Leaf-like Rhodophycean Fossils in the Early Cambrian from Haikou, Kunming, Yunnan of China

Size: px
Start display at page:

Download "Leaf-like Rhodophycean Fossils in the Early Cambrian from Haikou, Kunming, Yunnan of China"

Transcription

1 Acta Botanica Sinica 2004, 46 (11): Leaf-like Rhodophycean Fossils in the Early Cambrian from Haikou, Kunming, Yunnan of China XU Zhao-Liang (Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing , China) Abstract: This paper deals with the new leaf-like rhodophycean fossils in the Early Cambrian from Chengjiang Biota at Mafang Village of Haikou, Kunming, Yunnan, Southeast China. The new taxa Paradelesseria sanguinea gen. et sp. nov. is found to have a close relationship with the living Delesseria according to detailed morphological study between the fossil and modern Delesseria. These new findings show that the Chengjiang Biota is high in species diversity of fossil algae and might offer new evidence for a better understanding of the Cambrian explosive biological evolution and its paleoenvironment. The Biota in Haikou district of Kunming was living in subtidal and lower intertidal marine environment, up to 30 m below surface of the water based on the comparative study of extant red algae. Key word: Haikou, Yunnan; Early Cambrian; Chengjiang Biota; leaf-like rhodophycean fossils Macroscopic carbonaceous film fossils emerged in the geological history and they are generally preserved in the shales (Hofman, 1992). The morphology of all fossils changes from ellipsoids, rod-shaped, ached filamentous, ribbon-like, tubular to forked and other states. Almost no one likes leaf-like identifying megascopic algae. However, in the Proterozoic, these have been distinguished as bladelike fossils, such as Longfengshania from the Qingbaikou Group, North China and the Little Dal Group, Northwest Canada (Du and Tian, 1985; Hofman, 1985). About a decade later, the morphological similar fossils, Palmalga glumacea and Paraporphyra prota have been described from Doushantuo Formation (Late Sinian), Miaohe, Zigui, Hubei of China (Ding et al., 1996). Additionally, two years ago, the blade-like Plantulaformis sinensis and Longfengshania cordata were also described from the Early Cambrian in the Chengjiang Biota at Ercai Village, Haikou, Kunming, Yunnan, Southwest China (Xu, 2002). These findings are very important for understanding the origin and evolution of metaphytes and studying their paleoecology. This paper reports a kind of leaf-like rhodophycean fossil, Paradelesseria sanguinea in the Yuanshan Member, Qiongzhusi Formation, Early Cambrian at Mafang Village, Haikou, Kunming, Yunnan, China. 1 General Geology The early Cambrian fossil samples studied here were found in the gray muddy shale in the middle of Yuanshan Member of Qiongzhusi Formation, Anshan, behind of the Fengyu Temple, Mafang Village, about 3.5 km southeast of Haikou Railway Station, Kunming, Yunnan of China (Fig. 1). The general geology has been briefly described by Xu(2001a; 2001b). 2 Systematic Paleontology Rhodophyta Florideae Ceramiales Delesseriaceae Paradelesseria Xu, gen. nov. Type species Paradelesseria sanguinea Xu, gen. et sp. nov. Diagnosis Thallus brown, composed of stem and leaf ; stem subcylindrical, nodose, the length of internode greater than the diameter of stem ; leaf single, inserted in the stem, consisting of petiole and blade; petiole subcylindrical, blade lanceolate or oblanceolate, no veins, margins smooth. Discussion There have been no previous reports of algal fossil morphologically similar to Paradelesseria which possesses stem and leaf, but fossils with the same structure have been reported, such as: Punctariopsis from Qiongzhusi Formation, Ercai Village, Haikou, Kunming of Yunnan, China (Xu, 2001) and Miaohenella from Miaohecum, Zigui, Hubei in the Sinian (Late Precambrian) (Ding et al., 1992). The main features of these fossils are as follow: single or clumped, consisting of unbranched leaflike blade, stipe and holdfast. Paradelesseria differs from Received 10 May 2004 Accepted 29 Sept Supported by the National Natural Science Foundation of China ( ).

2 XU Zhao-Liang: Leaf-like Rhodophycean Fossils in the Early Cambrian from Haikou, Kunming, Yunnan of China Fig.1. Geographic map of fossil sites. a, village; b, railway station; c, city; d, mountains; e, temple; f, fossiliferous site; g, highway; h, river; i, railway. them in that mentioned above. Its leaf is larger in size and very thin in thickness, similar to those of some angiosperm in structure, and is inserted directly onto the stem. Those of Punctariopsis assigned to brown algae are very long, belt-like, inserted on the holdfast, and those of Miaohenella are hollow, flatted and also inserted on the holdfast. Obviously, there are many analogs of Paradelesseria among the living higher algae, especially in huge brown algae and red algae which are complex in structure and morphology and possess structural differentiation of root, stem and leaf superficially like those in vascular plants. For example, phaeophycean Sargassum, Laminaria, rhodophycean Delesseria and Phycodrys are very similar to the new genus described here in structure, morphology and size, but the leaves of Delesseria and Phycodrys clearly possess a mid-vein and that of Paradelesseria does not. Although Paradelesseria might have close relationships with Delesseria or Phycodrys, there exist some differences between them in morphology and structure, so it seems appropriate to establish the fossil as a new genus. Paradelesseria sanguinea Xu, gen. et sp. nov. Figs. 2 5 Diagnosis Stem subcylindrical, mm in length, mm in diameter, nodose; node 8.0 mm in length, mm in diameter; internode 3.0 mm in diameter, 3.5 mm in length; leaf lanceolate with petiole, tampering to acute or obtuse shape, mm in length, mm broad; blade thin, mm in length; petiole subcylindrical, mm in length, 3.0 mm in diameter. Reproductive structure unknown. Discussion Samples of P. sanguinea are rarely found in Chengjiang Biota, only three pieces samples and some fragments are well preserved. Until now, the structure and morphology of P. sanguinea were not reported in the geological history, but its characteristics are very similar to those of extant rhodophycean Delesseria sanguinea and Phycodrys radicusa. 3 Results and Discussion The rhodophycean is a large and complex organism in structure other than some single-celled ones in Bangiales. Its morphological features can be described as follow: single and forked filaments, flattened and thallus with blades, pinnate or branched, wide or narrow belt forms, hollow cylindroids and thallus with differentiation of roots, stems

