Expression Patterns of OsPIL11, a Phytochrome-Interacting Factor in Rice, and Preliminary Analysis of Its Roles in Light Signal Transduction

Size: px
Start display at page:

Download "Expression Patterns of OsPIL11, a Phytochrome-Interacting Factor in Rice, and Preliminary Analysis of Its Roles in Light Signal Transduction"

Transcription

1 Rice Science, 2012, 19(4): Copyright 2012, China National Rice Research Institute Published by Elsevier BV. All rights reserved Expression Patterns of OsPIL11, a Phytochrome-Interacting Factor in Rice, and Preliminary Analysis of Its Roles in Light Signal Transduction LI Li 1, 2, PENG Wei-feng 1, 2, LIU Qian-qian 1, 3, ZHOU Jin-jun 1, LIANG Wei-hong 2, XIE Xian-zhi 1 ( 1 High-Tech Research Center, Shandong Academy of Agricultural Sciences, Ji nan , China; 2 College of Life Science, Henan Normal University, Xinxiang , China; 3 College of Life Sciences, Shandong Normal University, Ji nan , China) Abstract: The expression patterns of OsPIL11, one of six putative phytochrome-interacting factors, were analyzed in different organs of transgenic tobacco (Nicotiana tabacum). The expression of OsPIL11 was organ-specific and was regulated by leaf development, abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA). To further explore the role of OsPIL11 in plant light signal transduction, a plant expression vector of OsPIL11 was constructed and introduced into tobacco. When grown under continuous red light, OsPIL11-overexpressed transgenic tobacco exhibited shorter hypocotyls and larger cotyledons and leaves compared to wild-type seedlings. When grown under continuous far-red light, however, transgenic and wild-type seedlings showed similar phenotypes. These results indicate that OsPIL11 is involved in red light induced de-etiolation, but not in far-red light induced de-etiolation in transgenic tobacco, which lays the foundation for dissecting the function of OsPIL11 in phytochrome-mediated light signal transduction in rice. Key words: rice; phytochrome-interacting factor; transgenic tobacco; light signal transduction For higher plants, light is not only a source of energy for photosynthesis, but also one of key environmental signals that regulate plant growth and development. Plant monitors external light conditions including the wavelength, intensity and photoperiod of incident light and makes light-specific adjustments in physiological and developmental processes to adapt the changing environment (Takano et al, 2005, 2009; Franklin and Quail, 2010). To accomplish this vital task, plants use an array of photoreceptors that includes phytochromes (phy), cryptochromes, phototropins and several others. Among them, phytochrome family mainly perceives and responds to the red and far-red light regions, and is involved in controlling multiple responses in plant life cycle. Phytochromes exist in a biologically inactive red lightabsorbing (Pr) form which localizes in cytoplasm in the etiolated seedlings. Red light induces conformational shift of the Pr form to a biologically active far-red light-absorbing (Pfr) form. Following conversion to the Pfr form, phytochromes translocate to the nucleus and interact with other proteins (Rockwell et al, 2006; Kevei et al, 2007; Franklin and Quail, 2010). Among phytochrome associated proteins, phytochrome-interacting factors (PIFs) are central player in phytochromemediated signal transduction (Zhao, 2009; Leivar and Quail, 2011). PIFs, as a small subset of the basic helix-loop-helix (bhlh) transcription factor superfamily, Received: 10 April 2012; Accepted: 16 July 2012 Corresponding authors: XIE Xian-zhi (xzhixie2010@163.com); LIANG Wei-hong (liangwh226@henannu.edu.cn) have been found to bind to the G-box motif in the promoter region of light-regulated genes. Thus, PIFs constitute a signal transfer pathway from photoactivated phytochromes to the light-regulation of gene expression that controls photomorphogenesis in plants. PIF3, the foundation member of the PIF subset in Arabidopsis, was identified in yeast two-hybrid (Y2H) screen using the C-terminal domain of phyb as bait (Ni et al, 1998). Subsequently, it was shown, using Y2H and in vitro coimmunoprecipitation (co-ip) assays that PIF3 interacts with the C-terminal domains of both phya and phyb from Arabidopsis and rice. Moreover, it was shown that PIF3 selectively interacts with the full-length biologically active Pfr forms of both phya and phyb (Ni et al, 1999; Martinez-Garcia et al, 2000; Zhu et al, 2000). In Arabidopsis, PIF family is composed of at least eight members, PIL1, PIF1/PIL5, PIF3, PIF4, PIF5/PIL6, PIF6/PIL2, PIF7 and PIL8/PIF8. Except PIL1, the other PIFs can interact with photoactivated phyb, whereas only PIF1 and PIF3 can interact with photoactivated phya (Zhu et al, 2000; Huq et al, 2004; Leivar and Quail, 2011). These data suggest that PIFs might interact with multiple phytochromes with differential affinities and might transduce light signals with varying efficiency to control gene expression (Castillon et al, 2007). Nakamura et al (2007) identified six candidate genes encoding PIFs, designated OsPIL11 to OsPIL16, via homologous analysis in rice genome. However, the expression characteristics of these genes and their roles in phytochrome-mediated light signal transduction have not been comprehensively investigated yet. In

2 264 Rice Science, Vol. 19, No. 4, 2012 this study, we analyzed the expression patterns of OsPIL11 as well as the roles of OsPIL11 in seedling de-etiolation in transgenic tobacco. Our results reveal that the expression of OsPIL11 was organ-specific and was regulated by leaf development, abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA). Moreover, OsPIL11 is involved in red light-induced de-etiolation, but not in far-red lignt-induced de-etiolation in transgenic tobacco. MATERIALS AND METHODS Plant materials Rice (Oryza sativa L. cv. Nipponbare) and tobacco (Nicotiana tabacum, cv. Petit Havana SR) were used. Plant growth Seeds of wild-type rice were surface-sterilized in 70% ethanol for 30 s and then in 5% NaClO for 20 min. The seeds were then rinsed six times with sterile double-distilled water, placed on 0.4% agar medium in glass pots and grown for 7 d at 28 C in an artificial climate box (RXZ-280B; Jiangnan Company, Ningbo, China). Seedlings were then transferred to soil and grown in a greenhouse to the six-leaf stage with natural light conditions and controlled temperatures (28 C day/23 C night). Roots, shoots, old leaves (the second leaf and the third leaf) and new leaves (the sixth leaf) were harvested for examining organ-specificity of OsPIL11 gene. For examining the effects of light on OsPIL11 expression, the seedlings were grown in continuous darkness for 7 d, and then transferred to white light (7200 lux, 28 C). The above-ground parts were harvested at 0, 2, and 12 h after exposed to white light. For ABA treatment, the most uniformly germinated seeds were sown in a 96-well plate with the bottom removed. The plate was floated in 1/2 MS culture solution in a growth chamber under controlled photoperiodic conditions (14 h light, 28 C/10 h dark, 23 C). Three-leaf-stage seedlings were transferred to culture solution containing 100 mol/l cis-trans ABA (Sigma) for different time points before analyzing OsPIL11 mrna levels. For JA and SA treatments, surface-sterilized seeds of wild-type rice were grown for 8 d in the 0.4% agarose containing 2 µmol/l JA, 20 µmol/l JA, 100 µmol/l SA and 400 µmol/l SA, respectively, under continuous light conditions. The above-ground parts were harvested for examining the effects of JA and SA on OsPIL11 gene expression. For analyzing the OsPIL11 transcripts in transgenic tobacco, the transgenic seedlings were grown in soil till adult plants. Young leaves in adult transgenic tobacco were harvested and frozen in liquid nitrogen. Expression pattern of OsPIL11 Total RNAs were isolated from the harvested leaves using the RNAiso reagent (TaKaRa, Dalian, China) according to the manufacturer s instructions. DNaseItreated RNA was subjected to reverse transcription- PCR using High Fidelity Primescript RT-PCR Kit (TaKaRa, Dalian, China). RT-PCR products were electrophorisized in 2.0% agarose. The rice ubiquitin gene (OsUBQ, AK119731) was used as an internal control to quantify the relative transcript level of each target gene. For real-time PCR, first-strand cdnas were synthesized from DNase I-treated total RNA using PrimeScript RT Enzyme Mix I (TaKaRa), according to the manufacturer s instructions. Quantitative PCR was performed in an ABI 7000 Real-time PCR System (Applied Biosystems) using SYBR Premix Ex Taq (TaKaRa). Each reaction contained 10 µl of 2 SYBR Premix Ex Taq (TaKaRa), 2.0 µl of cdna samples, and 0.2 µmol/l gene-specific primer pairs (Table 1) in a final volume of 20 µl. The PCR thermal cycle used was as follows: denaturation at 95 C for 30 s, and 40 cycles of at 95 C for 5 s and at 60 C for 31 s. Three Table 1. Primer pairs and PCR conditions used in this study. Gene Accession number Purpose Primer sequence (5-3 ) OsPIL11 Os12g RT-PCR F1: GCTCCAGCTACAGATGATGTGG R1: GCTGCTGCTGAAGGTTCTTGG Real-time PCR qf1: CAACTAGCATCTCCTCCTCTACTTG qr1: CTCTTTCTCTTTGAGCTGAGATGAC Expression vector construction F2: ATGGATCCATGAACCAGTTCGTCCC R2: ATACTAGTCAGGAGTCAGCGGCTG NtActin AB RT-PCR F: TCCGGCGACGGTGTCTCACA R: CGCGGACAATTTCCCGTTCAGC OsUBQ AK RT-PCR F: ATCACGCTGGAGGTGGAGT R: AGGCCTTCTGGTTGTAGACG OsUBQ AK Real-time PCR qf: ACCACTTCGACCGCCACTACT qr: ACGCCTAAGCCTGCTGGTT Annealing temperature (ºC) Cycle number

