Lecture 16: Soil Acidity; Introduction to Soil Ecology

Size: px
Start display at page:

Download "Lecture 16: Soil Acidity; Introduction to Soil Ecology"

Transcription

1 Lecture 16: Soil Acidity; Introduction to Soil Ecology

2 Aluminum and Soil Acidity

3 Aluminum Toxicity in Acid Soils Tolerant Sensitive Tolerant Sensitive Plants often are sensitive to the presence of dissolved Al 3+ in soil water Al availability is much higher in acidic soils ph 4.4 ph 5.7

4 Role of Aluminum in Soil Acidity Aluminum is a major component of soil minerals Unlike other ions, when H + exchanges into a clay or adsorbs on its edge, it attacks the mineral structure This releases Al 3+ either to exchange sites or into solution Al 3+ then undergoes hydrolysis, producing H + Al 3+ + H 2 O AlOH 2+ + H + AlOH 2+ + H 2 O Al(OH) 2+ + H + Al(OH) 2+ + H 2 O Al(OH) 3,gibbsite + H + Three H + are produced by every one Al 3+! Hint: This is an important concept!!! Aluminum has a key role in soil acidity!

5 Aluminum Hydrolysis Products Interfere with Cation Exchange AlOH 2+ and Al(OH) 2+ are cations and can exchange These species strongly bind to negative sites on clays and organic matter These species also polymerize; the polymers bind to negatively charges sites on colloids However, the polymers are not exchangeable They instead block much of a mineral s potential CEC If the ph increases enough, these species precipitate as gibbsite [Al(OH) 3 ], unmasking cation exchange sites This is one reason why CEC often increases with increasing ph

6 Example Polymers Al Hydroxy-Polymers Block Interlayer Sites in Clay Minerals Al-polymer Al-polymer Al-polymer Al-polymer Figures from: Velde and Meunier (2008) The Origin of Clay Minerals in Soils and Weathered Rocks

7 Pools of Soil Acidity

8 Pools of Soil Acidity Total Acidity = Active + Exchangeable + Residual (+ Potential) Active Acidity: H + present in soil solution Exchangeable (Salt-Replaceable) Acidity: Al 3+ and H + that are easily and rapidly exchangeable by other cations Residual Acidity: Al 3+ and H + bound in non-exchangeable forms to clays and OM Can be released slowly in response to ph changes Potential Acidity: Rare; caused by oxidation of sulfide In general: Exchangeable x Active Residual ,000x Active

9 Relationship between ph and Exchangeable and Residual Acidity Two forms of H + /Al 3+ : Bound and Exchangeable Release of bound H + /Al 3+ increases effective CEC Bound acidity is mostly Al hydrolysis products and polymers that block exchange sites

10 Effective Versus Potential CEC Laboratory measurements of CEC are typically performed at a standard ph (7 or 8.2) This value is called the potential CEC Potential CEC is used in soil classification However, CEC is ph-dependent! CEC measured at the actual soil ph, which is typically <7, is the effective CEC This is often lower than the potential CEC

11 High Acid Saturation Promotes Low ph A B C D Acid saturation is closely related to soil ph Soil ph is less sensitive to the absolute acid cation concentration on exchange sites Soils with fewer total acid cations but greater acid saturation (e.g., A vs. B) are more acidic Acid saturation is a better indicator of soil acidity that the amount of exchangeable Al 3+

12 Potential Acidity from Reduced Sulfur Anaerobic soils contain reduced sulfur compounds (FeS 2, FeS, S) Horizons that contain such compounds are called sulfidic When aerated, often by drainage, the sulfur oxidizes, producing sulfuric acid Horizons having low ph caused by sulfuric acid are called sulfuric Soils acidified by sulfur oxidation are called acid sulfate soils Problem in soils on reclaimed coastal wetlands

13 Drainage of Costal Wetlands and Weathering of Mine Materials Causes Acidification

14 Soil ph Buffering

15 ph Buffering in Soils A: Pure Water B: Moderately buffered soil C: Well buffered soil Buffering: Resistance to ph change

16 Soil ph Buffering Reactions Aluminum hydrolysis OM protonation or deprotonation Protonation or deprotonation of mineral surface groups Cation exchange Carbonate mineral dissolution or precipitation Soils high in materials that can undergo these reactions have a high buffering capacity

17 CaCO 3 for Acid Buffering and Neutralization Calcium carbonate present in or added to soils neutralizes acid and buffers the ph CaCO 3 + H + = Ca 2+ + HCO 3-3CaCO 3 + Al H 2 O = 3Ca 2+ + Al(OH) 3 + 3HCO 3 - CaCO 3 + CO 2 + H 2 O = Ca HCO 3-2CaCO 3 + NH O 2 = 2Ca 2+ + NO HCO 3- + H 2 O 2CaCO 3 + H 2 SO 4 = 2Ca HCO 3- + SO 4 2-

18 Liming CaCO 3 or other neutralizing materials can be added to raise the ph of acid soils CaCO 3 + H + = Ca 2+ + HCO 3 - This is also used to reduce acid saturation 2X 3 Al + 3CaCO 3 + 3H 2 O = 3X 2 Ca + 2Al(OH) 3,gibbsite + 3CO 2 (g) Product is gibbsite, carbon dioxide gas, and a soil with an increased base saturation Read Box 9.2 (E) or 9.4 (N) to learn how to calculate liming needs

19 Key Concepts in Soil Acidity, Part 1 Many processes, including rain, generate soil acidity Addition of acidity coupled to leaching leads to a loss of base cations, increase in Al 3+ Important process in weathering and soil formation One source of damage caused by acid rain Aluminum is a critical source of acidity in soil Produced when H + reacts with soil minerals Undergoes hydrolysis to produce H + (3 H + for 1 Al 3+ )