3 Fig.2. Reconstruction sketch of the Paradelesseria sanguinea and leaves which look like those of extant vascular plants. If the concept of the root, stem and leaf in vascular plants is extended, the structure, which is flattened and enlarged in surface area for photosynthesis, could be called leaves. Thus, all of the higher algae, including chlorophycean, phaeophycean and rhodophycean have developed to the level of possessing stems and leaves, unlike the lower algae. Examples of this form are very abundant in the Phaeophyta, such as Sargassum, Macrocystis and Postelsia. The typical example in the Rhodophyta is Delesseria (Smith, 1955; Zhang and Liang, 1965; Fott, 1971). The tissue of giant rhodophyceans is relatively differentiated. Its chromoplast is mainly mosaiced in the surface layer of photosynthetic tissue, but no chromatoplasts occur in storage and conducting tissues. The huge red algae possess sieve plate-like structures in the conducting tissue which could be compared with the phloem of vascular plants in general. However, the xylemlike structure is not present in the red algae as they permanently live in water. So it is unnecessary to have the transfusion vessels to transfer water for a long distance and the mechanical tissue to support the erect thallus (Zhang and Liang, 1965; Fott, 1971). Different growth methods exist in red algae. Terminal growth occurs in the most of rhodophyceans. Intercalary growth occurs only in Delesseriaceae and Corallinaceae, and the diffuse growth takes place in a few red algae such as Porphyra. Concerning their reproduction, several unicellular species assigned to Bangiophycidae have vegetative propagation. Asexual reproduction mainly produces haploid tetraspores which sometimes change into abnormal polyspores and monospores. All of these spores are aflagellar aplanospores. Generally, asexual reproduction happens relatively rare in the red algae by fragmentation of thallus and also by attachment of fragments that float away and develop into new plants. Sexual reproduction is oogamous, but the process is very complex, having a special phenotype in the phytological biology. It is evident that the red algae have reached a higher plateau in evolution (Smith, 1955; Zheng and Wang, 1961). Red algae are a relatively large group, with more than 550 genera and species in the Rhodophyta. They are mostly marine, though some genera and species live in the fresh water (Smith, 1955; Fott, 1971). They are widely spreaded in the world, and mainly distributed in the ocean in the tropics and subtropics. All of them are red in color, as the benthos emerge near the seashore. The depth of the water they live in is based on the transparency of the marine water. In the relatively turbid water, such as the Atlantic, the rhodophyceans always live up to 30 m below the surface of water. In contrast, in relatively limpid waters, such as those of the Mediterranean Sea and the Floridian seashore, red algae can live down to m, and sometimes have been found growing as deep as 200 m below the water surface. There is an obvious distinct vertical zonation where all of the red algae grow only near the seashore. In general, the members of Delesseria and others grow between subtidal and lower intertidal zones (Zheng and Wang, 1961; Fott, 1971). Doubtless water temperature is an important ecological factor for the geographical distribution of red algae. Most of the species are sensitive to different water temperatures, and they can not tolerate temperature changes of more than 5 range each year. Some others, in contrast, grow well over a 10 range of marine water temperature, but only a few species can live in places where the temperature rang is greater (Zheng and Wang, 1961). In conclusion, the new discovery of rhodophycean fossils from the Yuanshan Member of Qiongzhusi Formation in the Early Cambrian, Anshan of Mafang Village, Haikou of Kunming, China, shows the high diversity of Chengjiang Biota, and might offer new evidence for a

4 XU Zhao-Liang: Leaf-like Rhodophycean Fossils in the Early Cambrian from Haikou, Kunming, Yunnan of China Figs.3-5. Paradelesseria sanguinea gen. et sp. nov. 3. Holotype, No. 0150, Paratype, No. 0149, Counterpart of Fig. 4, No. 0148, 2.5.

5 better understanding of the Cambrian explotion of biological evolution. Comparative studies of the fossils and extant algae, especially the similarity in their structure and morphology, suggest that there might be a close relationship between fossil genus Paradelesseria and living Delesseria. Based on the comparative study of extant red algae, the present results provide further evidence that the Chengjiang Biota in Haikou district of Kunming was living in a subtidal and lower intertidal marine environment within 30 m of the surface of the water. References: Ding L-F, Li Y, Hu X-S, Xiao Y-P, Su C-Q, Huang J-C Sinian Miaohe Biota. Beijing: Geological Publishing House. (in Chinese with English abstract) Ding L-F, Zhang L-Y, Li Y, Dong J-S The Study of the Late Sinian-Cambrian Biota from the Northern Margin of Yangtz Platform. Beijing: Scientific and Technical Documents Pusblishing House. (in Chinese with English abstract) Du R-L, Tian L-F Discovery and preliminary study of megaalgal Longfengshania from the Qingbaikou system in the Yanshan Mountain area. Acta Geol Sin 59: in Chinese with English abstract Fott B Algenkunde. VEB Gustav Fischer Verlag. Hofmann H J The Mid-Proterozoic Little Dal Macrobiota, Mackenzie Mountains, Northwest Canada. Palaeontol, 28: Hofmann H J Proterozoic Carbonaceous Films. Schopf J W, Klein C. The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge: Cambridge Unversity Press Smith G S Cryptogemic Botany. Vol 1. Algae and Fungi. 2nd ed. New York McGraw-Hill Publish Company Ltd. Xu Z-L Discovery of Enteromophites in the Chengjiang Biota and its ecological significance. Acta Bot Sin, 43: Xu Z-L New discoveries of phaeophycean fossils in the Early Cambrian, Haikou, Kunming, Yunnan, Southwest China. Acta Bot Sin, 43: Xu Z-L The occurrence of Longfengshania in the Early Cambrian from Haikou Yunnan, China. Acta Bot Sin, 44: Zheng B-L,Wang X-Q Sea-water Algae. Beijing Agriculture Publishing House. (in Chinese) Zhang J-Y, Liang J-J Systematic Botany. Beijing: People s Education Publishing House. (in Chinese) (Managing editor: HAN Ya-Qin)