3 LI Li, et al. Expression Patterns of OsPIL11 and Its Roles in Light Signal Transduction 265 replicate biological experiments were performed. Plant expression vector construction and tobacco transformation For construction of the OsPIL11-overexpression vector, the ORF of OsPIL11 was amplified by PCR with PrimeSTAR HS DNA Polymerase (TaKaRa) from rice leaf cdna. Primer pairs used for amplification were F2: 5 -ATGGATCCATGAACCAGTTCGTCCC-3 (BamH I site underlined) and R2: 5 -ATACTAGTCAGGAGTC AGCGGCTG-3 (Spe I site underlined). The PCR product was digested with BamH I and Spe I and was subcloned into the p1390-ubi vector between the maize ubiquitin promoter and the nos terminator. This plasmid was introduced into Agrobacterium tumefaciens strain EHA105 (Hood et al, 1993) by electrotransformation. Tobacco (Nicotiana tabacum cv. Petit Havana SR) was transformed via the agroinfection methods (Horsch et al, 1985). Measurements of plant For characterizing the de-etiolation in transgenic tobacco, sterilized seeds of transgenic tobacco were sown onto 1/2 MS medium. After incubation at 4 C for 3 d, the seeds were irradiated with white light for 3 h and then grown in continuous darkness, red light, or far-red light at 26 C for 10 d. Hypocotyl length, cotyledon and leaf widths were measured. Statistical analysis was performed using Student s t-test. Fluence rates were 150 µmol/(m 2 s) for red light and 29 µmol/(m 2 s) for far-red light. RESULTS Expression patterns of OsPIL11 gene To better understand the function of OsPIL11, we examined the transcript levels of OsPIL11 in different organs using real-time PCR. OsPIL11 mrna levels accumulated to relatively high levels in leaves as compared in the roots and stems (Fig. 1-A). It is deduced that OsPIL11 probably plays important roles in light signal transduction in rice leaves. In addition, OsPIL11 expressed higher in the new leaves than in the old leaves (Fig. 1-A), suggesting that the expression of OsPIL11 gene is regulated by rice development. To examine the effects of light on OsPIL11 gene expression, we determined the transcript levels of OsPIL11 in seedlings grown for 7 d in continuous darkness (0 h) or for 7 d in the dark followed by either 2 h or 12 h in white light. As shown in Fig. 1-B, 2 h-white light irradiation obviously repressed the expression of OsPIL11 gene, while 12 h-white light irradiation caused dramatic decrease of OsPIL11 Fig. 1. Expression patterns of OsPIL11 gene in rice seedlings. A, Organ-specificity of OsPIL11 gene expression. Real-time PCR analysis of the transcript levels of OsPIL11 gene in roots (R), stems (S), old leaves (OL) and new leaves (NL) in the wild-type plants at the 6-leaf stage. B, Effects of white light on the transcript levels of OsPIL11 gene. RT-PCR analysis of the transcript levels of OsPIL11 gene in the wild-type seedlings grown in the dark for 7 d or in the dark but irradiated with 2 h and 12 h of continuous white light. C, Effects of exogenous abscisic acid (ABA) on transcript levels of OsPIL11 gene. The wild-type seedlings at the 3-leaf stage were incubated in 100 µmol/l ABA for 2 h and 6 h. The transcript levels of OsPIL11 gene were compared before and after ABA treatment by real-time PCR. D, Effects of exogenous jasmonic acid (JA) and salicylic acid (SA) on the transcript levels of OsPIL11 gene. Wild-type seedlings were grown in 0.4% agar medium or in the medium including different concentrations of JA (2 and 20 µmol/l) or SA (100 and 400 µmol/l) for 7 d. RT-PCR was used to analyze the transcript levels of the OsPIL11 gene. expression in rice seedlings. In the previous study, we observed that phytochromes are involved in JA, SA and ABA pathways in rice (Xie et al, 2011). Thus, it is worth investigating whether JA, SA and ABA affect the expression of OsPIL11 gene. We compared the effects of exogenous ABA, JA and SA on OsPIL11 mrna levels. OsPIL11 mrna levels were decreased upon 100 mol/l ABA treatment for 6 h (Fig. 1-C), whereas exogenous JA and SA treatments slightly enhanced the accumulation of OsPIL11 mrna (Fig. 1-D). Therefore, the expression of OsPIL11 gene was regulated by hormones in rice. Characterization of photomorphogenesis in transgenic tobacco overexpressing OsPIL11 gene To investigate the roles of OsPIL11 in light signal transduction, we generated transgenic tobacco plants overexpressing OsPIL11 (Fig. 2-A). Three independent T3 lines (#5, #7 and #15) were used for further phenotypic characterizations based on their expression levels (Fig. 2-B). To characterize photomorphogenesis in transgenic tobacco, we compared the hypocotyl lengths of non-transgenic tobacco (SR) and OsPIL11- overexpression lines grown either in darkness or under red or far-red light. In darkness, OsPIL11-overexpression lines and SR exhibited similar hypocotyl lengths (Fig.

