: Embryogenesis and the Seedling (Photo Atlas: Figures 1.29, 9.147, 9.148, 9.149, 9.150, 9.1, 9.2) A. Introduction Plants are composed of fewer cell types,

More information

Understanding Plant Life Cycles

Understanding Plant Life Cycles Lesson C3 2 Understanding Plant Life Cycles Unit C. Plant and Soil Science Problem Area 3. Seed Germination, Growth, and Development Lesson 2. Understanding Plant Life Cycles New Mexico Content Standard:

More information

Plants. Tissues, Organs, and Systems

Plants. Tissues, Organs, and Systems Plants Tissues, Organs, and Systems Meristematic cells Specialized cells that are responsible for producing specialized cells, they produce three types of tissue in the body of a plant. Meristematic Cells

More information

Botany Physiology. Due Date Code Period Earned Points

Botany Physiology. Due Date Code Period Earned Points Botany Physiology Name C/By Due Date Code Period Earned Points Bot Phys 5N5 Stem Forms Bot Phys 5-05 Identify the major forms of stems in plants I. Identify the major forms of stems in plants A. internal

More information

CAMBIUM, meristem, heartwood, and lenticel are

CAMBIUM, meristem, heartwood, and lenticel are Examining the Structures of a Tree CAMBIUM, meristem, heartwood, and lenticel are some terms that may be new to you. These terms are used to describe various tree structures. Not surprisingly, many terms

More information

The Shoot System: Primary Stem Structure - 1

The Shoot System: Primary Stem Structure - 1 The Shoot System: Primary Stem Structure - 1 Shoot System The shoot system comprises the leaves and stems of plants. Leaves are located at nodes on the stem; the distance along the stem between nodes is

More information

BEC Correlation Old field guide IDFdk1a 91,92 & 93 BGxh2 06 BGxw 06. Site Characteristics. Soils Black chernozems on morainal blanket.

BEC Correlation Old field guide IDFdk1a 91,92 & 93 BGxh2 06 BGxw 06. Site Characteristics. Soils Black chernozems on morainal blanket. Description At PNC this type is dominated by very high cover of rough fescue. It has a few forbs and very few shrubs except in draws and on cooler aspects. Bluebunch wheatgrass is a minor component in

More information

Introduction to plant identification. Paul Salon Plant Materials Specialist

Introduction to plant identification. Paul Salon Plant Materials Specialist Introduction to plant identification Paul Salon Plant Materials Specialist call the National Association of Conservation Districts, 1.800.825.5547, for information on costs and ordering. http://plant-materials.nrcs.usda.gov

More information

EFFECTS OF CROP LOAD ON VEGETATIVE GROWTH OF CITRUS

EFFECTS OF CROP LOAD ON VEGETATIVE GROWTH OF CITRUS EFFECTS OF CROP LOAD ON VEGETATIVE GROWTH OF CITRUS HOS 6545 ADVANCED CITRICULTURE I Regulation of Vegetative Growth L. GENE ALBRIGO Smith, P.F. 1976. Collapse of Murcott tangerine trees. J. Amer. Soc.

More information

Plant Water Stress Frequency and Periodicity in Western North Dakota

Plant Water Stress Frequency and Periodicity in Western North Dakota Plant Water Stress Frequency and Periodicity in Western North Dakota Llewellyn L. Manske PhD, Sheri Schneider, John A. Urban, and Jeffery J. Kubik Report DREC 10-1077 Range Research Program Staff North

More information

DIFFERENTIATION OF AVOCADO BLOSSOM BUDS IN FLORIDA

DIFFERENTIATION OF AVOCADO BLOSSOM BUDS IN FLORIDA Reprinted for private circulation from the Botanical Gazette, Vol. 104, No. 2, December, 1942. DIFFERENTIATION OF AVOCADO BLOSSOM BUDS IN FLORIDA PHILIP C. REECE 1 (WITH THIRTEEN FIGURES) Subtropical Fruit

More information

Grass Plant Responses to Defoliation

Grass Plant Responses to Defoliation Grass Plant Responses to Defoliation Llewellyn L. Manske PhD Range Scientist North Dakota State University Dickinson Research Extension Center Management of grassland ecosystems has customarily been applied

More information

Plant Structure, Growth, and Development

Plant Structure, Growth, and Development Plant Structure, Growth, and Development Plant hierarchy: Cells Tissue: group of similar cells with similar function: Dermal, Ground, Vascular Organs: multiple kinds of tissue, very diverse function Organ