20 Key Concepts in Soil Acidity, Part 2 Aluminum hydrolysis products interfere with cation exchange Block cation exchange sites on clays and OM, reducing CEC If ph increases from acidic to neutral conditions, these precipitate as gibbsite, freeing up cation exchange sites This is one reason that CEC increases with increasing ph

21 Key Concepts in Soil Acidity, Part 3 Multiple pools of soil acidity exist and react on different time scales Effective CEC differs from the potential CEC measured at ph 7 or 8.2 Al 3+ hydrolysis and ph-dependent charging of mineral surfaces and OM cause CEC to increase as ph increases Potential acidity associated with sulfide in soils can produce highly acidic soil conditions if exposed to oxygen from the air Liming: Calcium carbonate can be used to neutralize soil acidity, including reducing acid saturation

22 Soil Biological Diversity

23 Soil Fauna in Pulp Fiction?

24 Soil Fauna in Pulp Fiction

25 Soil Fauna Macrofauna (>2 mm) Mice, ants, termites, earthworms, snails Mesofauna (0.1-2 mm) Mites, pot worms, protura, collembola Microfauna (<0.1 mm) Nematodes, rotifers, amoeba, water bears UC Santa Cruz Banana Slugs Fungi-feeding springtail (collembola) (photo from USDA) Soil Nematodes (photo from USDA)

26 Soil Flora Macroflora Feeder roots, mosses Microflora (<0.1 mm) Root hairs, algae, fungi, aerobic and anaerobic bacteria, cyanobacteria, actinomycetes, methanotrophic archaea Roots Bacteria coating fungal hyphae (photo from USDA) Fungal Hyphae and Root Hairs

27 Length Scales of Soil Habitats

28 Soil Organisms Display a Wide Range of Sizes

29 Microflora and Earthworms Dominate Soil Biomass

30 Overview of Soil Ecology

31 Metabolic Pathways Soil ecosystems are dependent on the interactions of organisms over a wide size range employing a wide array of metabolisms Metabolisms are defined based on the sources of carbon and energy used by organisms Carbon: Source for making biomass Heterotroph: Existing organic carbon compounds Autotroph: Make organic carbon from CO 2 Energy: Source for driving metabolism Chemotroph: Biochemical redox reactions Phototroph: Sunlight through photosynthesis

32 Metabolic Pathways in Soils Chemoheterotrophs: All animals, plant roots, fungi, actinobacteria (actinomycetes), most bacteria Chemoautotrophs: Bacteria and archaea that respire using inorganic compounds and fix CO 2 into OM; generally anaerobic but some gain energy from oxidizing CH 4 and reduced S compounds with O 2 Photoheterotrophs: A few algal species, purple and green non-sulfur bacteria, heliobacteria; mostly limited to waterlogged soils as all are anaerobic Photoautotrophs: Plants, algae, cyanobacteria

33 Soil Food Web

34 Primary Producers In most soil ecosystems vascular plants are the primary producers Create organic carbon and O 2 via photosynthesis Other organisms are important primary producers in some environments Algae and cyanobacteria in arid soils and wetlands Lichens and mosses in cold regions and poorly developed soils

35 Primary Consumers Herbivores: eat live plants Parasitic nematodes, insect larvae, termites, ants, beetle larvae, mice Detritivores: eat plant debris (detritus) Earthworms, woodlice, millipedes Many organisms that eat detritus are not detritivores, instead primarily feeding on microorganisms that live on detritus Saprophytic Microorganisms: decompose plant and animal debris Fungi and bacteria

36 Secondary Consumers Carnivores: Eat living animals Centipedes, predatory mites and nematodes, spiders, snails Microbivorous feeders: Eat microflora Collembola (springtails), mites, termites, some nematodes, protozoa Bacteria, fungi, actinomycetes: Eat remains of primary consumers

37 Example Detrital Food Web: Shortgrass Prairie From: Coleman et al. (2004) Fundamentals of Soil Ecology

38 Key Concepts in Soil Ecology There are a range of metabolic strategies employed by soil organisms Primary producers are the source of all food in soils These are dominantly vascular plants but may also be algae, bacteria, mosses, and lichen Primary consumers feed off of primary producers or their debris Secondary consumers feed on primary consumers

Mineral and Organic Components. Soil Organisms, Biology, and Nutrients. Homework III: The State Soil of Florida. Posted on website.

Mineral and Organic Components. Soil Organisms, Biology, and Nutrients. Homework III: The State Soil of Florida. Posted on website. Homework III: The State Soil of Florida Posted on website 5 bonus points Type all answers Soil Organisms, Biology, and Nutrients Mineral and Organic Components Functions of soils: recycler of raw materials

More information

Acid Soil. Soil Acidity and ph

Acid Soil. Soil Acidity and ph Acid Soil Soil Acidity and ph ph ph = - log (H + ) H 2 O H + + OH - (H + ) x (OH - )= K w = 10-14 measures H + activity with an electrode (in the lab), solutions (in the field) reflects the acid intensity,

More information

Soil ph: Review of Concepts

Soil ph: Review of Concepts Soils and Water, Spring 008 Soil ph: Review of Concepts Acid: substance that can donate a proton Base: substance that can accept a proton HA H A HA and A - are called conjugate acid-base pairs. The strength