4 266 Rice Science, Vol. 19, No. 4, 2012 Fig. 2. Ectopic expression of OsPIL11 affects hypocotyl growth in transgenic tobacco. A, Diagram of the OsPIL11-overexpression vector. Expression of the OsPIL11 gene was driven by maize ubiquitin (Pubi) promoter. B, RT-PCR analysis of the transcript levels of OsPIL11 in leaves of transgenic and wild-type tobacco. C, Hypocotyl lengths of transgenic and wild-type tobacco grown under different light conditions. Wild-type and transgenic seedlings were grown under continuous dark (Dc), red light (Rc) and far-red light (FRc) for 10 d. Error bars indicate the standard error (SE). The means ± SE obtained from at least 30 seedlings were plotted. Three different transgenic lines (#5, #7 and #15) and wild-type tobacco (SR) were analyzed. Asterisk (**) denotes significant differences (P < 0.01) according to the t-test. 2-C), suggesting that OsPIL11 did not affect the skotomorphogenesis in tobacco. Continuous red light inhibited hypocotyl elongation in both transgenic tobacco and SR, whereas the inhibitory effects triggered by red light were more obvious in OsPIL11-overexpression lines than in SR (Fig. 2-C). These results suggest that OsPIL11 positively regulate the red light induced inhibition of hypocotyl growth in tobacco. Continuous far-red light similarly inhibited the hypocotyl growth in OsPIL11-overexpression lines and in SR (Fig. 2-C), which suggests OsPIL11 is likely not to be involved in the far-red light induced inhibition of hypocotyl growth in tobacco. In Arabidopsis, de-etiolation is also characterized by the expansion of cotyledons. Thus, we compared the width of cotyledon as well as the first leaf in OsPIL11-overexpression transgenic tobacco and SR. As shown in Fig. 3-A, three transgenic tobacco lines had significantly larger cotyledon and the first leaf than SR. These results reveal that OsPIL11 positively regulate de-etiolation responses in tobacco. DISCUSSION At present, Arabidopsis PIF family was found to contain at least eight members, PIL1, PIF1/PIL5, PIF3, PIF4, PIF5/PIL6, PIF6/PIL2, PIF7 and PIL8/PIF8 Fig. 3. Ectopic expression of OsPIL11 affects cotyledon and the first leaf sizes in transgenic tobacco. A, Visual phenotypes of wild-type and transgenic tobacco seedlings grown under continuous red light for 10 d. B and C, Effects of the continuous red light on the cotyledon (B) and leaf (C) width. Wild-type and transgenic tobacco seeds were germinated and grown in the 1/2 MS medium under continuous red light. Error bars indicate the standard error (SE). The means ± SE obtained from at least 30 seedlings were plotted. Three independent transgenic lines (#5, #7 and #15) and wild-type tobacco (SR) were analyzed. Asterisks (*) and (**) denote significant differences (P < 0.05 and P < 0.01, respectively) according to the t-test. (Leivar and Quail, 2011). Sequence alignments showed that all of these PIFs share in common a conserved sequence motif at their N-terminal regions, designated as the active phytochrome-binding (APB) motif (active phytochrome-binding protein, also named as PIL motif). Four invariant amino acid residues (ELxxxxGQ) common in all PIFs are critical determinants of the APB motif. This motif is necessary for binding to the biologically active Pfr form of phyb (Khanna et al, 2004). Nakamura et al (2007) identified six candidate genes encoding putative PIFs via homologous analysis in rice genome, designated as OsPIL11 to OsPIL16. These six putative PIF factors contain APB motif at their N-termini, suggesting the possible interaction between PIF and phytochromes in rice (Nakamura et al, 2007). In this study, the expression of OsPIL11 gene showed organ-specificity and was regulated by rice development (Fig. 1). Thus, it is deduced that OsPIL11 acts in some developmental stages or in different organs in rice. Nakamura et al (2007) could not detect OsPIL11 transcripts using Northern blot hybridization, probably due to the low mrna abundance in rice cell. In this study, we observed the light-induced repression of OsPIL11 gene expression using RT-PCR analysis (Fig. 1-B), which is similar to the expression pattern of OsPIL5 (Nakamura et al, 2007). In addition, our results suggest that exogenous ABA repressed the

5 LI Li, et al. Expression Patterns of OsPIL11 and Its Roles in Light Signal Transduction 267 expression of OsPIL11, whereas JA and SA induced the expression of OsPIL11 (Fig. 1-C and -D). Based on these results, we deduce that OsPIL11 might function in multiple hormone signaling pathways. Regulation of Arabidopsis PIF genes by various hormones was searched in Genevestigator database. ABA induced the expression of PIF3 gene, but repressed the PIF1 expression, similar to the effect of ABA on OsPIL11 gene expression in rice. However, SA and JA did not affect the expression of Arabidopsis PIF genes (Zimmermann et al, 2004; Castillon et al, 2007). Recently, the relation between ABA pathway and PIF1 were comprehensively dissected. In Arabidopsis, PIF1 activates ABA anabolic genes and represses ABA catabolic genes, resulting in the increase of ABA level. However, light signals perceived by phytochromes (mainly phyb) induce the PIF1 degradation to decrease ABA biosynthesis (Kim et al, 2008; Shen et al, 2008). Based on the role of PIF1 in ABA pathway, we hypothesize that deficiency of phytochromes probably causes ABA accumulation by up-regulating OsPIL11. However, it is necessary to test this hypothesis by analyzing the transgenic rice plants either with over-expressed OsPIL11 or with reduced OsPIL11. In addition, we observed that phya- and phyb-mediated light signals regulate JA and SA pathways (Xie et al, 2011). In the future, we will further analyze whether OsPIL11 is involved in the phytochrome-regulated JA and SA pathways. Light signals initiate a variety of de-etiolation responses to promote photoautotrophic survival in Arabidopsis, which include inhibition of hypocotyl elongation and expansion of cotyledons. To analyze the roles of OsPIL11 in light transduction, we produced the transgenic tobacco with over-expressed OsPIL11. Hypocotyl length and cotyledon size were analyzed in transgenic tobacco seedlings grown under red and far-red light. Under continuous red light, transgenic tobacco seedlings exhibited shortened hypocotyl length and enlarged cotyledon and the first leaves, compared with non-transgenic tobacco seedlings (Fig. 3). These results suggested that OsPIL11 positively regulate the red light-induced de-etiolation responses in transgenic tobacco. However, these phenotypes are inconsistent with the report by Nakamura et al (2007), who transformed Arabidopsis plants (ecotype Col) with OsPIL11 gene under the control of the strong cauliflower mosaic virus (CaMV) 35S promoter. Transgenic Arabidopsis seedlings were grown under 8 h light/16 h dark cycle conditions for 5 d and exhibited longer hypocotyl than wild-type Arabidopsis, suggesting the negative regulation of OsPIL11 in Arabidopsis. This inconsistence is probably due to the different growth conditions and light fluence. The continuous monochromatic lights with strong light fluence rate [(150 mol/(m 2 s) when reaching plants] were used in our study. In contrast, the day-night photoperiodic conditions in white light of relative low fluence rate was used in the study (Nakamura et al, 2007) in which authors referred to light resources as 15 to 40 mol/(m 2 s) from the top, 50 to 90 mol/(m 2 s) from the side, and did not point out the fluence rate of light reaching plants. Therefore, we will examine the phenotypes in transgenic tobacco grown under red light with different light intensities in the future. In addition, it has also been reported that some of Arabidopsis PIFs negatively regulate seedling deetiolation response, but positively regulate chloroplast development and accumulation of anthocyanin (Kim et al, 2003). For example, pif3 and pif4 mutants showed shortened hypocotyl and expanded cotyledon (Huq and Quail, 2002; Kim et al, 2003; Monte et al, 2004), but less chlorophyll content (Kim et al, 2003). Noticeably, transgenic tobacco and non-transgenic tobacco seedlings had similar phenotypes when grown under continuous far-red light (Fig. 2-C), suggesting that OsPIL11 is not probably involved in far-red light regulated photomorphogenesis. Thus, it is worth doubting whether OsPIL11 physically interact with phya. Moreover, how does OsPIL11 act in photomorphogenesis in rice? Therefore, the physical interaction between phytochromes and OsPIL11 and the photomorphogenic characters of transgenic rice should be analyzed in the future experiments. ACKNOWLEDGEMENTS This work was partly supported by grants from the Chinese National Natural Science Foundation (Grant No ), the Chinese Ministry of Agriculture (Grant No. 2009ZX B), and the Shandong Natural Science Funds for Distinguished Young Scholar, China (Grant No. JQ200911). REFERENCES Castillon A, Shen H, Huq E Phytochrome interacting factors: Central players in phytochrome-mediated light signaling networks. Trends Plant Sci, 12: Franklin K A, Quail P H Phytochrome functions in Arabidopsis development. J Exp Bot, 61: Hood E E, Gelvin S B, Melchers L S, Hoekema A New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res, 2: Horsch R B, Fry J E, Hoffmann N L, Eichholtz D, Rogers S G, Fraley R T A simple and general method for transferring genes into plants. Science, 227:

