Biology 20. Characteristics of Life

Size: px
Start display at page:

Download "Biology 20. Characteristics of Life"

Transcription

1 UNIT 3 BIODIVERSITY Chapter 4 Diversity of Life Biology 20 Characteristics of Life Generally speaking we all know what is living and what is non-living A butterfly is alive, while a rock is not A tree is living, while a building is nonliving Rather than defining what life is, biologists tend to describe what makes something living What are the characteristics that are shared by all living things? 1

2 Thinking Lab In pairs, examine the pictures on pages Brainstorm a list of characteristics that enable you to separate living from non-living Make a list of 6 more living and non-living things (3 of each) and trade with another group to test the reliability of you characteristics Modify your list as needed 6 Characteristics of Living Things Organized systems made up of one or more cells Cells make up tissues, tissues make up organs, organs make up systems. Non-living things do not have this level of complexity Metabolize matter and energy Chemical reactions require a source of energy food 2

3 6 Characteristics of Living Things Interact with their environment and are homeostatic stay the same in an environment even though they are exchanging molecules / water from their surroundings Grow and Develop Unicellular living things grow, and divide. Multicellular living things grow, develop through the union of eggs and sperm, followed by cell divisions 6 Characteristics of Living Things Reproduce themselves Only living things can make other living things like themselves. Genetic information being passed on to offspring Adapt to their surroundings Have physics feature that make them well suited to the environment in which they live behaviours for obtaining food, waste transport, motility, reproduction and communications 3

4 Road to 6 Kingdom Classification We often tend to organize things based on physical characteristics Music, clothing, books The groupings reflect the patterns we see in the world around us Aristotle first grouped over 1000 organisms into 2 large kingdoms, then subdivided each into smaller groups 1. Kingdom Animalia Grouped based on movement: on land in the air in water 2. Kingdom Plantae Grouped based on physical characteristics Reproductive structures Types of external tissues Road to 6 Kingdoms 3. Kingdom Protista Discovery of microorganisms forced scientists to reconsider Aristotle s system of classification Some organisms move like animals, but photosynthesize like plants 4

5 Road to 6 Kingdoms 4. Kingdom Fungi Were originally included in the plant kingdom Were placed in their own kingdom because they do not photosynthesize, and absorb nutrients from their environment Road to 6 Kingdoms 5. Kingdom Bacteria Entirely made up of prokaryotic cells (lacking a nucleus and membranebound organelles) Obtain energy from a wide range of environments, but thrive between 10 and 40 degrees celcius Also called: Monera, eubacteria (true bacteria) 6. Kingdom Archaea Also made up of prokaryotic cells, but with specialized structures allowing them to live in extreme environments Hot vents, acidic lakes, high pressure, low oxygen, etc. Also called: archaebacteria 5

6 The Three Domains Each of the kingdoms belongs to one of the three domains They represent how organisms evolved See fig. 4.5 pg Domain Bacteria Kingdom Bacteria Earliest living organisms, 1000 s of species exist today 2. Domain Archaea Kingdom archaea Evolved later, through a series of changes in bacteria 3. Domain Eukarya Kingdoms protista, plantae, animalia and fungi Early protists branched away from bacteria, giving rise to all the other kingdoms Living Things Domain Bacteria Domain Eukarya Domain Archaea Kingdom Bacteria Kingdom Protista Kingdom Fungi Kingdom Plantae Kingdom Animalia Kingdom Archaea 6

7 Naming and Classifying Organisms There are well over 2 million different types of organisms known. Biologists place the organisms into groups based on their characteristics. By classifying, biologists can organize living things into groups. Taxonomy The branch of Biology that deals with the naming and placing of all organisms into groups. The system of naming we use today was created over 300 years ago by Carolus Linneaus The Linnean system is very simple to use and became popular as a result Naming Organisms Many of the names are based on the Latin or Greek since that is what was used when the naming system was created. Scientists are required to give new latin scientific names when they discover new species The names often reflect the characteristics of the organisms, or in some cases honour the discovering scientist 7