More information

Chapter 10: Soil Organisms

Chapter 10: Soil Organisms Chapter 10: Soil Organisms Objectives: 1. appreciate the diversity of soil organisms 2. understand the relationship between soil biodiversity and soil functions Key terms and Concepts: Mycorrhizae Rhizobium

More information

Soil Biology. Chapter 10

Soil Biology. Chapter 10 Soil Biology Chapter 10 The Sounds of Soil Soil as a Transition Between Aquatic and Aerial System Bacteria in a Drying Environment Wet (open structure) Dry (dense) Holden P.A., J.R. Hunt, and M. K. Firestone,

More information

BIOS 3010: Ecology Lecture 12: Decomposition and Detritivory: 2. Decomposers and detritivores: 3. Resources of decomposers: Lecture summary:

BIOS 3010: Ecology Lecture 12: Decomposition and Detritivory: 2. Decomposers and detritivores: 3. Resources of decomposers: Lecture summary: BIOS 3010: Ecology Lecture 12: Decomposition and Detritivory: Lecture summary: Decomposers & detritivores: Resources. Characteristics. Model of detritivory. Size of detritivores. Diversity & abundance.

More information

What is Ecology? The scientific study of interactions among organisms and between organisms in their environment, or surroundings

What is Ecology? The scientific study of interactions among organisms and between organisms in their environment, or surroundings ECOLOGY What is Ecology? The scientific study of interactions among organisms and between organisms in their environment, or surroundings Organization of the Biosphere Levels of organization Biosphere-

More information

6. Biological Characteristics of Soil. ENVS 334: Applied Soil Science and Land Management INSTR.: R.M. Bajracharya

6. Biological Characteristics of Soil. ENVS 334: Applied Soil Science and Land Management INSTR.: R.M. Bajracharya 6. Biological Characteristics of Soil ENVS 334: Applied Soil Science and Land Management INSTR.: R.M. Bajracharya 1 Soil biological properties Organisms, both animals (fauna/micro-fauna) and plants (flora/micro-flora)

More information

Ecology Review. 1. Fly larvae consume the body of a dead rabbit. In this activity, they function as

Ecology Review. 1. Fly larvae consume the body of a dead rabbit. In this activity, they function as Name: ate: 1. Fly larvae consume the body of a dead rabbit. In this activity, they function as. producers. scavengers. herbivore. parasites 4. n earthworm lives and reproduces in the soil. It aerates the

More information

SOM. Bugs! Plants are a major source of SOM First remember that SOM is food ROOT EXUDATES. Rhizosphere. Microbes

SOM. Bugs! Plants are a major source of SOM First remember that SOM is food ROOT EXUDATES. Rhizosphere. Microbes SOM Plants are a major source of SOM First remember that SOM is food Soil organic matter ROOT EXUDATES 10-20% OF PLANT PHOTOSYNTHESIS GOOD EATING Rhizosphere Root zone - area of greatest microbial activity

More information

SOIL ECOLOGY TERMS. From Soil Quality Thunderbook, National Resources Conservation Service, U.S. Department of Agriculture. (2005).

SOIL ECOLOGY TERMS. From Soil Quality Thunderbook, National Resources Conservation Service, U.S. Department of Agriculture. (2005). SOIL ECOLOGY TERMS actinomycetes: A large group of bacteria that grow in long filaments that are too small to see without magnification. Actinomycetes generate the smell of healthy soil, and are important

More information

The Tree of Life. Metabolic Pathways. Calculation Of Energy Yields

The Tree of Life. Metabolic Pathways. Calculation Of Energy Yields The Tree of Life Metabolic Pathways Calculation Of Energy Yields OCN 401 - Biogeochemical Systems 8/27/09 Earth s History (continental crust) 170 Oldest oceanic crust Ga = billions of years ago The Traditional

More information

HW/CW #5 CHAPTER 3 PRACTICE

HW/CW #5 CHAPTER 3 PRACTICE HW/CW #5 CHAPTER 3 PRACTICE 1. The portion of Earth in which all life exists is known as A) the climax stage B) the biosphere C) a population D) a biotic community 2. The study of the interactions between

More information

Soil Biology. The Sounds of Soil. Soils and Water, Spring Lecture 9, Soil Biology 1. Soil as a Transition Between Aquatic and Aerial System

Soil Biology. The Sounds of Soil. Soils and Water, Spring Lecture 9, Soil Biology 1. Soil as a Transition Between Aquatic and Aerial System Soil Biology Chapter 10 The Sounds of Soil Soil as a Transition Between Aquatic and Aerial System Lecture 9, Soil Biology 1 Bacteria in a Drying Environment Wet (open structure) Dry (dense) Holden P.A.,

More information

Which of the following is NOT an abiotic factor? A) Rocks B) Soil C) Mountains D) Decomposers

Which of the following is NOT an abiotic factor? A) Rocks B) Soil C) Mountains D) Decomposers Which of the following is NOT an abiotic factor? A) Rocks B) Soil C) Mountains D) Decomposers Which of the following leads to stability in an ecosystem A) Low amount of biodiversity B) Low amount of biotic

More information

Figure 2 If birds eat insects that feed on corn, which pyramid level in the diagram would birds occupy? 1. A 3. C 2. B 4. D

Figure 2 If birds eat insects that feed on corn, which pyramid level in the diagram would birds occupy? 1. A 3. C 2. B 4. D Ecology Week 1 Assignment. This week's assignment will count as a quiz grade. Please speak to Mr. Roes about any questions that you would like help on! 1. The fact that no organism exists as an entity

More information

Soil biology: Important relationship with soil quality

Soil biology: Important relationship with soil quality nasih@ugm.ac.id Soil biology: Important relationship with soil quality - Organic matter - Residue decomposition - Soil structure - Nutrient cycling - 1 g of soil has 100,000,000 bacteria SOIL IS HABITAT

More information

Name: Characteristics of Life and Ecology Guided Notes (PAP)

Name: Characteristics of Life and Ecology Guided Notes (PAP) Name: Characteristics of Life and Ecology Guided Notes (PAP) I. What is Biology? a. Biology is the study of II. The Eight Characteristics of Life a. Organization & the presence of or more cells b. Response

More information

CLASS EXERCISE 5.1 List processes occurring in soils that cause changes in the levels of ions.