6 268 Rice Science, Vol. 19, No. 4, 2012 Huq E, Al-Sady B, Hudson M, Kim C, Apel K, Quail P H PHYTOCHROME-INTERACTING FACTOR 1 is a critical bhlh regulator of chlorophyll biosynthesis. Science, 305: Huq E, Quail P H PIF4, a phytochrome-interacting bhlh factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J, 21: Kevei E, Schafer E, Nagy F Light-regulated nucleocytoplasmic partitioning of phytochromes. J Exp Bot, 58: Khanna R, Huq E, Kikis E A, Al-Sady B, Lanzatella C, Quail P H A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors. Plant Cell, 16: Kim D H, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell, 20: Kim J, Yi H, Choi G, Shin B, Song P S, Choi G Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell, 15: Leivar P, Quail P H PIFs: Pivotal components in a cellular signaling hub. Trends Plant Sci, 16: Martinez-Garcia J F, Huq E, Quail P H Direct targeting of light signals to a promoter element-bound transcription factor. Science, 288: Monte E, Tepperman J M, Al-Sady B, Kaczorowski K A. Alonso J M, Ecker J R, Li X, Zhang Y L, Quail P H The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proc Natl Acad Sci USA, 101: Nakamura Y, Kato Y, Yamashino Y, Murakami M, Mizuno T Characterization of a set of phytochrome-interactingfacor-like bhlh proteins in Oryza sativa. Biosci Biotechnol Biochem, 71: Ni M, Tepperman J M, Quail P H PIF3, a phytochrome- interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell, 95: Ni M, Tepperman J M, Quail P H Binding of phytochrome B to its nuclear signaling partner PIF3 is reversibly induced by light. Nature, 400: Rockwell N C, Su Y S, Lagarias J C Phytochrome structure and signaling mechanisms. Ann Rev Plant Biol, 57: Shen H, Zhu L, Castillon A, Majee M, Downie B, Huq E Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. Plant Cell, 20: Takano M, Inagaki N, Xie X Z, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell, 17: Takano M, Inagaki N, Xie X Z, Kiyota S, Baba-Kasai A, Tanabata T, Shinomura T Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proc Nat Acad Sci USA, 106: Xie X Z, Xue Y J, Zhou J J, Zhang B, Chang H, Takano M Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Mol Plant, 4: Zhao X L Phytochrome-interacting factors (PIFs) in plant. Plant Physiol Comm, 45: (in Chinese) Zhu Y X, Tepperman J M, Fairchild C D, Quail P H Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3. Proc Natl Acad Sci USA, 97: Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol, 136:

Positive Regulation of Phytochrome B on Chlorophyll Biosynthesis and Chloroplast Development in Rice

Positive Regulation of Phytochrome B on Chlorophyll Biosynthesis and Chloroplast Development in Rice Rice Science, 2013, 20(4): 243 248 Copyright 2013, China National Rice Research Institute Published by Elsevier BV. All rights reserved DOI: 10.1016/S1672-6308(13)60133-X Positive Regulation of Phytochrome

More information

Phytochromes are Involved in Elongation of Seminal Roots and Accumulation of Dry substances in Rice Seedlings

Phytochromes are Involved in Elongation of Seminal Roots and Accumulation of Dry substances in Rice Seedlings Rice Science, 2013, 20(1): Copyright 2012, China National Rice Research Institute Published by Elsevier BV. All rights reserved Phytochromes are Involved in Elongation of Seminal Roots and Accumulation

More information

Phytochromes are Involved in Elongation of Seminal Roots and Accumulation of Dry Substances in Rice Seedlings

Phytochromes are Involved in Elongation of Seminal Roots and Accumulation of Dry Substances in Rice Seedlings Rice Science, 2013, 20(2): 88 94 Copyright 2013, China National Rice Research Institute Published by Elsevier BV. All rights reserved DOI: 10.1016/S1672-6308(13)60115-8 Phytochromes are Involved in Elongation

More information

Analysis of regulatory function of circadian clock. on photoreceptor gene expression

Analysis of regulatory function of circadian clock. on photoreceptor gene expression Thesis of Ph.D. dissertation Analysis of regulatory function of circadian clock on photoreceptor gene expression Tóth Réka Supervisor: Dr. Ferenc Nagy Biological Research Center of the Hungarian Academy

More information

THE ROLE OF THE PHYTOCHROME B PHOTORECEPTOR IN THE REGULATION OF PHOTOPERIODIC FLOWERING. AnitaHajdu. Thesis of the Ph.D.

THE ROLE OF THE PHYTOCHROME B PHOTORECEPTOR IN THE REGULATION OF PHOTOPERIODIC FLOWERING. AnitaHajdu. Thesis of the Ph.D. THE ROLE OF THE PHYTOCHROME B PHOTORECEPTOR IN THE REGULATION OF PHOTOPERIODIC FLOWERING AnitaHajdu Thesis of the Ph.D. dissertation Supervisor: Dr. LászlóKozma-Bognár - senior research associate Doctoral

More information

Electromagenetic spectrum

Electromagenetic spectrum Light Controls of Plant Development 1 Electromagenetic spectrum 2 Light It is vital for photosynthesis and is also necessary to direct plant growth and development. It acts as a signal to initiate and

More information

Figure 18.1 Blue-light stimulated phototropism Blue light Inhibits seedling hypocotyl elongation

Figure 18.1 Blue-light stimulated phototropism Blue light Inhibits seedling hypocotyl elongation Blue Light and Photomorphogenesis Q: Figure 18.3 Blue light responses - phototropsim of growing Corn Coleoptile 1. How do we know plants respond to blue light? 2. What are the functions of multiple BL

More information

SOMNUS, a CCCH-Type Zinc Finger Protein in Arabidopsis, Negatively Regulates Light-Dependent Seed Germination Downstream of PIL5 W

SOMNUS, a CCCH-Type Zinc Finger Protein in Arabidopsis, Negatively Regulates Light-Dependent Seed Germination Downstream of PIL5 W The Plant Cell, Vol. 20: 1260 1277, May 2008, www.plantcell.org ª 2008 American Society of Plant Biologists SOMNUS, a CCCH-Type Zinc Finger Protein in Arabidopsis, Negatively Regulates Light-Dependent

More information

Functions of Phytochrome in Rice Growth and Development

Functions of Phytochrome in Rice Growth and Development Rice Science, 2011, 18(3): 231 237 Copyright 2011, China National Rice Research Institute Published by Elsevier BV. All rights reserved Functions of Phytochrome in Rice Growth and Development GU Jian-wei

More information

Figure 1. Identification of UGT74E2 as an IBA glycosyltransferase. (A) Relative conversion rates of different plant hormones to their glucosylated

Figure 1. Identification of UGT74E2 as an IBA glycosyltransferase. (A) Relative conversion rates of different plant hormones to their glucosylated Figure 1. Identification of UGT74E2 as an IBA glycosyltransferase. (A) Relative conversion rates of different plant hormones to their glucosylated form by recombinant UGT74E2. The naturally occurring auxin

More information

The role of the N-terminal NTE domain of PHYTOCHROMEs in red and far red light perception

The role of the N-terminal NTE domain of PHYTOCHROMEs in red and far red light perception The role of the N-terminal NTE domain of PHYTOCHROMEs in red and far red light perception Theses of the Ph.D. dissertation János Bindics Supervisor: Dr. Ferenc Nagy Hungarian Academy of Sciences Biological

More information

Photoreceptor Regulation of Constans Protein in Photoperiodic Flowering

Photoreceptor Regulation of Constans Protein in Photoperiodic Flowering Photoreceptor Regulation of Constans Protein in Photoperiodic Flowering by Valverde et. Al Published in Science 2004 Presented by Boyana Grigorova CBMG 688R Feb. 12, 2007 Circadian Rhythms: The Clock Within

More information

Life Science Journal 2014;11(9) Cryptochrome 2 negatively regulates ABA-dependent seed germination in Arabidopsis

Life Science Journal 2014;11(9)   Cryptochrome 2 negatively regulates ABA-dependent seed germination in Arabidopsis Cryptochrome 2 negatively regulates ABA-dependent seed germination in Arabidopsis Sung-Il Kim 1, Sang Ik Song 3, Hak Soo Seo 1, 2, 4 * 1 Department of Plant Science and Research Institute of Agriculture

More information

Plant Growth and Development

Plant Growth and Development Plant Growth and Development Concept 26.1 Plants Develop in Response to the Environment Factors involved in regulating plant growth and development: 1. Environmental cues (e.g., day length) 2. Receptors

More information

LECTURE 4: PHOTOTROPISM

LECTURE 4: PHOTOTROPISM http://smtom.lecture.ub.ac.id/ Password: https://syukur16tom.wordpress.com/ LECTURE 4: PHOTOTROPISM LECTURE FLOW 1. 2. 3. 4. 5. INTRODUCTION DEFINITION INITIAL STUDY PHOTROPISM MECHANISM PHOTORECEPTORS

More information

CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E

CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E The development of a plant the series of progressive changes that take place throughout its life is regulated in complex ways. Factors take part

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/9/452/ra106/dc1 Supplementary Materials for Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots Hyo-Jun Lee, Jun-Ho

More information

Light perception. phytochromes, cryptochromes, phototropins.