ALGAE (L. Seaweed) HABITAT:

ALGAE (L. Seaweed) HABITAT: ALGAE (L. Seaweed) SALIENT FEATURES: 1. Algae are autotrophic organisms and they have chlorophyll. 2. They are O2 producing photosynthetic organisms. 3. In algae the plant body shows no differentiation

More information

Major groups of algae

Major groups of algae Algae general features. All are protists They require moist environments because they lack a cuticle They lack vascular tissues Algae are photosynthetic and reproduce both sexually and asexually Major

More information

Biology. Slide 1of 39. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1of 39. End Show. Copyright Pearson Prentice Hall Biology 1of 39 2of 39 20-4 Plantlike Protists: Red, Brown, and Green Algae Plantlike Protists: Red, Brown and Green Algae Most of these algae are multicellular, like plants. Their reproductive cycles are

More information

Biology 11. Day 4 Classification of Algae

Biology 11. Day 4 Classification of Algae Biology 11 Day 4 Classification of Algae Learning Objectives: Become familiar with biological nomenclature Distinguish between Rhodophyta, Phaeophyta, and Chlorophyta Identify features of each body type

More information

Protists: Algae Lecture 5 Spring 2014

Protists: Algae Lecture 5 Spring 2014 Protists: Algae Lecture 5 Spring 2014 Meet the algae 1 Protist Phylogeny Algae - Not monophyletic What unites them as a group? Range from unicellular to multicellular From phytoplankton to kelp forests

More information

Protists: Algae Lecture 5 Spring Protist Phylogeny. Meet the algae. Primary & Secondary Endosymbiosis. Endosymbiosis. Secondary Endosymbiosis

Protists: Algae Lecture 5 Spring Protist Phylogeny. Meet the algae. Primary & Secondary Endosymbiosis. Endosymbiosis. Secondary Endosymbiosis Meet the algae Protists: Algae Lecture 5 Spring 2014 Protist Phylogeny 1 Primary & Secondary Endosymbiosis 2 Algae - Not monophyletic What unites them as a group? Range from unicellular to multicellular

More information

Name Hour. Section 20-3 Plantlike Protists: Unicellular Algae (pages )

Name Hour. Section 20-3 Plantlike Protists: Unicellular Algae (pages ) Name Hour Section 20-3 Plantlike Protists: Unicellular Algae (pages 506-509) Introduction (Page 506) 1. Plantlike protists are commonly called 2. Is the following sentence true or false? Algae include

More information

PLANTS FORM AND FUNCTION PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY. Plant Form & Function Activity #1 page 1

PLANTS FORM AND FUNCTION PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY. Plant Form & Function Activity #1 page 1 AP BIOLOGY PLANTS FORM AND FUNCTION ACTIVITY #1 NAME DATE HOUR PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY Plant Form & Function Activity #1 page 1 PART II: ROOTS 1. Examine the examples of the two root

More information

GSA DATA REPOSITORY Ye et al.

GSA DATA REPOSITORY Ye et al. GSA DATA REPOSITORY 2015182 Ye et al. Figure DR1. Field photographs of the Nantuo Formation at the Songluo Section. A: Stratigraphic boundary between Nantuo and Doushantuo formations, with the basal Doushantuo

More information

Specific gravity field and deep crustal structure of the Himalayas east structural knot

Specific gravity field and deep crustal structure of the Himalayas east structural knot 49 4 2006 7 CHINESE JOURNAL OF GEOPHYSICS Vol. 49, No. 4 Jul., 2006,,.., 2006, 49 (4) :1045 1052 Teng J W, Wang Q S, Wang GJ, et al. Specific gravity field and deep crustal structure of the Himalayas east

More information

A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA. Sponsored by Defense Threat Reduction Agency. Contract No.

A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA. Sponsored by Defense Threat Reduction Agency. Contract No. A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA Wenjie Jiao, 1 Winston Chan, 1 and Chunyong Wang 2 Multimax Inc., 1 Institute of Geophysics, China Seismological Bureau 2 Sponsored by Defense

More information

Frequently asked questions (FAQs).

Frequently asked questions (FAQs). Frequently asked questions (FAQs). Q.1. What is The term algae (singular: alga), has been derived from a Latin word algere, meaning seaweeds. Algae include a diverse group of mostly autotrophic, eukaryotic

More information

4 Marine Biology Notes. Multi-cellular Primary Producers: Seaweeds and Plants

4 Marine Biology Notes. Multi-cellular Primary Producers: Seaweeds and Plants 4 Marine Biology Notes Multi-cellular Primary Producers: Seaweeds and Plants Marine Algae Marine algae are important primary producers (photosynthetic) These algae are called by a generic term seaweeds

More information

LESSON 10 PLANTS. Pteridophytes.(Cormophytes) Ferns: have woody vascular conduicts.

LESSON 10 PLANTS. Pteridophytes.(Cormophytes) Ferns: have woody vascular conduicts. LESSON 10 PLANTS The plant kingdom. Plants originated as part of a group of green algae approximately 500 million years ago. They were the first living beings to colonize the Earth. Plants are multi-cellular(eucariotyc)living

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11874 1. Supplementary Figures Supplementary Figure 1. Stratigraphic column of the Cambrian Stage 3 (regional Canglangpuan Stage) Xiaoshiba section in the suburb

More information

Topic 22. Introduction to Vascular Plants: The Lycophytes

Topic 22. Introduction to Vascular Plants: The Lycophytes Topic 22. Introduction to Vascular Plants: The Lycophytes Introduction to Vascular Plants Other than liverworts, hornworts, and mosses, all plants have vascular tissues. As discussed earlier, the mosses

More information

Chapter 23: Plant Diversity and Life Cycles

Chapter 23: Plant Diversity and Life Cycles Chapter 23: Plant Diversity and Life Cycles Section 1: Introduction to Plants Cuticle: a waxy or fatty and watertight layer on the external wall of epidermal cells Spore: a reproductive cell or multicellular