CLASS EXERCISE 5.1 List processes occurring in soils that cause changes in the levels of ions. 5 SIL CHEMISTRY 5.1 Introduction A knowledge of the chemical composition of a soil is less useful than a knowledge of its component minerals and organic materials. These dictate the reactions that occur

More information

Energy, Producers, and Consumers. Lesson Overview. Lesson Overview. 4.1 Energy, Producers, and Consumers

Energy, Producers, and Consumers. Lesson Overview. Lesson Overview. 4.1 Energy, Producers, and Consumers 4.1 Energy, Producers, and Consumers THINK ABOUT IT At the core of every organism s interaction with the environment is its need for energy to power life s processes. Where does energy in living systems

More information

Key Concepts 1. What different levels of organization do ecologists study? 2. What methods are used to study ecology?

Key Concepts 1. What different levels of organization do ecologists study? 2. What methods are used to study ecology? Chapter 3 The Biosphere 3 1 What is Ecology? 1. What different levels of organization do ecologists study? 2. What methods are used to study ecology? Ecology study of interactions between organisms and

More information

Gain a better understanding of soil ph and how it is measured. Understand how lime requirement is determined.

Gain a better understanding of soil ph and how it is measured. Understand how lime requirement is determined. LABORATORY 7 SOIL REACTION (ph) AND LIME REQUIREMENT I Objectives Gain a better understanding of soil ph and how it is measured. Understand how lime requirement is determined. II Introduction A Soil Reaction

More information

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology Biology 11 Unit 1: Fundamentals Lesson 1: Ecology Objectives In this section you will be learning about: ecosystem structure energy flow through an ecosystem photosynthesis and cellular respiration factors

More information

Interactions Between Microorganisms and Higher Plants from Competition to Symbiosis p. 184

Interactions Between Microorganisms and Higher Plants from Competition to Symbiosis p. 184 Introduction What Are Soils? p. 3 Introduction p. 3 Soil Genesis p. 4 Rock Weathering or Decay p. 4 Importance of Soil Texture p. 5 Input of Organic Matter into Soils and Aggregation p. 7 Migration Processes

More information

NOTES: FLOW OF ENERGY

NOTES: FLOW OF ENERGY NOTES: FLOW OF ENERGY Chapter 2 Principles of Ecology 2.2 Flow of Energy in an Ecosystem Energy in an Ecosystem Autotrophs (Producers) Organisms that use energy from sunlight or chemicals to produce food.

More information

Aquatic Chemistry (10 hrs)

Aquatic Chemistry (10 hrs) Aquatic Chemistry (10 hrs) Water -The quality and quantity of water available to human have been vital factors in determining their well-being. -More then 70% of the earth is covered by water. Living cells

More information

Soil Organisms. Organisms log (# / g) kg / ha

Soil Organisms. Organisms log (# / g) kg / ha Soil Organisms Soil is home to many different organisms. These represent different kingdoms and range in size from sequoia roots to bacteria. Some produce their own organic structure from inorganic substrates.

More information

Weathering: the disintegration, or breakdown of rock material

Weathering: the disintegration, or breakdown of rock material Weathering: the disintegration, or breakdown of rock material Mechanical Weathering: no change in chemical composition--just disintegration into smaller pieces Chemical Weathering: breakdown as a result

More information

Chapter 5: Weathering and Soils. Fig. 5.14

Chapter 5: Weathering and Soils. Fig. 5.14 Chapter 5: Weathering and Soils Fig. 5.14 OBJECTIVES Recognize that weathering breaks down minerals and rocks and occurs as a result of both mechanical and chemical processes. Explain the processes that

More information

GEOL 408/508 ORGANISMS AND ECOLOGY OF THE SOIL

GEOL 408/508 ORGANISMS AND ECOLOGY OF THE SOIL GEOL 408/508 ORGANISMS AND ECOLOGY OF THE SOIL Chapter 11 Brady and Weil, Rev. 14th Ed. DIVERSITY OF ORGANISMS IN THE SOIL Sizes of organisms: Animals = fauna; Plants = flora Macro (>2 mm in width): -

More information

Page 1. Name:

Page 1. Name: Name: 9477-1 - Page 1 1) 2) 3) 4) 5) The ecological niche of an organism refers to the A) relation of the organism to humans B) biosphere in which the organism lives C) position of the organism in a food

More information

Unit 1.1: Ecology. Warm-up Answers:

Unit 1.1: Ecology. Warm-up Answers: Unit 1.1: Ecology Vocabulary Ecology: study of interactions between organisms and their environment Biodiversity: the total variety of living organisms in an ecosystem. Resource: a substance that is required

More information

Lecture 15: Adsorption; Soil Acidity

Lecture 15: Adsorption; Soil Acidity Lecture 15: Adsorption; Soil Acidity Surface Complexation (Your textbook calls this adsorption ) Surface Complexation Both cations and anions can bind to sites on the external surfaces of soil minerals