Light perception. phytochromes, cryptochromes, phototropins. Light perception phytochromes, cryptochromes, phototropins. all photoreceptors consist of proteins bound to light absorbing pigments i.e. chromophores. the spectral sensitivity of each photoreceptor depends

More information

CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE

CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE 1 CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE Photomorphogenesis and Light Signaling Photoregulation 1. Light Quantity 2. Light Quality 3. Light Duration 4. Light

More information

23-. Shoot and root development depend on ratio of IAA/CK

23-. Shoot and root development depend on ratio of IAA/CK Balance of Hormones regulate growth and development Environmental factors regulate hormone levels light- e.g. phototropism gravity- e.g. gravitropism temperature Mode of action of each hormone 1. Signal

More information

Genetics: Published Articles Ahead of Print, published on March 6, 2009 as /genetics

Genetics: Published Articles Ahead of Print, published on March 6, 2009 as /genetics Genetics: Published Articles Ahead of Print, published on March 6, 2009 as 10.1534/genetics.108.099887 Blue light induces degradation of the negative regulator Phytochrome Interacting Factor 1 to promote

More information

Flower Development Pathways

Flower Development Pathways Developmental Leading to Flowering Flower Development s meristem Inflorescence meristem meristems organ identity genes Flower development s to Flowering Multiple pathways ensures flowering will take place

More information

Nucleo-cytoplasmic partitioning of the plant photoreceptors phytochromes

Nucleo-cytoplasmic partitioning of the plant photoreceptors phytochromes seminars in CELL & DEVELOPMENTAL BIOLOGY, Vol. 11, 2000: pp. 505 510 doi: 10.1006/scdb.2000.0202, available online at http://www.idealibrary.com on Nucleo-cytoplasmic partitioning of the plant photoreceptors

More information

Red-Light-Dependent Interaction of phyb with SPA1 Promotes COP1 SPA1 Dissociation and Photomorphogenic Development in Arabidopsis

Red-Light-Dependent Interaction of phyb with SPA1 Promotes COP1 SPA1 Dissociation and Photomorphogenic Development in Arabidopsis Research Article Red-Light-Dependent Interaction of phyb with SPA1 Promotes COP1 SPA1 Dissociation and Photomorphogenic Development in Arabidopsis Xue-Dan Lu 1, Chuan-Miao Zhou 2, Peng-Bo Xu 3, Qian Luo

More information

Light-Independent Phytochrome Signaling Mediated by Dominant GAF Domain Tyrosine Mutants of Arabidopsis Phytochromes in Transgenic Plants W OA

Light-Independent Phytochrome Signaling Mediated by Dominant GAF Domain Tyrosine Mutants of Arabidopsis Phytochromes in Transgenic Plants W OA The Plant Cell, Vol. 19: 2124 2139, July 2007, www.plantcell.org ª 2007 American Society of Plant Biologists Light-Independent Phytochrome Signaling Mediated by Dominant GAF Domain Tyrosine Mutants of

More information

Characterisation of abiotic stress inducible plant promoters and bacterial genes for osmotolerance using transgenic approach

Characterisation of abiotic stress inducible plant promoters and bacterial genes for osmotolerance using transgenic approach Characterisation of abiotic stress inducible plant promoters and bacterial genes for osmotolerance using transgenic approach ABSTRACT SUBMITTED TO JAMIA MILLIA ISLAMIA NEW DELHI IN PARTIAL FULFILMENT OF

More information

Nature Genetics: doi: /ng Supplementary Figure 1. The phenotypes of PI , BR121, and Harosoy under short-day conditions.

Nature Genetics: doi: /ng Supplementary Figure 1. The phenotypes of PI , BR121, and Harosoy under short-day conditions. Supplementary Figure 1 The phenotypes of PI 159925, BR121, and Harosoy under short-day conditions. (a) Plant height. (b) Number of branches. (c) Average internode length. (d) Number of nodes. (e) Pods

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Supplementary Figure 1. HSP21 expression in 35S:HSP21 and hsp21 knockdown plants. (a) Since no T- DNA insertion line for HSP21 is available in the publicly available T-DNA collections,

More information

PLANTS modulate their growth and development in

PLANTS modulate their growth and development in Copyright Ó 29 by the Genetics Society of America DOI: 1.1534/genetics.18.99887 Blue Light Induces Degradation of the Negative Regulator Phytochrome Interacting Factor 1 to Promote Photomorphogenic Development

More information

Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids

Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids Plant growth conditions The soil was a 1:1 v/v mixture of loamy soil and organic compost. Initial soil water content was determined

More information

The Circadian Clock Regulates the Photoperiodic Response of Hypocotyl Elongation through a Coincidence Mechanism in Arabidopsis thaliana

The Circadian Clock Regulates the Photoperiodic Response of Hypocotyl Elongation through a Coincidence Mechanism in Arabidopsis thaliana The Circadian Clock Regulates the Photoperiodic Response of Hypocotyl Elongation through a Coincidence Mechanism in Arabidopsis thaliana Yusuke Niwa, Takafumi Yamashino * and Takeshi Mizuno Laboratory

More information

GENETIC ANALYSES OF ROOT SYSTEM DEVELOPMENT IN THE TOMATO CROP MODEL

GENETIC ANALYSES OF ROOT SYSTEM DEVELOPMENT IN THE TOMATO CROP MODEL GENETIC ANALYSES OF ROOT SYSTEM DEVELOPMENT IN THE TOMATO CROP MODEL Kelsey Hoth 1 Dr. Maria Ivanchenko 2 Bioresourse Research 1, Department of Botany and Plant Physiology 2, Oregon State University, Corvallis,

More information

Supplemental Data. Perrella et al. (2013). Plant Cell /tpc

Supplemental Data. Perrella et al. (2013). Plant Cell /tpc Intensity Intensity Intensity Intensity Intensity Intensity 150 50 150 0 10 20 50 C 150 0 10 20 50 D 0 10 20 Distance (μm) 50 20 40 E 50 F 0 10 20 50 0 15 30 Distance (μm) Supplemental Figure 1: Co-localization

More information

Penghui Li, Beibei Chen, Gaoyang Zhang, Longxiang Chen, Qiang Dong, Jiangqi Wen, Kirankumar S. Mysore and Jian Zhao

Penghui Li, Beibei Chen, Gaoyang Zhang, Longxiang Chen, Qiang Dong, Jiangqi Wen, Kirankumar S. Mysore and Jian Zhao New Phytologist Supporting Information Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bhlh transcription factor MtTT8 Penghui Li, Beibei Chen, Gaoyang Zhang, Longxiang

More information

NATURAL VARIATION IN THE CYTOKININ METABOLIC NETWORK IN ARABIDOPSIS THALIANA

NATURAL VARIATION IN THE CYTOKININ METABOLIC NETWORK IN ARABIDOPSIS THALIANA NATURAL VARIATION IN THE CYTOKININ METABOLIC NETWORK IN ARABIDOPSIS THALIANA PŘÍRODNÍ VARIACE METABOLISMU CYTOKININŮ U ARABIDOPSIS THALIANA Samsonová Z. 1, 2, 3, Kuklová A. 1, 2, Mazura P. 1, 2, Rotková

More information

Regulation of Phosphate Homeostasis by microrna in Plants

Regulation of Phosphate Homeostasis by microrna in Plants Regulation of Phosphate Homeostasis by microrna in Plants Tzyy-Jen Chiou 1 *, Kyaw Aung 1,2, Shu-I Lin 1,3, Chia-Chune Wu 1, Su-Fen Chiang 1, and Chun-Lin Su 1 Abstract Upon phosphate (Pi) starvation,