More information

Chapter 35~ Plant Structure and Growth

Chapter 35~ Plant Structure and Growth Chapter 35~ Plant Structure and Growth Plant Organization Plant morphology is based on plant s evolutionary history Need to draw in nutrients from the ground and the air Plant Organs Root system = roots

More information

WEED IDENTIFICATION - TERMINOLOGY. C. Shumway B. Scott

WEED IDENTIFICATION - TERMINOLOGY. C. Shumway B. Scott WEED IDENTIFICATION - TERMINOLOGY C. Shumway B. Scott THIS IS A GLOSSARY OF TERMS USED IN THE IDENTIFICATION OF WEED SPECIES. PROPER IDENTIFICATION IS A KEY COMPONENT ON THE EFFICIENT USE OF WEED CONTROL

More information

Plant Organization. Learning Objectives. Angiosperm Tissues. Angiosperm Body Plan

Plant Organization. Learning Objectives. Angiosperm Tissues. Angiosperm Body Plan Plant Organization Learning Objectives 1. List and give the major function of the three main types of plant tissues 2. Identify a monocot verses a eudicot plant by observing either root, stem, leaf, or

More information

Introduction to Weed Science and Weed Identification

Introduction to Weed Science and Weed Identification Introduction to Weed Science and Weed Identification Definition of a Weed A plant growing where it is not wanted (Oxford Dictionary) Any plant or vegetation, excluding fungi, interfering with the objectives

More information

The plant body has a hierarchy of organs, tissues, and cells. Plants, like multicellular animals:

The plant body has a hierarchy of organs, tissues, and cells. Plants, like multicellular animals: Chapter 28 The plant body has a hierarchy of organs, tissues, and cells Plants, like multicellular animals: o Have organs composed of different tissues, which are in turn composed of cells 3 basic organs:

More information

Plants can be either herbaceous or woody.

Plants can be either herbaceous or woody. Plant Structure Plants can be either herbaceous or woody. Herbaceous plants are plants with growth which dies back to the ground each year, in contrast with woody plants Most herbaceous plants have stems

More information

F D Reviewed 1995 P.M. ANDERSON, E.A. OELKE AND S.R. SIMMONS MINNESOTA EXTENSION SERVICE UNIVERSITY OF MINNESOTA COLLEGE OF AGRICULTURE

F D Reviewed 1995 P.M. ANDERSON, E.A. OELKE AND S.R. SIMMONS MINNESOTA EXTENSION SERVICE UNIVERSITY OF MINNESOTA COLLEGE OF AGRICULTURE F0-2548-D Reviewed 15 P.M. ANDERSON, E.A. OELKE AND S.R. SIMMONS MINNESOTA EXTENSION SERVICE UNIVERSITY OF MINNESOTA COLLEGE OF AGRICULTURE GROWTH AND DEVELOPMENT GUIDE FOR P.M. Anderson, E.A. Oelke, and

More information

Chapter 23 Notes Roots Stems Leaves

Chapter 23 Notes Roots Stems Leaves Chapter 23 Notes Roots Stems Leaves I. Specialized tissue in plants - effective way to ensure the plant s survival A. Seed plant structure 1. Roots - a. Absorbs water and dissolves nutrients b. anchors

More information

DEVELOPMENTAL VARIATION OF FOUR SELECTED VETIVER ECOTYPES. Abstract

DEVELOPMENTAL VARIATION OF FOUR SELECTED VETIVER ECOTYPES. Abstract DEVELOPMENTAL VARIATION OF FOUR SELECTED VETIVER ECOTYPES Lily Kaveeta, Ratchanee Sopa /, Malee Na Nakorn, Rungsarid Kaveeta /, Weerachai Na Nakorn /, and Weenus Charoenrungrat 4/ Botany Department, Kasetsart

More information

Autecology of Hood s Phlox on the Northern Mixed Grass Prairie

Autecology of Hood s Phlox on the Northern Mixed Grass Prairie Autecology of Hood s Phlox on the Northern Mixed Grass Prairie Llewellyn L. Manske PhD Research Professor of Range Science North Dakota State University Dickinson Research Extension Center Report DREC

More information

BEC Correlation BGxh2 01, 02, 05, 06. Site Characteristics

BEC Correlation BGxh2 01, 02, 05, 06. Site Characteristics Description This type is dominated by bluebunch wheatgrass, Sandberg s bluegrass, and sagebrush with low cover of mixed forbs and moderate cover of biological crusts. Production and total plant cover is