More information

Biology 11 Kingdom Plantae: Algae and Bryophyta

Biology 11 Kingdom Plantae: Algae and Bryophyta Biology 11 Kingdom Plantae: Algae and Bryophyta Objectives By the end of the lesson you should be able to: State the 3 types of algae Why we believe land plants developed from algae Lifecycle of a bryophyte

More information

The puzzle presented by the famous stumps of Gilboa, New York, finds a solution in the

The puzzle presented by the famous stumps of Gilboa, New York, finds a solution in the PALAEOBOTANY A tree without leaves Brigitte Meyer-Berthaud and Anne-Laure Decombeix The puzzle presented by the famous stumps of Gilboa, New York, finds a solution in the discovery of two fossil specimens

More information

Plants. Tissues, Organs, and Systems

Plants. Tissues, Organs, and Systems Plants Tissues, Organs, and Systems Meristematic cells Specialized cells that are responsible for producing specialized cells, they produce three types of tissue in the body of a plant. Meristematic Cells

More information

Kingdom Protista. The following organisms will be examined in the lab today: Volvox, Oedogonium, Spirogyra, Ulva

Kingdom Protista. The following organisms will be examined in the lab today: Volvox, Oedogonium, Spirogyra, Ulva Kingdom Protista I. Introduction The protists are a diverse group of organisms. In the past they have been classified as fungi, plants and animals. They can be green, autotrophs or nongreen heterotrophs.

More information

more than 380,000 species, of which more than two-thirds

more than 380,000 species, of which more than two-thirds The plant world contains more than 380,000 species, of which more than two-thirds are green plants. From the most complex flowering plants to single-cell sea algae, plants present a surprising diversity

More information

Plant Organization. Learning Objectives. Angiosperm Tissues. Angiosperm Body Plan

Plant Organization. Learning Objectives. Angiosperm Tissues. Angiosperm Body Plan Plant Organization Learning Objectives 1. List and give the major function of the three main types of plant tissues 2. Identify a monocot verses a eudicot plant by observing either root, stem, leaf, or

More information

THE INTERTIDAL ZONE AND BENTHIC ORGANISMS

THE INTERTIDAL ZONE AND BENTHIC ORGANISMS THE INTERTIDAL ZONE AND BENTHIC ORGANISMS EPSS 15 Lab #8 OUTLINE I. Intertidal zonation Tides Biotic zonation Physical conditions & biotic interactions II. Intertidal organisms & adaptations Snails Mussels

More information

BIFs. BIFs. Last time we covered. Oxygen. Oxygen

BIFs. BIFs. Last time we covered. Oxygen. Oxygen UNIVERSITY OF SOUTH ALABAMA Last time we covered Archean Oceans Discussion (Robbie) MAS 603: Geological Oceanography Banded Iron Formations (Evolution of the Earth s atmosphere and hydrosphere) Lecture

More information

S C I E N C E CHARACTERISTICS OF NONVASCULAR PLANTS SELF-INSTRUCTIONAL MATERIALS. Distance Education for Elementary Schools

S C I E N C E CHARACTERISTICS OF NONVASCULAR PLANTS SELF-INSTRUCTIONAL MATERIALS. Distance Education for Elementary Schools Modified In-School Off-School Approach Modules (MISOSA) S C I E N C E 5 Distance Education for Elementary Schools SELF-INSTRUCTIONAL MATERIALS CHARACTERISTICS OF NONVASCULAR PLANTS Department of Education

More information

Forms strands that conduct water, minerals, and organic compounds. Much of the inside of nonwoody parts of plants. Includes roots, stems, and leaves

Forms strands that conduct water, minerals, and organic compounds. Much of the inside of nonwoody parts of plants. Includes roots, stems, and leaves Biology II Vascular plants have 3 tissue systems: Dermal Protective outer layer of plant Vascular Forms strands that conduct water, minerals, and organic compounds Ground Much of the inside of nonwoody

More information

Division Ochrophyta (Chromophyta)

Division Ochrophyta (Chromophyta) Division Ochrophyta (Chromophyta) I. General characteristic of the Ochrophyta II. Class Pheophyceae III. Class Bacillariophyceae Division Ochrophyta General Characteristics: na cos from ocher color chl

More information

Algae! b. The basis of most food chains in the ocean. c. Some are so cool, they can live in the snow...and look like blood. d.

Algae! b. The basis of most food chains in the ocean. c. Some are so cool, they can live in the snow...and look like blood. d. Algae! Algae are a large and diverse group of simple, typically organisms, ranging from to multicellular forms. The largest and most complex marine forms are called seaweeds. They are photosynthetic, like

More information

EVOLUTION OF COMPLEX LIFE FORMS

EVOLUTION OF COMPLEX LIFE FORMS 0.002 0.6 1.0 1.9 2.8 Ancestral humans Diversification of mammals Invasion of the land Diversification of animals Origin of the major eukaryotic groups Eukaryotic cells abundant Atmospheric oxygen plentiful

More information

Algal Morphology. Unicells- solitary cells can be motile or non motile ex. Chlamydomonas

Algal Morphology. Unicells- solitary cells can be motile or non motile ex. Chlamydomonas Algal Morphology I. Internal thallus morphologies II. External thallus morphologies III.Algal Growth Unicells- solitary cells can be motile or non motile ex. Chlamydomonas Colony- an assemblage of individual

More information

The plant body has a hierarchy of organs, tissues, and cells. Plants, like multicellular animals:

The plant body has a hierarchy of organs, tissues, and cells. Plants, like multicellular animals: Chapter 28 The plant body has a hierarchy of organs, tissues, and cells Plants, like multicellular animals: o Have organs composed of different tissues, which are in turn composed of cells 3 basic organs:

More information

Chapter 12. Life of the Paleozoic

Chapter 12. Life of the Paleozoic Chapter 12 Life of the Paleozoic Paleozoic Invertebrates Representatives of most major invertebrate phyla were present during Paleozoic, including sponges, corals, bryozoans, brachiopods, mollusks, arthropods,