More information

Cytokinin. Fig Cytokinin needed for growth of shoot apical meristem. F Cytokinin stimulates chloroplast development in the dark

Cytokinin. Fig Cytokinin needed for growth of shoot apical meristem. F Cytokinin stimulates chloroplast development in the dark Cytokinin Abundant in young, dividing cells Shoot apical meristem Root apical meristem Synthesized in root tip, developing embryos, young leaves, fruits Transported passively via xylem into shoots from

More information

Seeing without eyes-how plants learn from light

Seeing without eyes-how plants learn from light Seeing without eyes-how plants learn from light by STEPHEN DAY 1. INTRODUCTION Plants detect the intensity, direction, colour, and duration of light and use this information to regulate their growth and

More information

Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 Contains SPX and EXS Domains and Acts in Cryptochrome Signaling W

Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 Contains SPX and EXS Domains and Acts in Cryptochrome Signaling W The Plant Cell, Vol. 18, 921 934, April 2006, www.plantcell.org ª 2006 American Society of Plant Biologists Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 Contains SPX and EXS Domains and Acts in Cryptochrome

More information

Arabidopsis CONSTANS-LIKE3 Is a Positive Regulator of Red Light Signaling and Root Growth W

Arabidopsis CONSTANS-LIKE3 Is a Positive Regulator of Red Light Signaling and Root Growth W The Plant Cell, Vol. 18, 70 84, January 2006, www.plantcell.org ª 2005 American Society of Plant Biologists Arabidopsis CONSTANS-LIKE3 Is a Positive Regulator of Red Light Signaling and Root Growth W Sourav

More information

Ph.D. thesis. Study of proline accumulation and transcriptional regulation of genes involved in this process in Arabidopsis thaliana

Ph.D. thesis. Study of proline accumulation and transcriptional regulation of genes involved in this process in Arabidopsis thaliana Ph.D. thesis Study of proline accumulation and transcriptional regulation of genes involved in this process in Arabidopsis thaliana Written by: Edit Ábrahám Temesváriné Supervisors: Dr. László Szabados

More information

RNA Synthesis and Processing

RNA Synthesis and Processing RNA Synthesis and Processing Introduction Regulation of gene expression allows cells to adapt to environmental changes and is responsible for the distinct activities of the differentiated cell types that

More information

** * * * Col-0 cau1 CAU1. Actin2 CAS. Actin2. Supplemental Figure 1. CAU1 affects calcium accumulation.

** * * * Col-0 cau1 CAU1. Actin2 CAS. Actin2. Supplemental Figure 1. CAU1 affects calcium accumulation. Ca 2+ ug g -1 DW Ca 2+ ug g -1 DW Ca 2+ ug g -1 DW Supplemental Data. Fu et al. Plant Cell. (213). 1.115/tpc.113.113886 A 5 4 3 * Col- cau1 B 4 3 2 Col- cau1 ** * * ** C 2 1 25 2 15 1 5 Shoots Roots *

More information

Utilizing Illumina high-throughput sequencing technology to gain insights into small RNA biogenesis and function

Utilizing Illumina high-throughput sequencing technology to gain insights into small RNA biogenesis and function Utilizing Illumina high-throughput sequencing technology to gain insights into small RNA biogenesis and function Brian D. Gregory Department of Biology Penn Genome Frontiers Institute University of Pennsylvania

More information

Reproduction, Seeds and Propagation

Reproduction, Seeds and Propagation Reproduction, Seeds and Propagation Diploid (2n) somatic cell Two diploid (2n) somatic cells Telophase Anaphase Metaphase Prophase I One pair of homologous chromosomes (homologues) II Homologues condense

More information

The signal transducing photoreceptors of plants

The signal transducing photoreceptors of plants Int. J. Dev. Biol. 49: 653-664 (2005) doi: 10.1387/ijdb.051989kf The signal transducing photoreceptors of plants KEARA A. FRANKLIN*, VICTORIA S. LARNER and GARRY C. WHITELAM Department of Biology, University

More information

Light Regulation of Flowering Time in Arabidopsis

Light Regulation of Flowering Time in Arabidopsis Chapter 38 Light Regulation of Flowering Time in Arabidopsis Xuhong Yu and Chentao Lin Introduction Plant development is dependent on not only endogenous conditions but also environmental factors. One

More information

Maria V. Yamburenko, Yan O. Zubo, Radomíra Vanková, Victor V. Kusnetsov, Olga N. Kulaeva, Thomas Börner

Maria V. Yamburenko, Yan O. Zubo, Radomíra Vanková, Victor V. Kusnetsov, Olga N. Kulaeva, Thomas Börner ABA represses the transcription of chloroplast genes Maria V. Yamburenko, Yan O. Zubo, Radomíra Vanková, Victor V. Kusnetsov, Olga N. Kulaeva, Thomas Börner Supplementary data Supplementary tables Table

More information

Phytochrome-mediated growth inhibition of seminal ro. The definitive version is available at Instructions for use

Phytochrome-mediated growth inhibition of seminal ro. The definitive version is available at   Instructions for use Title Phytochrome-mediated growth inhibition of seminal ro Shimizu, Hisayo; Tanabata, Takanari; Xie, Xianzhi; I Author(s) Yamamoto, Kotaro T. CitationPhysiologia Plantarum, 137(3): 289-297 Issue Date 2009-11

More information

Prokaryotic Gene Expression (Learning Objectives)

Prokaryotic Gene Expression (Learning Objectives) Prokaryotic Gene Expression (Learning Objectives) 1. Learn how bacteria respond to changes of metabolites in their environment: short-term and longer-term. 2. Compare and contrast transcriptional control

More information

Light-regulated Development in Arabidopsis! Dongqing Xu FACULTY OF SCIENCE DEPARTMENT OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES!

Light-regulated Development in Arabidopsis! Dongqing Xu FACULTY OF SCIENCE DEPARTMENT OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES! Light-regulated Development in Arabidopsis Dongqing Xu FACULTY OF SCIENCE DEPARTMENT OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES Akademisk avhandling för filosofie doktorsexamen i Naturvetenskap med inriktning

More information

15. PHOTOPERIODISM. 1. Short day plants

15. PHOTOPERIODISM. 1. Short day plants 15. PHOTOPERIODISM Photoperiodism is the phenomenon of physiological changes that occur in plants in response to relative length of day and night (i.e. photoperiod). The response of the plants to the photoperiod,

More information

Synergistic and Antagonistic Action of Phytochrome (Phy) A and PhyB during Seedling De-Etiolation in Arabidopsis thaliana

Synergistic and Antagonistic Action of Phytochrome (Phy) A and PhyB during Seedling De-Etiolation in Arabidopsis thaliana Int. J. Mol. Sci. 2015, 16, 12199-12212; doi:10.3390/ijms160612199 Article OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Synergistic and Antagonistic

More information

Supplementary Figure 1 Characterization of wild type (WT) and abci8 mutant in the paddy field.

Supplementary Figure 1 Characterization of wild type (WT) and abci8 mutant in the paddy field. Supplementary Figure 1 Characterization of wild type (WT) and abci8 mutant in the paddy field. A, Phenotypes of 30-day old wild-type (WT) and abci8 mutant plants grown in a paddy field under normal sunny

More information

Citation for the original published paper (version of record): N.B. When citing this work, cite the original published paper.