More information

WHEN CAN YOU SEED FALLOW GROUND IN THE FALL? AN HISTORICAL PERSPECTIVE ON FALL RAIN

WHEN CAN YOU SEED FALLOW GROUND IN THE FALL? AN HISTORICAL PERSPECTIVE ON FALL RAIN WHEN CAN YOU SEED FALLOW GROUND IN THE FALL? AN HISTORICAL PERSPECTIVE ON FALL RAIN Steve Petrie and Karl Rhinhart Abstract Seeding at the optimum time is one key to producing the greatest yield of any

More information

16. TRANSMISSION OF STIMULUS - THEORIES OF FLOWERING.

16. TRANSMISSION OF STIMULUS - THEORIES OF FLOWERING. 16. TRANSMISSION OF STIMULUS - THEORIES OF FLOWERING. Photoperiodic Induction The influence of the length of day and night on the initiation of flowering is called photoperiodic induction or photo induction.

More information

Weeds Will Be With Us So, we need to develop weed management plans.

Weeds Will Be With Us So, we need to develop weed management plans. Weeds Will Be With Us So, we need to develop weed management plans. The First Step: Weed ID Its more than a name How do you correctly identify a weed? Compare to a photo Remember weeds can appear different

More information

Propagation by Specialized Stems and Roots

Propagation by Specialized Stems and Roots Unit 6. Propagation by Specialized Stems and Roots Today's lab will deal with propagation by specialized vegetative structures (modified stems and modified roots). During this lab the specialized vegetative

More information

Bring Your Text to Lab!!!

Bring Your Text to Lab!!! Bring Your Text to Lab!!! Vascular Plant Anatomy: Flowering Plants Objectives: 1. To observe what the basic structure of vascular plants is, and how and where this form originates. 2. To begin to understand

More information

Slide 1 / 86. Angiosperms: The Flowering Plants

Slide 1 / 86. Angiosperms: The Flowering Plants Slide 1 / 86 Angiosperms: The Flowering Plants Slide 2 / 86 Brief Phylogeny of Plants Monocot Dicot This presentation will focus on angiosperms Angiosperm Gymnosperm Seeded Plants Non-Seeded plants Vascular

More information

Plant Juvenility Text Pages: 15 18,

Plant Juvenility Text Pages: 15 18, 45 Plant Juvenility Text Pages: 15 18, 613 619. Objectives: 1. Be able to describe and explain terms related to plant aging. 2. Be able to explain how a woody plant contains tissue of different ontogenetic

More information

Dynamics in tiller weight and its association with herbage mass and tiller density in a bahia grass (Paspalum notatum) pasture under cattle grazing

Dynamics in tiller weight and its association with herbage mass and tiller density in a bahia grass (Paspalum notatum) pasture under cattle grazing Tropical Grasslands (22) Volume 36, 24 32 24 Dynamics in tiller weight and its association with herbage mass and tiller density in a bahia grass (Paspalum notatum) pasture under cattle grazing M. HIRATA

More information

Chapter 15 PLANT STRUCTURES AND TAXONOMY

Chapter 15 PLANT STRUCTURES AND TAXONOMY Chapter 15 PLANT STRUCTURES AND TAXONOMY Chapter 15: Parts of a plant Manufactures food by photosynthesis Attracts insects for pollination Contains seeds Supports branches and transports food and water

More information

Bahiagrass Breeding at the University of Florida

Bahiagrass Breeding at the University of Florida Bahiagrass Breeding at the University of Florida Ann Blount 1, Paul Mislevy 2, Ken Quesenberry 3, Tom Sinclair 3, Cheryl Mackowiak 1, Bob Myer 1, and Richard Sprenkel 1 1. Univ. of Florida, North Florida

More information

Class XI Chapter 15 Plant Growth and Development Biology

Class XI Chapter 15 Plant Growth and Development Biology Question 1: Define growth, differentiation, development, dedifferentiation, redifferentiation, determinate growth, meristem and growth rate. (a) Growth It is an irreversible and permanent process, accomplished

More information

Class XI Chapter 15 Plant Growth and Development Biology

Class XI Chapter 15 Plant Growth and Development Biology Question 1: Define growth, differentiation, development, dedifferentiation, redifferentiation, determinate growth, meristem and growth rate. (a) Growth It is an irreversible and permanent process, accomplished

More information

1. Bud or node: Out of this either a leaf or a fruit-bearing shoot will develop.

1. Bud or node: Out of this either a leaf or a fruit-bearing shoot will develop. 8 2 0 4 Bud Bud or or node: node: Out Out of of this this either either a leaf leaf or or a fruit-bearing fruit-bearing shoot shoot will will develop. develop. 2 Inflorescence: The flowers of the grapevine.