More information

Bio-monitoring Air Quality Using Lichen

Bio-monitoring Air Quality Using Lichen Bio-monitoring Air Quality Using Lichen An Expedition to the Gaoligong Mountains of Western Yunnan Provence, China June July 2011 Explorers Club Flag # 60 Expedition Leader: Lawrence Glacy, FN 09 Biomonitoring

More information

Supporting Information

Supporting Information Supporting Information Yin et al. 10.1073/pnas.1414577112 SI Text Geological Setting The Doushantuo Formation in the Weng an phosphorite mining area, Guizhou Province, South China (Fig. S1A), crops out

More information

Answer Key. Vocabulary Practice. 1. guard cell 2. parenchyma cell 3. sclerenchyma cell 4. collenchyma cell 5. All are types of plant cells

Answer Key. Vocabulary Practice. 1. guard cell 2. parenchyma cell 3. sclerenchyma cell 4. collenchyma cell 5. All are types of plant cells Answer Key Vocabulary Practice A. Choose the Right Word 1. guard cell 2. parenchyma cell 3. sclerenchyma cell 4. collenchyma cell 5. All are types of cells 6. meristem 7. ground tissue 8. dermal tissue

More information

-plant bodies composed of tissues produced by an apical meristem. -spores with tough walls. -life history of alternation of generations

-plant bodies composed of tissues produced by an apical meristem. -spores with tough walls. -life history of alternation of generations Chapter 21-Seedless Plants Major modern plant groups All groups of land-adapted plants have a common set of characteristics: -plant bodies composed of tissues produced by an apical meristem -spores with

More information

Georgia Performance Standards for Urban Watch Restoration Field Trips

Georgia Performance Standards for Urban Watch Restoration Field Trips Georgia Performance Standards for Field Trips 6 th grade S6E3. Students will recognize the significant role of water in earth processes. a. Explain that a large portion of the Earth s surface is water,

More information

Plant Structure, Growth, and Development

Plant Structure, Growth, and Development Plant Structure, Growth, and Development Plant hierarchy: Cells Tissue: group of similar cells with similar function: Dermal, Ground, Vascular Organs: multiple kinds of tissue, very diverse function Organ

More information

Recommended Resources: The following resources may be useful in teaching this lesson:

Recommended Resources: The following resources may be useful in teaching this lesson: Unit A: Basic Principles of Plant Science with a Focus on Field Crops Lesson 4: Understanding Leaf Anatomy and Morphology Student Learning Objectives: Instruction in this lesson should result in students

More information

Chapter 1-Plants in Our World

Chapter 1-Plants in Our World Chapter 1-Plants in Our World Formation of earth-4.5-4.6 billion years ago Evidence of life from organic material-3.8 billion years ago Many cyanobacteria are photosynthetic, but these microscopic organisms

More information

Name Hour Section 22-1 Introduction to Plants (pages ) Generation Description Haploid or Diploid? Gamete-producing plant Spore-producing plant

Name Hour Section 22-1 Introduction to Plants (pages ) Generation Description Haploid or Diploid? Gamete-producing plant Spore-producing plant Name Hour Section 22-1 Introduction to Plants (pages 551-555) What Is a Plant? (page 551) 1. Circle the letter of each sentence that is true about plants. a. Plants are multicellular prokaryotes. b. Plants

More information

Domain Eukarya: Kingdom Plantae non-vascular plants

Domain Eukarya: Kingdom Plantae non-vascular plants Domain Eukarya: Kingdom Plantae non-vascular plants Land plants descended from a green algae ancestor Some key characteristics of land plants are shared with green algae, like Multicellular, eukaryotic,

More information

Chapter 9. Fungi and Aquatic Plants. Introduction: The Big Step: DIVISION OF LABOUR

Chapter 9. Fungi and Aquatic Plants. Introduction: The Big Step: DIVISION OF LABOUR Chapter 9. Fungi and Aquatic Plants Introduction: The Big Step: DIVISION OF LABOUR In single cell organisms (protists) all life functions are performed by specialized organelles within one cell (a.k.a.

More information

CABRILLO COLLEGE : Fall 2008

CABRILLO COLLEGE : Fall 2008 Instructor: Nicole Crane Office #620 ph. 479-5094 e-mail: nicrane@cabrillo.edu www.cabrillo.edu/~ncrane CABRILLO COLLEGE : Fall 2008 BIOLOGY 1C: Plant Biology and Ecological Principles Textbooks: 1) Biology,

More information

Honors Biology I Ch 29 Plant Structure & Function

Honors Biology I Ch 29 Plant Structure & Function 3 Basic types of plant cells Honors Biology I Ch 29 Plant Structure & Function 1) Parenchyma cells- loosely packed or cells with a and thin, Involved in metabolic functions 2) Collenchyma cells- thicker

More information

CHAPTER 6 & 7 VOCABULARY

CHAPTER 6 & 7 VOCABULARY CHAPTER 6 & 7 VOCABULARY 1. Biome 2. Climate 3. Latitude 4. Altitude 5. Emergent layer 6. Epiphyte 7. Understory 8. Permafrost 9. Wetland 10.Plankton 11.Nekton 12.Benthos 13.Littoral zone 14.Benthic zone

More information

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , ,

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , , Plant Tissues and Organs Topic 13 Plant Science Subtopics 13.1.2, 13.1.3, 13.1.4 Objectives: List and describe the major plant organs their structure and function List and describe the major types of plant

More information

Lab #5 Multicellular Marine Primary Producers. Part 1: Photosynthesis and Photosynthetic Pigments

Lab #5 Multicellular Marine Primary Producers. Part 1: Photosynthesis and Photosynthetic Pigments Lab #5 Multicellular Marine Primary Producers Part 1: Photosynthesis and Photosynthetic Pigments Introduction Photosynthesis is a fundamental life process upon which all living things depend. Organisms

More information

Introduction to Bryophyta

Introduction to Bryophyta Introduction to Bryophyta Botany Department, Brahmanand PG College, Bryophyta (Greek Bryon = Moss, phyton = plants) is a group of simplest and primitive plants of the class Embryophyta. The group is represented