8 Hierarchy of Groups Each kingdom is subdivided into smaller and smaller groups called taxa (one taxon) Kingdoms are the largest taxa, containing 1000 s of species Species are the smallest taxa, containing only one type of organism The Taxa Domain Kingdom Phylum (plural Phyla) Order Family Genus (plura genera) Species Each taxon may have subtaxa Hierarchical Classification The Pneumonic Domain Kingdom Phylum Order Family Genus Species Doctor King Phyllip Ordered the Family Genius to Speak Each organism is classified based on physical characteristics and DNA relationships The Species level contains organisms that are similar enough that they can reproduce 8

9 Domestic Dog Kingdom Animalia Phylum Chordata Class Mammalia Order Carnivora Family Canidae Genus Canis Species familaris Different breeds may exist Humans Kingdom Animalia Phylum Chordata Class Mammalia Order Primates Family Hominidae Genus Homo Species Sapien Sapien 9

10 Binomial Nomenclature Binomial = 2 terms Nomenclature = naming System of naming species using a two-term name First term is the genus name Second term is species name Rules for naming The genus name is capitalized The second name is the species and is entirely lower-case The name must be either in italics or have each term separately underlined Binomial Nomenclature Examples CORRECT WAY Canis familiaris house dog OR Canis lupus Wolf Many species may be in the same genus because they are related, in this case dog-like animals WRONG WAY Canis Familiaris canis lupus Canis latrans - Coyote Canis lupus 10

11 Common Names In addition to scientific names organisms may also be given common names. Common names can cause confusion Why do you suppose this is? Example Pg 112 A. Shellfish B. Starfish C. Jellyfish D. Crayfish E. Catfish Why are these names misleading? Benefit of Universal Naming A universal system of naming allows us to avoid the confusion associated with common names, and tells us something about evolutionary relationships. 11

12 Dichotomous Keys A tool used by biologists to identify unknown organisms Consists of a series of paired comparisons of characteristics used to sort organism into smaller and smaller groups Today s Classification Schemes Taxonomists (scientists who name organisms) use a variety of information to classify or group organisms The goal of taxonomy is to determine the evolutionary history of organisms This is done by comparing physical characteristics of modern species with past species Scientists utilize many techniques to ensure that organisms are classified correctly Using these techniques many species have been re-classified after being incorrectly so in the past 12

13 Evidence: Fossil Record Using radioactive carbon- 14 dating, the age of a fossil can be determined C-14 decays at a known rate, the amount remaining in a fossil can be used to calculate the age This evidence shows that major taxa are not as different from each other as they appear Archaeopteryx shares features with both birds and reptiles. The organism is believed by many to be a modern descendant of birds That is to say the intermediate between dinosaurs and birds Evidence: Anatomy Comparisons are made between the structures of different organisms Bone structures are similar in many species, even though their sizes and proportions have been modified for different modes of transportation See Fig. 4.9 pg

14 Evidence: Biochemical Many genes are simply instructions for making proteins By comparing these genes and finding similarities means that different species may be related since they have the same proteins Many species have been reclassified based on their biochemistry Guinea pigs Horseshoe crabs Evidence: Embryology Comparisons of early embryological development between different species provides evidence as to how closely related they are Earnest Haeckel drew embryos of different species for comparison 14

15 Haekel s Embryo Drawings Evidence: DNA / RNA Analysis Mixing single strands of DNA from two different species to determine percentage of relationship The greater the bonding between complimentary base pairs, the more closely the two are related This is done using DNA from the mitochondria because it is passed down from mother to offspring (from the egg) 98% of human chimp DNA bonds while only 93% of human-macaque monkey DNA bonds To which species are we more closely related? 15

16 Phylogeny & Cladistics Phylogeny The whole evolutionary history of a species or other taxonomic group. (Figure 4.14 pg. 116). At the base of the tree is the oldest ancestor Forks in branches represent divergences of new species The top of the tree represents the most recent time, so from the base to the top of a branch is a progression through time. Cladistics A classification scheme based on phylogeny and the idea that any one group of related organisms was derived from a common ancestor Phylogenetic Trees Cladogram A diagram similar to a phylogenetic tree that does not take into account the time of a divergence. 16

17 Phylogenetic Tree of Life Viruses Non-living particles of DNA/ RNA encased in a protein capsid. The capsid helps to protect the virus from the host cell s defensive enzymes, and enables the virus to be more host-specific Capsid 17