More information

Ecology. Ecology terminology Biomes Succession Energy flow in ecosystems Loss of energy in a food chain

Ecology. Ecology terminology Biomes Succession Energy flow in ecosystems Loss of energy in a food chain Ecology Ecology terminology Biomes Succession Energy flow in ecosystems Loss of energy in a food chain Terminology Ecology- the study of the interactions of living organisms with one another and with their

More information

Plant Nutrition and Transport. Chapter 29

Plant Nutrition and Transport. Chapter 29 Plant Nutrition and Transport Chapter 29 Overview: Underground Plants The success of plants depends on their ability to gather and conserve resources from their environment. The transport of materials

More information

1.3 What are the needs of Organisms? *Autotrophs: organisms that can (i.e. plants) *Heterotrophs: organisms that (i.e. humans)

1.3 What are the needs of Organisms? *Autotrophs: organisms that can (i.e. plants) *Heterotrophs: organisms that (i.e. humans) 1.3 What are the needs of Organisms? 5 Things Living Organisms Need 1- -Organisms get energy from in order to. *Autotrophs: organisms that can (i.e. plants) *Heterotrophs: organisms that (i.e. humans)

More information

Soil fauna-as indicator of soil quality Authors: Sunanda Biswas 1 and Bharat H. Gawade 2

Soil fauna-as indicator of soil quality Authors: Sunanda Biswas 1 and Bharat H. Gawade 2 Soil fauna-as indicator of soil quality Authors: Sunanda Biswas 1 and Bharat H. Gawade 2 1 Division of Soil Science and Agricultural Chemistry, ICAR-IARI, New Delhi-110012 2 Quarantine Division, ICAR-National

More information

Overview. Rock weathering Functions of soil Soil forming factors Soil properties

Overview. Rock weathering Functions of soil Soil forming factors Soil properties UN-FAO A. Healthy soils are the basis for healthy food production. B. A tablespoon of normal topsoil has more microorganisms than the entire human population on Earth. C. It can take up to 1,000 years

More information

CHAPTER 5 WARM UPS. Mrs. Hilliard

CHAPTER 5 WARM UPS. Mrs. Hilliard CHAPTER 5 WARM UPS Mrs. Hilliard CHAPTER 5 VOCABULARY 1. Photosynthesis 2. Cellular respiration 3. Producer 4. Consumer 5. Decomposer 6. Food chain 7. Food web 8. Trophic level 9. Carbon cycle 10. Nitrogen-fixing

More information

About me (why am I giving this talk) Dr. Bruce A. Snyder

About me (why am I giving this talk) Dr. Bruce A. Snyder Ecology About me (why am I giving this talk) Dr. Bruce A. Snyder basnyder@ksu.edu PhD: Ecology (University of Georgia) MS: Environmental Science & Policy BS: Biology; Environmental Science (University

More information

Lecture 2 Carbon and Energy Transformations

Lecture 2 Carbon and Energy Transformations 1.018/7.30J Fall 2003 Fundamentals of Ecology Lecture 2 Carbon and Energy Transformations READINGS FOR NEXT LECTURE: Krebs Chapter 25: Ecosystem Metabolism I: Primary Productivity Luria. 1975. Overview

More information

The study of living organisms in the natural environment How they interact with one another How the interact with their nonliving environment

The study of living organisms in the natural environment How they interact with one another How the interact with their nonliving environment The study of living organisms in the natural environment How they interact with one another How the interact with their nonliving environment ENERGY At the core of every organism s interactions with the

More information

Ecology - the study of how living things interact with each other and their environment

Ecology - the study of how living things interact with each other and their environment Ecology Ecology - the study of how living things interact with each other and their environment Biotic Factors - the living parts of a habitat Abiotic Factors - the non-living parts of a habitat examples:

More information

Microbial Biogeochemistry

Microbial Biogeochemistry Microbial Biogeochemistry Chemical reactions occurring in the environment mediated by microbial communities Outline Metabolic Classifications. Winogradsky columns, Microenvironments. Redox Reactions. Microbes

More information

Soil Biota and Ecosystem Functioning

Soil Biota and Ecosystem Functioning 2 Soil Biota and Ecosystem Functioning Soil-Habitat Biological activity in soils is mainly concentrated in the top soils. The biological component occupy a small fraction (< 0.5%) of the total soil volume

More information

GHS S.4 BIOLOGY TEST 2 APRIL Answer all the questions in Section A and B. in the spaces provided

GHS S.4 BIOLOGY TEST 2 APRIL Answer all the questions in Section A and B. in the spaces provided GHS S.4 BIOLOGY TEST 2 APRIL 2016 TIME: 1 HOUR Instructions: Answer all the questions in Section A and B. in the spaces provided ANSERS TO SECTION A 1 6 11 16 21 26 2 7 12 17 22 27 3 8 13 18 23 28 4 9

More information

The Prokaryotic World

The Prokaryotic World The Prokaryotic World A. An overview of prokaryotic life There is no doubt that prokaryotes are everywhere. By everywhere, I mean living in every geographic region, in extremes of environmental conditions,

More information

Sun. Photosynthesis (performed by plants, algae, and some bacteria) Respiration (performed by all organisms) 6 O 2 6 CO 2.