More information

Plant Anatomy and Tissue Structures

Plant Anatomy and Tissue Structures Plant Anatomy and Tissue Structures The Two Major Plant Systems Reproductive shoot (flower) Terminal bud Node Internode Angiosperm plants have threse major organs: Roots Stems Leaves & Flowers Terminal

More information

Trees are: woody complex, large, long-lived self-feeding shedding generating systems compartmented, self optimizing

Trees are: woody complex, large, long-lived self-feeding shedding generating systems compartmented, self optimizing BASIC TREE BIOLOGY Trees are: woody complex, large, long-lived self-feeding shedding generating systems compartmented, self optimizing Roots: absorb water and minerals store energy support and anchor

More information

THE STEMS. Botany nomenclature cards #24 - #34. 3 x 5 cards, blank labels, black pen. 2. Refer to 'The Plant' wall chart and point out the stem.

THE STEMS. Botany nomenclature cards #24 - #34. 3 x 5 cards, blank labels, black pen. 2. Refer to 'The Plant' wall chart and point out the stem. THE STEMS Materials A full stem (Ficus, Schefflera) collected by the teacher and/or the children Botany nomenclature cards #24 - #34 Magnifying glasses 3 x 5 cards, blank labels, black pen Group Presentation:

More information

Assisted colonization of native forbs the use of climate-adjusted provenances. Sue McIntyre

Assisted colonization of native forbs the use of climate-adjusted provenances. Sue McIntyre Assisted colonization of native forbs the use of climate-adjusted provenances Sue McIntyre Why move grassland forbs? Grassland forbs need help populations are depleted and fragmented. Climate change likely

More information

Analysis of the temperature effect on the components of plant digestibility in two populations of perennial ryegrass

Analysis of the temperature effect on the components of plant digestibility in two populations of perennial ryegrass Journal of the Science of Food and Agriculture J Sci Food Agric 83:320 329 (online: 2003) DOI: 10.1002/jsfa.1315 Analysis of the temperature effect on the components of plant digestibility in two populations

More information

Seeded Lower Grasslands

Seeded Lower Grasslands Description Poor condition grasslands have been seeded to crested wheatgrass-alfalfa mixes throughout the southern interior. The crested wheatgrass tends to be persistent unless abused, while the alfalfa

More information

Plant Pathology Fact Sheet

Plant Pathology Fact Sheet Plant Pathology Fact Sheet PP-22 Selerotinia Diseases of Vegetable and Field Crops in Florida Ken Pernezny and L. H. Purdy, Professor, Everglades Research and Education Center, Belle Glade; and Professor,

More information

Plant Structure and Organization - 1

Plant Structure and Organization - 1 Plant Structure and Organization - 1 In our first unit of Biology 203 we will focus on the structure and function of the higher plants, in particular the angiosperms, or flowering plants. We will look

More information

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-15 PLANT GROWTH AND DEVELOPMENT

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-15 PLANT GROWTH AND DEVELOPMENT CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-15 PLANT GROWTH AND DEVELOPMENT Root, stem leaves, flower, fruits and seeds arise in orderly manner in plants. The sequence of growth is as follows-

More information

Crop Progress. Corn Mature Selected States [These 18 States planted 92% of the 2017 corn acreage]

Crop Progress. Corn Mature Selected States [These 18 States planted 92% of the 2017 corn acreage] Crop Progress ISSN: 00 Released October, 0, by the National Agricultural Statistics Service (NASS), Agricultural Statistics Board, United s Department of Agriculture (USDA). Corn Mature Selected s [These

More information

(A) Buds (B) Lateral meristem (C) Apical meristem (D) Stem (E) Trichomes

(A) Buds (B) Lateral meristem (C) Apical meristem (D) Stem (E) Trichomes AP Biology - Problem Drill 17: Plant Structure Question No. 1 of 10 1. What are hair-like outgrowths that protect and absorb nutrients? Question #01 (A) Buds (B) Lateral meristem (C) Apical meristem (D)

More information

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , ,

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , , Plant Tissues and Organs Topic 13 Plant Science Subtopics 13.1.2, 13.1.3, 13.1.4 Objectives: List and describe the major plant organs their structure and function List and describe the major types of plant

More information

The three principal organs of seed plants are roots, stems, and leaves.