Citation for the original published paper (version of record): N.B. When citing this work, cite the original published paper. http://www.diva-portal.org This is the published version of a paper published in Scientific Reports. Citation for the original published paper (version of record): Dubreuil, C., Ji, Y., Strand, Å., Grönlund,

More information

10/4/2017. Chapter 39

10/4/2017. Chapter 39 Chapter 39 1 Reception 1 Reception 2 Transduction CYTOPLASM CYTOPLASM Cell wall Plasma membrane Phytochrome activated by light Cell wall Plasma membrane Phytochrome activated by light cgmp Second messenger

More information

EMBO. Phytochrome-mediated photoperception and signal transduction in higher plants. reports. Eberhard Schäfer & Chris Bowler 1,+ Introduction

EMBO. Phytochrome-mediated photoperception and signal transduction in higher plants. reports. Eberhard Schäfer & Chris Bowler 1,+ Introduction EMBO reports Phytochrome-mediated photoperception and signal transduction in higher plants Eberhard Schäfer & Chris Bowler 1,+ Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature10534 Supplementary Fig. 1. Diagrammatic representation of the N-end rule pathway of targeted proteolysis (after Graciet and Wellmer 2010 9 ). Tertiary, secondary

More information

Arabidopsis PPR40 connects abiotic stress responses to mitochondrial electron transport

Arabidopsis PPR40 connects abiotic stress responses to mitochondrial electron transport Ph.D. thesis Arabidopsis PPR40 connects abiotic stress responses to mitochondrial electron transport Zsigmond Laura Supervisor: Dr. Szabados László Arabidopsis Molecular Genetic Group Institute of Plant

More information

Supplemental Data. Fernández-Calvo et al. Plant Cell. (2011) /tpc

Supplemental Data. Fernández-Calvo et al. Plant Cell. (2011) /tpc Supplemental Data. Fernández-Calvo et al. Plant Cell. (2011). 10.1105/tpc.110.080788 Supplemental Figure S1. Phylogenetic tree of MYC2-related proteins from Arabidopsis and other plants. Phenogram representation

More information

AP Biology Plant Control and Coordination

AP Biology Plant Control and Coordination AP Biology Plant Control and Coordination 1. What is the effect of the plant hormone ethylene on fruit ripening? 2. How does fruit change as it ripens? 3. What is the mechanism behind ripening? 4. Why

More information

Supplemental Data. Perea-Resa et al. Plant Cell. (2012) /tpc

Supplemental Data. Perea-Resa et al. Plant Cell. (2012) /tpc Supplemental Data. Perea-Resa et al. Plant Cell. (22)..5/tpc.2.3697 Sm Sm2 Supplemental Figure. Sequence alignment of Arabidopsis LSM proteins. Alignment of the eleven Arabidopsis LSM proteins. Sm and

More information

Arabidopsis thaliana. Lucia Strader. Assistant Professor, Biology

Arabidopsis thaliana. Lucia Strader. Assistant Professor, Biology Arabidopsis thaliana Lucia Strader Assistant Professor, Biology Arabidopsis as a genetic model Easy to grow Small genome Short life cycle Self fertile Produces many progeny Easily transformed HIV E. coli

More information

EXPRESSION OF THE FIS2 PROMOTER IN ARABIDOPSIS THALIANA

EXPRESSION OF THE FIS2 PROMOTER IN ARABIDOPSIS THALIANA EXPRESSION OF THE FIS2 PROMOTER IN ARABIDOPSIS THALIANA Item Type text; Electronic Thesis Authors Bergstrand, Lauren Janel Publisher The University of Arizona. Rights Copyright is held by the author. Digital

More information

Biological Roles of Cytokinins

Biological Roles of Cytokinins Direct Control of Shoot Meristem Activity by a Cytokinin-Activating Enzyme By Kurakawa et. Al. Published in Nature Presented by Boyana Grigorova Biological Roles of Cytokinins Cytokinins are positive regulators

More information

Major Plant Hormones 1.Auxins 2.Cytokinins 3.Gibberelins 4.Ethylene 5.Abscisic acid

Major Plant Hormones 1.Auxins 2.Cytokinins 3.Gibberelins 4.Ethylene 5.Abscisic acid Plant Hormones Lecture 9: Control Systems in Plants What is a Plant Hormone? Compound produced by one part of an organism that is translocated to other parts where it triggers a response in target cells

More information

Molecular mechanisms for mediating light-dependent nucleo/ cytoplasmic partitioning of phytochrome photoreceptors

Molecular mechanisms for mediating light-dependent nucleo/ cytoplasmic partitioning of phytochrome photoreceptors Review Molecular mechanisms for mediating light-dependent nucleo/ cytoplasmic partitioning of phytochrome photoreceptors Author for correspondence: Ferenc Nagy Tel: +36 62599718 Email: nagy.ferenc@brc.mta.hu

More information

Véronique Bergougnoux 1 *, David Zalabák 2, Michaela Jandová 3, Ondřej Novák 1, Anika Wiese- Klinkenberg 4, Martin Fellner 1 * Abstract.

Véronique Bergougnoux 1 *, David Zalabák 2, Michaela Jandová 3, Ondřej Novák 1, Anika Wiese- Klinkenberg 4, Martin Fellner 1 * Abstract. Effect of Blue Light on Endogenous Isopentenyladenine and Endoreduplication during Photomorphogenesis and De-Etiolation of Tomato (Solanum lycopersicum L.) Seedlings Véronique Bergougnoux 1 *, David Zalabák

More information

Prokaryotic Gene Expression (Learning Objectives)

Prokaryotic Gene Expression (Learning Objectives) Prokaryotic Gene Expression (Learning Objectives) 1. Learn how bacteria respond to changes of metabolites in their environment: short-term and longer-term. 2. Compare and contrast transcriptional control

More information

Cold and Light Control Seed Germination through the bhlh Transcription Factor SPATULA

Cold and Light Control Seed Germination through the bhlh Transcription Factor SPATULA Current Biology, Vol. 15, 1998 2006, November 22, 2005, ª2005 Elsevier Ltd All rights reserved. DOI 10.1016/j.cub.2005.11.010 Cold and Light Control Seed Germination through the bhlh Transcription Factor

More information

Supplementary Figure S1. Amino acid alignment of selected monocot FT-like and TFL-like sequences. Sequences were aligned using ClustalW and analyzed

Supplementary Figure S1. Amino acid alignment of selected monocot FT-like and TFL-like sequences. Sequences were aligned using ClustalW and analyzed Supplementary Figure S1. Amino acid alignment of selected monocot FT-like and TFL-like sequences. Sequences were aligned using ClustalW and analyzed using the Geneious software. Accession numbers of the

More information

Seed-specific transcription factor HSFA9 links late embryogenesis and early photomorphogenesis

Seed-specific transcription factor HSFA9 links late embryogenesis and early photomorphogenesis Journal of Experimental Botany, Vol. 68, No. 5 pp. 1097 1108, 2017 doi:10.1093/jxb/erx020 Advance Access publication 16 February 2017 This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html

More information

Characterization of photomorphogenic responses and signaling cascades controlled by phytochrome-a expressed in different tissues

Characterization of photomorphogenic responses and signaling cascades controlled by phytochrome-a expressed in different tissues Research Characterization of photomorphogenic responses and signaling cascades controlled by phytochrome-a expressed in different tissues Daniel Kirchenbauer 1 *, Andras Viczian 2 *, Eva Adam 2, Zoltan

More information

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus:

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: m Eukaryotic mrna processing Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: Cap structure a modified guanine base is added to the 5 end. Poly-A tail

More information

DEVELOPMENTAL GENETICS OF ARABIDOPSIS THALIANA

DEVELOPMENTAL GENETICS OF ARABIDOPSIS THALIANA DEVELOPMENTAL GENETICS OF ARABIDOPSIS THALIANA CHASE BALLARD LINDA EAN HECTOR LOPEZ DR. JOANNA WERNER-FRACZEK IN COLLABORATION WITH DR. PATRICIA SPRINGER S LAB AT UCR AND ROBERT KOBLE PURPOSE OF RESEARCH

More information

Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings

Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings Proc. Natl. Acad. Sci. USA Vol. 88, pp. 5207-5211, June 1991 Botany Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings (light regulation/transgenic plants/plant development/growth

More information

Involvement of Rice Cryptochromes in De-etiolation Responses and Flowering

Involvement of Rice Cryptochromes in De-etiolation Responses and Flowering Plant Cell Physiol. 47(7): 915 925 (2006) doi:10.1093/pcp/pcj064, available online at www.pcp.oxfordjournals.org ß The Author 2006. Published by Oxford University Press on behalf of Japanese Society of

More information

Postdoc Fellowships for non-eu researchers. Final Report

Postdoc Fellowships for non-eu researchers. Final Report Postdoc Fellowships for non-eu researchers Final Report Name Andrés Ritter Selection 2011 Host institution Gent University Supervisor Professor Dirk Inzé and Professor Alain Goossens Period covered by