Sun. Photosynthesis (performed by plants, algae, and some bacteria) Respiration (performed by all organisms) 6 O 2 6 CO 2. Photosynthesis (performed by plants, algae, and some bacteria) Sun 6 O 6 CO 6 H O C 6 H O 6 (glucose) Solar energy + 6 H O + 6 CO C 6 H O 6 + 6 O Energy Respiration (performed by all organisms) 6 O 6 CO

More information

The Eco Pyramid By Michael Stahl

The Eco Pyramid By Michael Stahl The Eco Pyramid The Eco Pyramid By Michael Stahl An ecosystem is a community of living organisms interacting with one another as well as with nonliving things. One very important aspect of an ecosystem

More information

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection Gene: A sequence of DNA that codes for a particular trait Gene pool: All

More information

AMD 101. Chemistry of Abandoned Mine Drainage. Bruce Golden WPCAMR

AMD 101. Chemistry of Abandoned Mine Drainage. Bruce Golden WPCAMR AMD 101 Chemistry of Abandoned Mine Drainage Bruce Golden WPCAMR http://amrclearinghouse.org Western PA Coalition for Abandoned Mine Reclamation A helping hand to watershed groups grappling with the legacy

More information

Earth: An Introduction to Physical Geology Weathering and Soil

Earth: An Introduction to Physical Geology Weathering and Soil Chapter 6 Lecture Earth: An Introduction to Physical Geology Eleventh Edition Weathering and Soil Tarbuck and Lutgens Weathering Weathering involves the physical breakdown and chemical alteration of rock

More information

Kingdom Bacteria Kingdom Archaea

Kingdom Bacteria Kingdom Archaea Section 5.1 Kingdom Bacteria Kingdom Archaea p. 132-139 Kingdom Bacteria General Characteristics: Cell Type: all are prokaryotic. Body Form: most are unicellular, some are colonial. Three main shapes are:

More information

chapter five: microbial metabolism

chapter five: microbial metabolism chapter five: microbial metabolism Revised 9/22/2016 oxidation-reduction redox reaction: coupled reactions e- donor oxidized donor Ox Red ADP + P i ATP Ox Red reduced A chemical A redox reactions aerobic

More information

Living Things and the Environment

Living Things and the Environment Unit 21.1 Living Things and the Environment Section 21.1 Organisms obtain food, water, shelter, and other things it needs to live, grow, and reproduce from its environment. An environment that provides

More information

Communities Structure and Dynamics

Communities Structure and Dynamics Communities Structure and Dynamics (Outline) 1. Community & niche. 2. Inter-specific interactions with examples. 3. The trophic structure of a community 4. Food chain: primary, secondary, tertiary, and

More information

Biogeographic Processes

Biogeographic Processes Biogeographic Processes Energy and Matter Flow in Ecosystems Ecological Biogeography Ecological Succession Historical Biogeography Biogeographic Processes Biogeography examines the distribution of plants

More information

Plant Function. KEB no office hour on Monday 23 March. Chs 38, 39 (parts), March 2009 ECOL 182R UofA K. E. Bonine

Plant Function. KEB no office hour on Monday 23 March. Chs 38, 39 (parts), March 2009 ECOL 182R UofA K. E. Bonine Plant Function Chs 38, 39 (parts), 40 KEB no office hour on Monday 23 March 10 March 2009 ECOL 182R UofA K. E. Bonine Videos: 39.3, 34.3, 39.1, 34.1 Web Browser Open 1 Video 39.3 Pollination of a night-blooming

More information

Identify three agents of mechanical weathering. Compare mechanical and chemical weathering processes.

Identify three agents of mechanical weathering. Compare mechanical and chemical weathering processes. Objectives Identify three agents of mechanical weathering. Compare mechanical and chemical weathering processes. Describe four chemical reactions that decompose rock. #1 Weathering Processes weathering

More information

Agronomy 485/585 Test #1 October 2, 2014

Agronomy 485/585 Test #1 October 2, 2014 Agronomy 485/585 Test #1 October 2, 2014 Name Part I. Circle the one best answer (2 points each). 1. The most important microbial group in promoting soil structure likely is the. a) actinomycetes b) algae

More information

1. The graph below represents a change in event A that leads to changes in events B and C.

1. The graph below represents a change in event A that leads to changes in events B and C. 1. The graph below represents a change in event A that leads to changes in events B and C. Which row in the chart best identifies each event in the graph? A) 1 B) 2 C) 3 D) 4 2. A stable ecosystem is characterized

More information

Reference pg and in Textbook

Reference pg and in Textbook Reference pg. 154-164 and 188-202 in Textbook Combustion Reactions During combustion (burning) of fossil fuels, collisions between the molecules of the fuel and oxygen result in the formation of new molecules.

More information

Populations and Ecosystems. 1. Two different species with the same ecological niche are placed in the same habitat. These two species will most likely

Populations and Ecosystems. 1. Two different species with the same ecological niche are placed in the same habitat. These two species will most likely Name: ate: 1. Two different species with the same ecological niche are placed in the same habitat. These two species will most likely. have different food requirements. compete for the same environmental

More information

Round One All play. Each question = 1 point

Round One All play. Each question = 1 point Ecology Unit Review Round One All play Each question = 1 point Leaf cells are one type of tree cell. Which process occurs in a live leaf cell? a. Evolution b. Adaptation c. sugar production d. sexual reproduction

More information

13.3. Energy in Ecosystems. Producers provide energy for other organisms in an ecosystem.

13.3. Energy in Ecosystems. Producers provide energy for other organisms in an ecosystem. 13.3 Energy in Ecosystems KEY CONCEPT Life in an ecosystem requires a source of energy. Producers provide energy for other organisms in an ecosystem. Almost all producers obtain energy from sunlight. VOCABULARY

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Outline I. Energy and Carbon Cycle II. Photosynthesis A. Introduction B. Reactions II. Cellular Respiration A. Introduction B. Reactions Carbon Cycle All organisms