18 Why Viruses are non-living 1. No cell structures 2. No cytoplasm, organelles or cell membranes 3. No cellular respiration Lytic Cycle (Viral Replication) A. ATTACHMENT The virus particle must first attach itself to a host cell, generally to a specific receptor site on the cell membrane. B. ENTRY 2 ways this can happen: Injection of the DNA/RNA into the host cell (T4 virus) OR if the virus in an envelop, it will attach to the cell membrane, and the cell will engulf it, forming a vacuole, which it will break out of releasing DNA/RNA C. REPLICATION (lytic cycle cycle of viral replication) The host cell s metabolism replicates (copies) the viral DNA/ RNA D. ASSEMBLY - New virus particles are assembled inside the host cell E. LYSIS AND RELEASE - The host cell breaks (lyses) open releasing the new virus particles 18

19 Lytic Cycle Diagram See page 123, figure 4.21 in textbook Lysogenic Cycle Lysogenic cycle Genetic material from the capsid is released into the host cell. The viral DNA becomes part of the host cell s chromosome as a provirus. The provirus remains inactive but is replicated with the host cell DNA. The newly replicated viral DNA may then be used in the assembly of new virus particles, continuing on in the lytic cycle. EXAMPLE: Cold Sores caused by the herpes simplex virus. The sores appear when the virus is destroying cells, and disappear when the virus is in the provirus stage. Virus may remain dormant in the provirus phase for years meaning viral outbreaks may be very rare even though the person carries the virus. 19

20 Retroviruses Retroviruses Viruses, such as the AIDS, human immunodeficiency virus (HIV) Are able to transcribe a single strand of RNA into double-stranded DNA using an enzyme called reverse transcriptase This DNA is incorporated into host genome, and replicated each time the host cell divides This forms new virus particles, which repeat the process HIV AIDS Virus Particle Process described in Fig. 4.22, page 124 disease/animations.html MORE ON VIRUSES T4 viruses may be used by genetic engineers to copy genes that they are using for their research. (Fig. 4.23, page 125) DNA/ RNA may be either single stranded or double stranded, and either linear or circular. 70% of all viruses are known to be RNA virus, and since RNA replication frequently involves errors, there is a high rate of mutation in RNA viruses 20

21 Animal Behavior We will study two types of animal behavior. You are the mouse in the maze. The first type is instinctive behavior. Instinctive behavior is something the animal is born knowing how to do. Examples include fish swimming and geese migrating. What other examples can you think of? 21

22 The other type is learned behavior. As you can probably guess, learned behavior is not instinctive. Animals are not born knowing what to do or how to do it. Learned behavior is learned by experience and sometimes from a parent. Examples include lions and leopards learning how to hunt by watching and practicing with their mothers. Your behavior think, think, think What parts of your behavior are instinctive? What parts are learned? Who do you learn from? Name three things you have learned in the last week. 22

23 Kingdom Animalia A Brief Survey of Animals The study of animals is referred to as zoology. Animals are the largest of the 6 kingdoms, and exhibit a great diversity in form and function. 23

24 Major Animal Characteristics 1. Multicellular, eukaryotic organisms, with a division of labour amongst cells that are specialized. 2. A variety of systems have evolved and are specialized for specific functions. These systems include: - Circulatory - Lymphatic - Integumentary (skin) - Digestive - Respiratory - Muscular - Endocrine - Nervous - Excretory - Reproductive - Skeletal 24

25 3. Heterotrophic: Animals have more complex systems than plants. These systems are based upon the animal s nutrient requirements. 4. Locomotion: Most are mobile at some point in their lifetime. 5. Reproduction: This may be through sexual or asexual means. Asexual occurs in some lower forms, sexual occurs in all higher forms. 25

26 Five Major Areas Used to Describe Animals 1. Systems: When moving from simpler to more complex animal forms, the number and complexity of systems increases. 2. Symmetry: This is a term used to describe the body plan of an animal. To find the symmetry of an animal, an imaginary line is drawn to divide the animal in half. There are three forms of symmetry: (A) Asymmetric - An organism cannot be cut into two matching halves. (e.g. sponges) (B) Radial - Any line passing through the central axis of an organism divides it in half. These organisms are rounded. (e.g jellyfish) (C) Bilateral: An elongated body plan. There is only one line that divides the animal in half. This line runs down the middle of the longitudinal section. This is the most common form of symmetry. (e.g. humans, frogs, etc.) 26