More information

Phytochrome A is an irradiance-dependent red light sensor

Phytochrome A is an irradiance-dependent red light sensor The Plant Journal (007) 50, 108 117 doi: 10.1111/j.165-1X.007.006.x Phytochrome A is an irradiance-dependent red light sensor Keara A. Franklin *, Trudie Allen and Garry C. Whitelam Department of Biology,

More information

Chapter 39. Plant Response. AP Biology

Chapter 39. Plant Response. AP Biology Chapter 39. Plant Response 1 Plant Reactions Stimuli & a Stationary Life u animals respond to stimuli by changing behavior move toward positive stimuli move away from negative stimuli u plants respond

More information

Phytochrome Signaling Mechanisms

Phytochrome Signaling Mechanisms Phytochrome Signaling Mechanisms Authors: Jigang Li, Gang Li, Haiyang Wang, and Xing Wang Deng Source: The Arabidopsis Book, 2011(9) Published By: American Society of Plant Biologists URL: https://doi.org/10.1199/tab.0148

More information

AMADEPA Association Martiniquaise pour le Developpement des Plantes Alimentaires

AMADEPA Association Martiniquaise pour le Developpement des Plantes Alimentaires AMADEPA Association Martiniquaise pour le Developpement des Plantes Alimentaires 29eme CONGRES ANNUEL ANNUAL MEETING REUNION ANNUAL Agriculture Intensive dans les Iles de la Caraibe : enjeux, contraintes

More information

Looking for LOV: Location of LOV1 function in Nicotiana benthamiana cells

Looking for LOV: Location of LOV1 function in Nicotiana benthamiana cells Looking for LOV: Location of LOV1 function in Nicotiana benthamiana cells By: Patrick Rutledge 1 Dr. Jennifer Lorang 2,3, Dr. Marc Curtis 2,3, Dr. Thomas Wolpert 2,3 BioResource Research 1, Botany and

More information

Light Control of Arabidopsis Development Entails Coordinated Regulation of Genome Expression and Cellular Pathways

Light Control of Arabidopsis Development Entails Coordinated Regulation of Genome Expression and Cellular Pathways The Plant Cell, Vol. 13, 2589 2607, December 2001, www.plantcell.org 2001 American Society of Plant Biologists Light Control of Arabidopsis Development Entails Coordinated Regulation of Genome Expression

More information

Development 143: doi: /dev : Supplementary information

Development 143: doi: /dev : Supplementary information Supplementary Materials and Methods Plant materials The mutants and transgenic plants used in the present study were as follows: E361 (from Alex Webb s laboratory); tmm-1, ptmm::tmm-gfp and flp-1 (from

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1. INTRODUCTION Plants being sessile are exposed to environmental stresses mainly abiotic, caused by non-living effects of environment (temperature extremes, drought, and salinity)

More information

The Common Function of a Novel Subfamily of B-Box Zinc Finger Proteins with Reference to Circadian-Associated Events in Arabidopsis thaliana

The Common Function of a Novel Subfamily of B-Box Zinc Finger Proteins with Reference to Circadian-Associated Events in Arabidopsis thaliana Bioscience, Biotechnology, and Biochemistry ISSN: 91-1 (Print) 137-97 (Online) Journal homepage: http://www.tandfonline.com/loi/tbbb The Common Function of a Novel Subfamily of B-Box Zinc Finger Proteins

More information

Other funding Sources Agency Name: MSU Agricultural Experiment Station /Project GREEEN Amount requested or awarded: 30,000

Other funding Sources Agency Name: MSU Agricultural Experiment Station /Project GREEEN Amount requested or awarded: 30,000 FINAL PROJECT REPORT Project Title: Functional genomics of flowering in apple PI: Herb Aldwinckle Co-PI(2): Steve VanNocker Organization: Cornell University Organization: Michigan State University Telephone/email:

More information

Supplemental Data. Chen and Thelen (2010). Plant Cell /tpc

Supplemental Data. Chen and Thelen (2010). Plant Cell /tpc Supplemental Data. Chen and Thelen (2010). Plant Cell 10.1105/tpc.109.071837 1 C Total 5 kg 20 kg 100 kg Transmission Image 100 kg soluble pdtpi-gfp Plastid (PDH-alpha) Mito (PDH-alpha) GFP Image vector

More information

Chapter 31 Active Reading Guide Plant Responses to Internal and External Signals

Chapter 31 Active Reading Guide Plant Responses to Internal and External Signals Name: AP Biology Mr. Croft Chapter 31 Active Reading Guide Plant Responses to Internal and External Signals This concept brings together the general ideas on cell communication from Chapter 5.6 with specific

More information

A Phytochrome-Associated Protein Phosphatase 2A Modulates Light Signals in Flowering Time Control in Arabidopsis

A Phytochrome-Associated Protein Phosphatase 2A Modulates Light Signals in Flowering Time Control in Arabidopsis The Plant Cell, Vol. 14, 3043 3056, December 2002, www.plantcell.org 2002 American Society of Plant Biologists A Phytochrome-Associated Protein Phosphatase 2A Modulates Light Signals in Flowering Time

More information

PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, Together Play Essential Roles Close to the Circadian Clock of Arabidopsis thaliana

PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, Together Play Essential Roles Close to the Circadian Clock of Arabidopsis thaliana Plant Cell Physiol. 46(5): 686 698 (2005) doi:10.1093/pcp/pci086, available online at www.pcp.oupjournals.org JSPP 2005 Rapid Paper PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, Together Play Essential

More information

State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China

State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China Molecular cloning and expression of the male sterility-related CtYABBY1 gene in flowering Chinese cabbage (Brassica campestris L. ssp chinensis var. parachinensis) X.L. Zhang 1,2,3 and L.G. Zhang 1,2,3

More information

Phytochrome A Regulates the Intracellular Distribution of Phototropin 1 Green Fluorescent Protein in Arabidopsis thaliana W

Phytochrome A Regulates the Intracellular Distribution of Phototropin 1 Green Fluorescent Protein in Arabidopsis thaliana W The Plant Cell, Vol. 20: 2835 2847, October 2008, www.plantcell.org ã 2008 American Society of Plant Biologists Phytochrome A Regulates the Intracellular Distribution of Phototropin 1 Green Fluorescent

More information

APGRU6L2. Control of Prokaryotic (Bacterial) Genes

APGRU6L2. Control of Prokaryotic (Bacterial) Genes APGRU6L2 Control of Prokaryotic (Bacterial) Genes 2007-2008 Bacterial metabolism Bacteria need to respond quickly to changes in their environment STOP u if they have enough of a product, need to stop production

More information

Questions for Biology IIB (SS 2006) Wilhelm Gruissem

Questions for Biology IIB (SS 2006) Wilhelm Gruissem Questions for Biology IIB (SS 2006) Plant biology Wilhelm Gruissem The questions for my part of Biology IIB, Plant Biology, are provided for self-study and as material for the exam. Please note that the

More information

Overexpression of type-a rice response regulators, OsRR3 and OsRR5, results in lower sensitivity to cytokinins

Overexpression of type-a rice response regulators, OsRR3 and OsRR5, results in lower sensitivity to cytokinins Overexpression of type-a rice response regulators, OsRR3 and OsRR5, results in lower sensitivity to cytokinins X. Cheng*, H. Jiang*, J. Zhang, Y. Qian, S. Zhu and B. Cheng School of Life Science, Anhui

More information

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

THE NOPALINE SYNTHASE PROMOTER AS A MODEL SYSTEM FOR STUDYING PLANT RESPONSE TO UV-B

THE NOPALINE SYNTHASE PROMOTER AS A MODEL SYSTEM FOR STUDYING PLANT RESPONSE TO UV-B International Journal of Environmentally Conscious Design & Manufacturing, Vol. 10, No. 3, 2001-2002 THE NOPALINE SYNTHASE PROMOTER AS A MODEL SYSTEM FOR STUDYING PLANT RESPONSE TO UV-B GYUNG-HEE YU AND

More information

GCD3033:Cell Biology. Transcription

GCD3033:Cell Biology. Transcription Transcription Transcription: DNA to RNA A) production of complementary strand of DNA B) RNA types C) transcription start/stop signals D) Initiation of eukaryotic gene expression E) transcription factors

More information