More information

Mrs. Fanek Ecology Date

Mrs. Fanek Ecology Date Name Period Mrs. Fanek Ecology Date 1. The graph below represents a change in event A that leads to changes in events B and C. Which row in the chart best identifies each event in the graph? A) 1 B) 2

More information

Ch20_Ecology, community & ecosystems

Ch20_Ecology, community & ecosystems Community Ecology Populations of different species living in the same place NICHE The sum of all the different use of abiotic resources in the habitat by s given species what the organism does what is

More information

Ecosystem: Ecology Abiotic Biotic Micro-organism Producers Consumers Photosynthesis Decomposers herbivores

Ecosystem: Ecology Abiotic Biotic Micro-organism Producers Consumers Photosynthesis Decomposers herbivores Ecosystem Ecosystem: Ecology Abiotic Biotic Micro-organism Producers Consumers Photosynthesis Decomposers herbivores Carnivores Omnivores Ectodermic Endothermic Transpiration Terrestrial Aquatic Xerophytes

More information

List of Equipment, Tools, Supplies, and Facilities:

List of Equipment, Tools, Supplies, and Facilities: Unit D: ph of Soil Lesson 2: Identifying ph Connection With Plant Growth Student Learning Objectives: Instruction in this lesson should result in the students achieving the following objectives: 1. Explain

More information

Classifying Prokaryotes: Eubacteria Plasma Membrane. Ribosomes. Plasmid (DNA) Capsule. Cytoplasm. Outer Membrane DNA. Flagellum.

Classifying Prokaryotes: Eubacteria Plasma Membrane. Ribosomes. Plasmid (DNA) Capsule. Cytoplasm. Outer Membrane DNA. Flagellum. Bacteria The yellow band surrounding this hot spring is sulfur, a waste product of extremophilic prokaryotes, probably of the Domain Archaea, Kingdom Archaebacteria. Bacteria are prokaryotic cells (no

More information

Lecture 13 More Surface Reactions on Mineral Surfaces. & Intro to Soil Formation and Chemistry

Lecture 13 More Surface Reactions on Mineral Surfaces. & Intro to Soil Formation and Chemistry Lecture 13 More Surface Reactions on Mineral Surfaces & Intro to Soil Formation and Chemistry 3. charge transfer (e.g., ligand/donor sorption): Sorption involves a number of related processes that all

More information

FRIENDLY FUNGI IN THE GARDEN

FRIENDLY FUNGI IN THE GARDEN FRIENDLY FUNGI IN THE GARDEN All the Little Creatures We Depend On For Life Michele Stanton Extension Agent for Horticulture Kenton County, KY WHAT WE LL TALK ABOUT TODAY Who lives in your soil What roles

More information

Principles of Ecology

Principles of Ecology Principles of Ecology What is Ecology? Ecology is the study of interactions that occur between organisms and their environment Biosphere Recall that the biosphere includes all living things In order to

More information

Plant Function Chs 38, 39 (parts), 40

Plant Function Chs 38, 39 (parts), 40 Plant Function Chs 38, 39 (parts), 40 KEB no office hour on Monday 23 March 10 March 2009 ECOL 182R UofA K. E. Bonine Videos: 39.3, 34.3, 39.1, 34.1 Web Browser Open 1 Video 39.3 Pollination of a night-blooming

More information

SGCEP SCIE 1121 Environmental Science Spring 2012 Section Steve Thompson:

SGCEP SCIE 1121 Environmental Science Spring 2012 Section Steve Thompson: SGCEP SCIE 1121 Environmental Science Spring 2012 Section 20531 Steve Thompson: steventhompson@sgc.edu http://www.bioinfo4u.net/ 1 Ecosystems, energy flows, and biomes Today s going to be a bit different.

More information

Communities Structure and Dynamics

Communities Structure and Dynamics Communities Structure and Dynamics (Outline) 1. Community & niche. 2. Inter-specific interactions with examples. 3. The trophic structure of a community 4. Food chain: primary, secondary, tertiary, and

More information

Energy Flow Through an Ecosystem

Energy Flow Through an Ecosystem Energy Flow Through an Ecosystem Photosynthesis Cellular Respiration Food Chains Food Webs What is the process that uses the sun s energy to make simple sugars? Plants in Action Begins with the SUN Photosynthesis

More information

1 Name. ECOSYSTEMS: THE ROLE OF ABIOTIC FACTORS from the series Biology: The Science of Life Pre-Test

1 Name. ECOSYSTEMS: THE ROLE OF ABIOTIC FACTORS from the series Biology: The Science of Life Pre-Test 1 Pre-Test Directions: Answer each of the following either true or false: 1. In ecosystems, non-living (abiotic) factors usually have insignificant effects on living things. True False 2. Carbon dioxide

More information

Wednesday, October 10 th

Wednesday, October 10 th Wednesday, October 10 th Page 13a (left side) / Place Lab on table Objective: We will describe the different types of weathering and erosion and identify evidence of each type. Warm-up: 1. What is weathering?

More information

S Illustrate and explain how carbon, nitrogen, and oxygen are cycled through an ecosystem.

S Illustrate and explain how carbon, nitrogen, and oxygen are cycled through an ecosystem. Biogeochemical Cycles S2-1-01 Illustrate and explain how carbon, nitrogen, and oxygen are cycled through an ecosystem. Biogeochemical Cycles Let s take a closer look at the interactions between LIVING

More information

ET Life #17. Today: Reminders: Energy of Life. Paper Proposal Due Friday First Mid-term Next Monday

ET Life #17. Today: Reminders: Energy of Life. Paper Proposal Due Friday First Mid-term Next Monday ET Life #17 Today: Energy of Life Reminders: Paper Proposal Due Friday First Mid-term Next Monday Origin of Life: Summary 1. Early Organic Molecules 2. Complex organics developed (mineral templates?).