27 3. Coelom A coelom is a body cavity. The presence or absence of a fluid-filled cavity is one of the most significant features of animal body plans used in classification. The coelom is located between the digestive tract and the body wall. Importance of a Coelom (i) They provide space in which internal organs can be suspended so they are not negatively affected by muscle pressure and body movement. (ii) They provide space for internal organs to develop and expand. (iii) They contain fluids which may assist in internal transportation and nutrient and gas exchange. Lower animal forms have no or partial coeloms (also called a pseudocoelom). They are at a disadvantage in light of the efficient functioning of a true coelom. 27

28 4. Cell Layers: Animals contain either two or three embryonic cell layers. Simpler animals contain only two; all others have three. Each layer is responsible for producing various tissues and structures in the adult animal. These layers include: Ectoderm - forms the outer body (skin, nerves) Mesoderm - forms the middle organs (kidney, heart) Endoderm - form lining of gut or digestive tract simple animals have no mesoderm. 5. Reproduction: Moving from simpler to more complex animal forms, the reproductive system becomes more complex. 28

29 Classification There are two major groups of animals. They are classified according to the presence or absence of a backbone. Invertebrates 1. These organisms lack a backbone, and include the following phyla: (a) Porifera (sponge) (b) Coelenterata (jellyfish) (c) Platyhelminthes (tapeworm) (d) Nematoda (ringworm) (e) Annelida (earthworm) (f) Mollusca (shellfish) (g) Arthropoda (insects) (h) Echinodermata (starfish) 29

30 2. Make up 97% of the animal kingdom. 3. Higher forms are characterized by cephalization. This is an evolutionary tendency towards specialization of the body with concentration of sensory and neural organs in the anterior end. 4. They possess body plans which have been enormously successful both ecologically and evolutionarily. Kingdom Plantae A Brief Survey of Plants 30

31 The study of plants is called botany. Plants are believed to have evolved from green algae. The main plant (land) characteristics are as follows: 1. Common cellular structures: - all are eukaryotes - multicellular - cell wall composed of cellulose - chlorophyll contained in chloroplasts - produce starch as carbohydrate food reserve - central vacuole 2. Photosynthetic organisms: autotrophs / producers 3. Most are stationary. 4. Reproduction occurs through a life cycle called alternation of generations. The cycle consists of two generations: (a) Sporophyte generation - reproduces asexually (b) Gametophyte generation - reproduces sexually 31

32 The advantage of alternation of generations is the combined advantage of sexual and asexual reproduction. Asexual - only one parent needed Sexual - produces much genetic variety Classification of Plants There are two major groups of plants. They are classified according to the presence or absence of vascular tissue. Vascular tissue is a special tissue for support and for the transport of materials within the plant. There are two forms of vascular tissue: Xylem: This transports water and minerals up the stem of the plant into the leaves. Phloem: This transports glucose produced by the leaves, during photosynthesis, down the stem and into the roots. 32

33 The two groups that plants are divided into: 1. Bryophytes: These include mosses, liverworts, and hornworts. These plants do not possess vascular tissue. They are short plants that usually grow in areas that have a good supply of water. The gametophyte generation is dominant. 2. Tracheophytes: These include horsetails, ferns, gymnosperms, and flowering plants. They have well-developed vascular tissue. The sporophyte generation is dominant. 33

34 Bryophyte (moss) 34

35 Tracheophyte (fern) Tracheophyte - Gymnosperm (fir tree) 35

36 Tracheophyte - Angiosperm (fruit-bearing and flowering) Bryophytes (Moss plants) (i) Lack vascular tissue. This accounts for the remaining characteristics. (ii) Lack true roots, stems, or leaves. (iii) Small in size, growing close to the ground (1-5 cm) (iv) Restricted to moist environments. (v) Transitional group between aquatic and terrestrial plants. (vi) Major forms include moss, liverwort, and hornwort. 36

37 Bryophyte Adaptations for Life on Land 1. Water Conservation - waxy waterproof covering called a cuticle or cutin found on leaflets 2. Gas Exchange - pores found on the top of the leaflets 3. Internal Transport - occurs by diffusion, no vascular tissue 4. Internal Support none 5. Water Absorption - small filaments called rhizoids 6. Reproduction - dependent upon water to move sperm to the egg 37