More information

Kingdom Protista. Mr. Krause Edina Public Schools ISD273 EXIT 2/16/2005

Kingdom Protista. Mr. Krause Edina Public Schools ISD273 EXIT 2/16/2005 Kingdom Protista Mr. Krause Edina Public Schools ISD273 Kingdom Protista General Characteristics Animal-Like Protists Plant-Like Protists Fungus-Like Protists General Characteristics Protozoa - Greek name

More information

Characteristics of Living Things

Characteristics of Living Things Characteristics of Living Things All Living Things Are made up of units called cells A cell is the smallest unit of an organism that can be considered alive Types of Cellular Organisms Unicellular Uni

More information

23 Structure of Flowering Plants

23 Structure of Flowering Plants 23 Structure of Flowering Plants Flowering plants first evolved around 125 million years ago. www.mrcbiology.com 1 23 Structure of Flowering Plants www.mrcbiology.com 2 24 Structure of Flowering Plants

More information

CLASS: RHODOPHYCEAE SUB-CLASS: BANGIOPHYCIDEAE FLORIDEOPHYCIDEAE

CLASS: RHODOPHYCEAE SUB-CLASS: BANGIOPHYCIDEAE FLORIDEOPHYCIDEAE balumcc@gmail.com CLASS: RHODOPHYCEAE SUB-CLASS: BANGIOPHYCIDEAE FLORIDEOPHYCIDEAE CHLOROPHYLL A, D PHYCOCYANIN AND PHYCOERYTHRIN α & β CAROTENES FLORIDEAN STARCH CELLULOSIC CELL WALL XYLAN IN BANGIOPHYCIDAE

More information

Skeletal grains. Pores. Matrix <20 m) Cement. Non-skeletal grains. 1 cm

Skeletal grains. Pores. Matrix <20 m) Cement. Non-skeletal grains. 1 cm Components of a Carbonate rock Skeletal grains Pores Matrix

More information

Topic 23. The Ferns and Their Relatives

Topic 23. The Ferns and Their Relatives Topic 23. The Ferns and Their Relatives Domain: Eukarya Kingdom: Plantae Ferns Leptosporangiate Ferns Psilophytes Genus: Psilotum Horsetails Genus: Equisetum In this treatment we lump the Psilophytes and

More information

Roots anchor plants and absorb mineral nutrients from soil.

Roots anchor plants and absorb mineral nutrients from soil. Thu 3/30 Activities Learning Target Describe the forms and functions of plant roots and stems. (21.3) Describe the structures that are common to most leaves. (21.4) Identify the adaptations that allow

More information

Chapter 35~ Plant Structure and Growth

Chapter 35~ Plant Structure and Growth Chapter 35~ Plant Structure and Growth Plant Organization Plant morphology is based on plant s evolutionary history Need to draw in nutrients from the ground and the air Plant Organs Root system = roots

More information

Evolution of Life and the Atmosphere

Evolution of Life and the Atmosphere Evolution of Life and the Atmosphere White board used for Evolution of the Atmosphere and Early Evolution of Life The Pitfalls of Preservation It is obvious that a major change occurred in the Earth s

More information

Prasinophyaceae Evolutionary Relict s Class of Algae

Prasinophyaceae Evolutionary Relict s Class of Algae Prasinophyaceae Evolutionary Relict s Class of Algae Teena Agrawal* School of Applied Science, Banasthali University, Rajasthan, India Review Article Received: 18/10/2017 Accepted: 22/10/2017 Published:

More information

What Am I? What Am I? What Am I? What Am I?

What Am I? What Am I? What Am I? What Am I? I am a plant like protest. I am often found living on the surface of rivers, lakes and Ocean s. I live in water and don t reproduce using spores. I am a plant like protest. I am often found living on the

More information

FYBSc-Semester I Paper I CO 1 CO 2 CO 3 CO 4 CO 5 CO 6 CO 7 CO 1 CO 2 CO 3 CO 4 CO 1

FYBSc-Semester I Paper I CO 1 CO 2 CO 3 CO 4 CO 5 CO 6 CO 7 CO 1 CO 2 CO 3 CO 4 CO 1 FYBSc-Semester I Paper I 1 USBO 101 (Plant Diversity I) Unit I Algae Unit II Fungi Unit III Bryophyta CO 7 Identify the different location of the algae. Explain their habitat, cell structure, pigments,

More information

Chapter 20 Nonvascular Plants: Mosses, Liverworts, and Hornworts

Chapter 20 Nonvascular Plants: Mosses, Liverworts, and Hornworts Chapter 20 Nonvascular Plants: Mosses, Liverworts, and Hornworts Major plant groups Topics Bryophyte adaptations synapomorphies Alternation of generation in Bryophytes Phylum Hepaticophyta Phylum Bryophyta

More information

Aquatic Ancestors of Land Plants

Aquatic Ancestors of Land Plants Aquatic Ancestors of Land Plants Distinguishing Characteristics: Photosynthetic Live in aqueous environments (ie. In or near water) Lack internal tubes to move water and materials from one part of the

More information

Bring Your Text to Lab!!!

Bring Your Text to Lab!!! Bring Your Text to Lab!!! Vascular Plant Anatomy: Flowering Plants Objectives: 1. To observe what the basic structure of vascular plants is, and how and where this form originates. 2. To begin to understand

More information

Introduction to Plants

Introduction to Plants Introduction to Plants Name 5 reasons why we think plants are A OK 1. 2. 3. 4. 5. 1. Plant Cells: Plants are multicellular eukaryotes that have cell walls made of cellulose. They develop from multicellular

More information

Marine Plants. Marine Ecology. Activity 2

Marine Plants. Marine Ecology. Activity 2 Marine Plants The ocean contains many plants and plantlike organisms. Some are similar to plants we see on land while others are very different. All of these plants have one thing in common they are primary

More information

Kingdom Protista. Lab Exercise 20. Introduction. Contents. Objectives

Kingdom Protista. Lab Exercise 20. Introduction. Contents. Objectives Lab Exercise Kingdom Protista Contents Objectives 1 Introduction 1 Activity.1 Animal-like Protists 2 Activity.2 Fungal-like Protists 3 Activity.3 Plant-like Protists 3 Resutls Section 5 Introduction This