The three principal organs of seed plants are roots, stems, and leaves. 23 1 Specialized Tissues in Plants Seed Plant Structure The three principal organs of seed plants are roots, stems, and leaves. 1 of 34 23 1 Specialized Tissues in Plants Seed Plant Structure Roots: absorb

More information

Learning objectives: Gross morphology - terms you will be required to know and be able to use. shoot petiole compound leaf.

Learning objectives: Gross morphology - terms you will be required to know and be able to use. shoot petiole compound leaf. Topic 1. Plant Structure Introduction: Because of its history, several unrelated taxa have been grouped together with plants into the discipline of botany. Given this context, in this first lab we will

More information

PLANTS FORM AND FUNCTION PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY. Plant Form & Function Activity #1 page 1

PLANTS FORM AND FUNCTION PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY. Plant Form & Function Activity #1 page 1 AP BIOLOGY PLANTS FORM AND FUNCTION ACTIVITY #1 NAME DATE HOUR PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY Plant Form & Function Activity #1 page 1 PART II: ROOTS 1. Examine the examples of the two root

More information

Basic Body Plan, Diversity and Leaf Structure in Angiosperms

Basic Body Plan, Diversity and Leaf Structure in Angiosperms Basic Body Plan, Diversity and Leaf Structure in Angiosperms Angiosperm means "contained seeds, the ovules are sealed within the carpel and the seeds sealed within a fruit. Plant body is divided into true

More information

By the end of this lesson, you should be able to

By the end of this lesson, you should be able to Allelopathy 1 Allelopathy By the end of this lesson, you should be able to define allelopathy explain the difference between allelopathy and competition identify the key interactions in allelopathy provide

More information

Representative Reference Area Akehurst, Venner meadow, Burnette lake, Fork meadow, paradise meadow, Rimrock swamp, Goose Carex,

Representative Reference Area Akehurst, Venner meadow, Burnette lake, Fork meadow, paradise meadow, Rimrock swamp, Goose Carex, Description This mixed sedge wetland community is the most common wetland type in BC s interior rangelands. These sedge species are able to tolerate anaerobic soil conditions for the entire growing season.

More information

Utilization. Utilization Lecture. Residue Measuring Methods. Residual Measurements. 24 October Read: Utilization Studies and Residual Measurements

Utilization. Utilization Lecture. Residue Measuring Methods. Residual Measurements. 24 October Read: Utilization Studies and Residual Measurements Utilization Utilization Lecture 24 October Read: Utilization Studies and Residual Measurements Utilization is the proportion or degree of current year s forage production that is consumed or destroyed

More information

Plant Structure. Objectives At the end of this sub section students should be able to:

Plant Structure. Objectives At the end of this sub section students should be able to: Name: 3.2 Organisation and the Vascular Structures 3.2.1 Flowering plant structure and root structure Objectives At the end of this sub section students should be able to: 1. Label a diagram of the external

More information

Changes in Plant Metabolism Induced by Climate Change

Changes in Plant Metabolism Induced by Climate Change Changes in Plant Metabolism Induced by Climate Change Lisa Ainsworth USDA ARS Global Change and Photosynthesis Research Unit Department of Plant Biology, Univ of Illinois, Urbana-Champaign ainswort@illinois.edu

More information

Plant Growth and Development Part I I

Plant Growth and Development Part I I Plant Growth and Development Part I I 1 Simply defined as: making with light Chlorophyll is needed (in the cells) to trap light energy to make sugars and starches Optimum temperature: 65 o F to 85 o F

More information

FIELD IDENTIFICATION CARDS FOR INVASIVE NON-NATIVE PLANT SPECIES KNOWN TO THREATEN ARIZONA WILDLANDS.

FIELD IDENTIFICATION CARDS FOR INVASIVE NON-NATIVE PLANT SPECIES KNOWN TO THREATEN ARIZONA WILDLANDS. FIELD IDENTIFICATION CARDS FOR INVASIVE NON-NATIVE PLANT SPECIES KNOWN TO THREATEN ARIZONA WILDLANDS. PACKET CONTAINS INFORMATION ON 74 INVASIVE NON-NATIVE PLANTS INCLUDING: morphologic descriptions photos

More information

Botany Basics. Botany is...

Botany Basics. Botany is... Botany Basics John Punches Oregon State University Botany is... The study of plants. 1 Plants in our Ecosystem Capture sun s energy Food source Replenish atmospheric oxygen Participate in water cycle Moderate

More information