More information

A word of caution about a little knowing Lab organisms limit the view of the world of microbiology

A word of caution about a little knowing Lab organisms limit the view of the world of microbiology Diversity The world of living things (Figure from Madigan et al. 2002) Microbes in all three domains Two of the domains are exclusively prokaryotic and microbial The third contains both unicellular and

More information

Review Quizzes Chapters 45-50

Review Quizzes Chapters 45-50 Review Quizzes Chapters 45-50 1) Which of the following is a non-density-dependent factor that affects a population? a. spread of disease b. space c. earthquake d. food e. mating and reproduction 1) Which

More information

Chapter 19 Notes Kingdoms Archaebacteria andeubacteria

Chapter 19 Notes Kingdoms Archaebacteria andeubacteria Chapter 19 Notes Kingdoms Archaebacteria andeubacteria All bacteria are Prokaryotic. This means that they are organisms that are one-celled and do not contain a nucleus or other membrane bound organelles.

More information

Chapter 03 Lecture Outline

Chapter 03 Lecture Outline Chapter 03 Lecture Outline William P. Cunningham University of Minnesota Mary Ann Cunningham Vassar College Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1

More information

Unit 1 Ecology Test Gifted

Unit 1 Ecology Test Gifted Unit 1 Ecology Test Gifted Form: B CLASS SET - PLEASE DO NOT WRITE ON THIS TEST! 1. Decomposers are important in the food chain because they 3. A marine food web is shown below. A. produce their own food

More information

Unit 1 Ecology Test Gifted

Unit 1 Ecology Test Gifted Unit 1 Ecology Test Gifted Form: A CLASS SET - PLEASE DO NOT WRITE ON THIS TEST! 1. The picture below shows an energy pyramid. 3. Lightning from a thunderstorm strikes a tree that falls to the forest floor

More information

Anaerobic processes. Annual production of cells a -1 Mean generation time in sediments

Anaerobic processes. Annual production of cells a -1 Mean generation time in sediments Anaerobic processes Motivation Where are they? Number of prokaryotes on earth 4-6 * 10 30 Cells in open ocean 1.2 * 10 29 in marine sediments 3.5 * 10 30 in soil 2.6 * 10 29 sub-terrestrial 0.5 2.5 * 10

More information

Volume Composition of a Desirable Surface Soil

Volume Composition of a Desirable Surface Soil Soil Chemistry Volume Composition of a Desirable Surface Soil 50% pore space 25% air 45 to 48% mineral matter 50% solid material 25% water 2 to 5% organic matter Soil Organic Matter Soil organic matter:

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore FO O D CHAIN For the complete encyclopedic entry with media resources,

More information

Monument Valley, Utah. What weathering processes contributed to the development of these remarkable rock formations? Weathering Mechanisms

Monument Valley, Utah. What weathering processes contributed to the development of these remarkable rock formations? Weathering Mechanisms Monument Valley, Utah. What weathering processes contributed to the development of these remarkable rock formations? Weathering Includes Physical, Chemical, Biological processes WEATHERING CHAPTER 7 Weathering

More information

Success Criteria Life on Earth - National 5

Success Criteria Life on Earth - National 5 Success Criteria Life on Earth - National 5 Colour the box at the side of each objective: RED I don t know much about this or am confused by it. AMBER I know a bit about this but do not feel I know it

More information

What is physical treatment? What is chemical treatment?

What is physical treatment? What is chemical treatment? What is physical treatment? What is chemical treatment? Physical : having material existence and subject to the laws of nature. Chemical : any material used in, or produced by chemistry. Chemistry : is

More information

ESCI 1 Lab #2: Plant Communities and extinction

ESCI 1 Lab #2: Plant Communities and extinction ESCI 1 Lab #2: Plant Communities and extinction Check in Review from Lab 1 Bay area maps Tree Keying ESA group activity Lecture : Species extinction and conservation Check out Field Trip #1: Henry Cowell

More information

Types of Consumers. herbivores

Types of Consumers. herbivores no energy = no life Types of Consumers herbivores herbivore us vegetation to swallow or devour Types of Consumers herbivores the organisms that eat plants carnivores carnivore us flesh to swallow or devour

More information

Downloaded from

Downloaded from Nutrition in Plants 1.If the pitcher plant is green and carries out photosynthesis then why does it feed on insects? 2.Which of the following part/s of a desert plant perform the function of photosynthesis?

More information

All Living Things Share Common Characteristics 1. Living Things are Composed of Cells: Single-cell organisms have everything they need to be self-sufficient. In multicellular organisms, some cells do only

More information

HOMEWORK PACKET UNIT 2A. Part I: Introduction to Ecology

HOMEWORK PACKET UNIT 2A. Part I: Introduction to Ecology CP Biology Name Date Period HOMEWORK PACKET UNIT 2A Part I: Introduction to Ecology Name Class Date 3.1 What Is Ecology? Studying Our Living Planet 1. What is ecology? 2. What does the biosphere contain?

More information

ECOLOGY: the scientific study of interactions of organisms with each other and with their environment

ECOLOGY: the scientific study of interactions of organisms with each other and with their environment 1 Biology Unit 9 Ecology 9:1 Populations SPECIES: organisms of the same kind which are able to interbreed and reproduce Example: Horse + Donkey Mule (64 + 62 63 chromosomes and cannot produce offspring)

More information