More information

Exercise 10 Fossil Lab Part 5: Crinoids, Blastoids, Fusulinids, Plants

Exercise 10 Fossil Lab Part 5: Crinoids, Blastoids, Fusulinids, Plants Exercise 10 Fossil Lab Part 5: Crinoids, Blastoids, Fusulinids, Plants ECHINODERMS (CRINOIDS AND BLASTOIDS): Echinoderms are an extremely diverse group of advanced invertebrates including such familiar

More information

Plant Structure and Function Extension

Plant Structure and Function Extension Plant Structure and Function Extension NGSSS: SC.912.L.14.7 Relate the structure of each of the major plant organs and tissues to physiological processes. (AA) Part 1A: Leaves The leaf of a plant serves

More information

Biol 203 Botany Sample Exam. Name:

Biol 203 Botany Sample Exam. Name: Biol 203 Botany Sample Exam Name: Section I. Multiple choice. Check any and all correct items; this means: there may be no correct response for you to check, or there might be more than one correct item

More information

A tree without leaves

A tree without leaves A tree without leaves Brigitte Meyer-Berthaud, Anne-Laure Decombeix To cite this version: Brigitte Meyer-Berthaud, Anne-Laure Decombeix. A tree without leaves. Nature, Nature Publishing Group, 2007, 446

More information

Types of intertidal communities

Types of intertidal communities Between the tides Marine ecosystems 1 Intertidal Delimited by the highest high tide and the lowest low tides marks The best studied and best-understood by humans Relatively easy to sample compared to other

More information

Plant Anatomy and Tissue Structures

Plant Anatomy and Tissue Structures Plant Anatomy and Tissue Structures The Two Major Plant Systems Reproductive shoot (flower) Terminal bud Node Internode Angiosperm plants have threse major organs: Roots Stems Leaves & Flowers Terminal

More information

An Introduction to the Science of Botany. Chapter 1

An Introduction to the Science of Botany. Chapter 1 An Introduction to the Science of Botany Chapter 1 TTU MS 43131 LEARNING OBJECTIVES Briefly describe the field of botany, and give short definitions of at least five subdisciplines of plant biology Summarize

More information

Department of Botany, University of Dhaka, Dhaka 1000, Bangladesh. Key words: Seaweeds, Marine algae, Kallymenia spp., St. Martin's Is.

Department of Botany, University of Dhaka, Dhaka 1000, Bangladesh. Key words: Seaweeds, Marine algae, Kallymenia spp., St. Martin's Is. Bangladesh J. Bot. 37(2): 173-178, 2008 (December) MARINE ALGAE OF THE ST. MARTIN S ISLAND, BANGLADESH. VI. NEW RECORDS OF SPECIES OF THE GENUS KALLYMENIA J. AG. (RHODOPHYTA) ABDUL AZIZ, A.K.M. NURUL ISLAM

More information

CZECH REPUBLIC. Exchange of Information in Accordance with Article III and VII (5) of the Antarctic Treaty and ATCM Resolution 6 (2001)

CZECH REPUBLIC. Exchange of Information in Accordance with Article III and VII (5) of the Antarctic Treaty and ATCM Resolution 6 (2001) CZECH REPUBLIC Exchange of Information in Accordance with Article III and VII (5) of the Antarctic Treaty and ATCM Resolution 6 (2001) Pre-season Information for Austral Summer Season 2008 2009 Pre-season

More information

Simple Leaf Compound Leaf

Simple Leaf Compound Leaf Leaves Outline Overview Leaf Arrangements and Types Internal Structures of Leaves Stomata Mesophyll and Veins Specialized Leaves Autumnal Changes in Color Abscission Relevance of Leaves Overview Some of

More information

UNIT A: Basic Principles of Plant Science with a focus on Field Crops. Lesson 1: Examining Plant Structures and Functions

UNIT A: Basic Principles of Plant Science with a focus on Field Crops. Lesson 1: Examining Plant Structures and Functions UNIT A: Basic Principles of Plant Science with a focus on Field Crops Lesson 1: Examining Plant Structures and Functions 1 Terms Alternate leaf arrangement Bulb Cell Cell specialization Cladophyll Compound

More information

1. In the block diagram shown here, which is the oldest rock unit?

1. In the block diagram shown here, which is the oldest rock unit? Pre/Post GCI Name (print) 1. In the block diagram shown here, which is the oldest rock unit? 2. Referring to the same diagram as the previous question, which of the labeled rock units is the youngest?

More information

A Preliminary Analysis of the Relationship between Precipitation Variation Trends and Altitude in China

A Preliminary Analysis of the Relationship between Precipitation Variation Trends and Altitude in China ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2011, VOL. 4, NO. 1, 41 46 A Preliminary Analysis of the Relationship between Precipitation Variation Trends and Altitude in China YANG Qing 1, 2, MA Zhu-Guo 1,

More information

Chapter 8: Plant Organs: Leaves

Chapter 8: Plant Organs: Leaves Leaf Form & Function Chapter 8: Plant Organs: Leaves Leaves are the most variable Composed of a and a May have (pair of leaf like outgrowths at petiole) : having a single blade : having a blade divided

More information

MDS UNIVERSITY B.Sc. Part -1 BOTANY. Paper 1 MICROBIOLOGY MYCOLOGY & PHYTOPATHOLOGY

MDS UNIVERSITY B.Sc. Part -1 BOTANY. Paper 1 MICROBIOLOGY MYCOLOGY & PHYTOPATHOLOGY MDS UNIVERSITY B.Sc. Part -1 BOTANY Examination Scheme-Theory Duration M.M. Min Paper-I Microbiology, Mycology & Phytopathology 3hrs 50 Paper- II Algae, Lichens and Bryophyta 3hrs 50 54 Paper- III Pteridophytes

More information

The Tempo of Macroevolution: Patterns of Diversification and Extinction

The Tempo of Macroevolution: Patterns of Diversification and Extinction The Tempo of Macroevolution: Patterns of Diversification and Extinction During the semester we have been consider various aspects parameters associated with biodiversity. Current usage stems from 1980's

More information

Protists. Protists. Protist Feeding Strategies. Protist Body Plans. Endosymbiosis. Protist Reproduction 3/3/2011. Eukaryotes Not a monophyletic group

Protists. Protists. Protist Feeding Strategies. Protist Body Plans. Endosymbiosis. Protist Reproduction 3/3/2011. Eukaryotes Not a monophyletic group Protists Protists Eukaryotes Not a monophyletic group Paraphyletic March 3 rd, 2011 Still use the term protist All eukaryotes except Plants, Fungi, Animals Most unicellular Some colonial Some multicelled

More information

CABRILLO COLLEGE : Spring 2012

CABRILLO COLLEGE : Spring 2012 CABRILLO COLLEGE : Spring 2012 BIOLOGY 1C: Plant Biology and Ecological Principles Instructor: Nicole Crane Office #620 Office hours: MW 2:40-4:00, Thursday 12:40-1:40 ph. 479-5094 e-mail: nicrane@cabrillo.edu

More information

Asian Bush Honeysuckles. Lonicera morrowii, L. tatarica, L. x bella, L. maackii

Asian Bush Honeysuckles. Lonicera morrowii, L. tatarica, L. x bella, L. maackii Asian Bush Honeysuckles Lonicera morrowii, L. tatarica, L. x bella, L. maackii Table comparing nonnative shrubby Lonicera spp. Table adapted from: A guide to Nonnative Invasive Plants Inventoried in the

More information

Cycles in the Phanerozoic

Cycles in the Phanerozoic Cycles in the Phanerozoic Evolutionary trends: extinctions, adaptive radiations, diversity over time Glaciations Sea level change Ocean chemistry Atmospheric CO 2 biosphere Mass extinctions in the..you

More information

A handful of primary features are useful for distinguishing water primrose (Ludwigia) from other plants. Understand what to look for, such as leaf

A handful of primary features are useful for distinguishing water primrose (Ludwigia) from other plants. Understand what to look for, such as leaf A handful of primary features are useful for distinguishing water primrose (Ludwigia) from other plants. Understand what to look for, such as leaf arrangement and number of petals. Pairing morphological

More information

CHAPTER 29 PLANT DIVERSITY I: HOW PLANTS COLONIZED LAND. Section A: An Overview of Land Plant Evolution

CHAPTER 29 PLANT DIVERSITY I: HOW PLANTS COLONIZED LAND. Section A: An Overview of Land Plant Evolution CHAPTER 29 PLANT DIVERSITY I: HOW PLANTS COLONIZED LAND Section A: An Overview of Land Plant Evolution 1. Evolutionary adaptations to terrestrial living characterize the four main groups of land plants

More information

Introduction to the Plant Kingdom - 1

Introduction to the Plant Kingdom - 1 Introduction to the Plant Kingdom - 1 The Plant Kingdom comprises a large and varied group of organisms that have the following characteristics in common. All plants are: Eukaryotic Photosynthetic Multicellular

More information

Botany Physiology. Due Date Code Period Earned Points

Botany Physiology. Due Date Code Period Earned Points Botany Physiology Name C/By Due Date Code Period Earned Points Bot Phys 5N5 Stem Forms Bot Phys 5-05 Identify the major forms of stems in plants I. Identify the major forms of stems in plants A. internal

More information

Fun with Botany 2009

Fun with Botany 2009 Fun with Botany 2009 Fun with Botany April, 2002 Plant Uses and Types Gymnosperms Angiosperms Monocots Dicots Gymnosperms Keep leaves which are either needles or flat scales Seeds are not enclosed Give

More information

Topic 20. Protista II: The Stramenopiles

Topic 20. Protista II: The Stramenopiles Topic 20. Protista II: The Stramenopiles The Stramenopiles (heterokonts) are a phylogenetic group within the kingdom, Protista. These organisms were derived from an ancestor with two dissimilar flagella,

More information

-Each asexual organs. -Anchors the plant -Absorbs water and minerals -Stores sugars and starches

-Each asexual organs. -Anchors the plant -Absorbs water and minerals -Stores sugars and starches Plants are made up of: -organs, tissues, and cells The three major plant organs are: -Roots, stems, and leaves -Each asexual organs Plants have a Root System beneath the ground that us a multicellular

More information

Chapter What is a Plant? Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Chapter What is a Plant? Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Chapter 22.1 Biology What is a Plant? 1 of 33 Objectives 1. Describe the basic characteristics of life. 2. Describe what plants need to survive. 3. Describe the life cycle of plants. 4. Describe how the

More information

VEGETATIVE MORPHOLOGY OF FLOWERING PLANTS

VEGETATIVE MORPHOLOGY OF FLOWERING PLANTS VEGETATIVE MORPHOLOGY OF FLOWERING PLANTS Stems, roots, and leaves are the vegetative parts of vascular plants. Stems are the basic organs, as they give rise to other plant organs, such as roots, leaves,

More information

Unit B: Plant Anatomy. Lesson 4: Understanding Leaf Anatomy and Morphology

Unit B: Plant Anatomy. Lesson 4: Understanding Leaf Anatomy and Morphology Unit B: Plant Anatomy Lesson 4: Understanding Leaf Anatomy and Morphology 1 Vocabulary Compound leaf Cuticle Dichotomous venation Epidermis Guard cells Leaf blade Midrib Palisade mesophyll Parallel veins

More information

Structures and Life Functions of Single-Celled Organisms

Structures and Life Functions of Single-Celled Organisms Structures and Life Functions of Single-Celled Organisms 7.L.1.1 - Compare the structures and life functions of single-celled organisms that carry out all of the basic functions of life including: Euglena

More information

Topic 10: Cyanobacteria & Algae

Topic 10: Cyanobacteria & Algae BIOL 221 Concepts of Botany Spring 2009 Topic 10: Cyanobacteria & Algae A. Introduction Plants are not the only organisms that are photosynthetic. In fact, photosynthetic lineages have popped up here and

More information