38 Moss Life Cycle Tracheophytes (i) Possess vascular tissue (xylem and phloem). This accounts for the remaining characteristics (ii) Possess true roots, stems, and leaves. (iii) Large in size, growing well above the ground. (iv) Not restricted to moist environments; well distributed over the Earth s surface. Can even exist in areas where water is scarce. (v) Most complex group of plants. (vi) Major forms include: (a) ferns (b) gymnosperms - produce seeds in cones, 750 species dominant in cold regions and higher altitudes (c) angiosperms - produce seeds in flowers, species. Most dominant plant because: 38

39 Types of Tracheophytes Reasons for Angiosperm Success: (A) animals and insects help pollinate them: (i) presence of brightly colored flowers attracts insects. That is the purpose of the coloration. (ii) presence of nectar to attract insects that aid in pollination. (B) seed coat (fruit) protects and nourishes the embryo (C) seed dispersal also aided by wind (D) fruit covering the seed aids in dispersal. Animals will eat the fruit and drop the seeds, or the seeds will pass through their digestive systems. 39

40 Flower & Seed Structure There are two forms of angiosperms: A cotyledon is a seed leaf and is important in seed germination. It is a modified leaf of a seed plant embryo and can help provide nourishment for the developing embryo. It is one of the first leaves to appear during germination. A monocot has one cotyledon and a dicot has two. Examples: Monocots - grasses, corn, tulips, and palms. Dicots roses, maples, oaks, peanuts, potatoes, etc. Most angiosperms are dicots. 40

41 Trachoephyte Adaptations for Life on Land 1. Water Conservation - cuticle or cutin present on leaves. 2. Gas Exchange - pores called stomata found on the bottom of leaves. 3. Internal Transport - contains vascular tissue 4. Internal Support - vascular tissue 5. Water Absorption - system of roots is present 6. Reproduction - water is not required for movement of sperm to egg except in the case of ferns. In gymnosperms and angiosperms, sperm is contained inside a pollen grain that is moved by wind and insects. Gas Exchange Stomata are better for gas exchange for the following reasons: (1) No holes in the waterproof covering. (2) In the shaded area of the leaf (less water loss). (3) They won t become clogged by dust and other materials. 41

Characteristics of Life

Characteristics of Life UNIT 2 BIODIVERSITY Chapter 4- Patterns of Life Biology 2201 Characteristics of Life All living things share some basic characteristics: 1) living things are organized systems made up of one or more cells

More information

Kingdom Plantae. A Brief Survey of Plants

Kingdom Plantae. A Brief Survey of Plants Kingdom Plantae A Brief Survey of Plants The study of plants is called botany. Plants are believed to have evolved from green algae. The main plant (land) characteristics are as follows: 1. Common cellular

More information

Kingdom Plantae. Biology : A Brief Survey of Plants. Jun 22 7:09 PM

Kingdom Plantae. Biology : A Brief Survey of Plants. Jun 22 7:09 PM Kingdom Plantae Biology 2201 6.1 6.2 : A Brief Survey of Plants The study of plants is called botany. Plants are believed to have evolved from green algae. The main plant (land) characteristics are as

More information

UNIT 4 TAXONOMY AND CLASSIFICATION

UNIT 4 TAXONOMY AND CLASSIFICATION UNIT 4 TAXONOMY AND CLASSIFICATION CHAPTER 13 IN TEXT READ P. 4.0 CLASSIFICATION AND TAXONOMY 4.1 Define taxonomy 4.2 Discuss the reasons for classifying organisms 4.3 Define species and binomial nomenclature

More information

Unit 2 Biodiversity Ch. 4 Patterns of Life

Unit 2 Biodiversity Ch. 4 Patterns of Life Unit 2 Biodiversity Ch. 4 Patterns of Life Name: 4.1 Characteristics of Life In order to be considered living, an organism must possess the following Six (6) characteristics: 1. Living things are organized

More information

The Road to the Six Kingdoms

The Road to the Six Kingdoms Bio 2201 Unit 2 The Road to the Six Kingdoms A 2011study estimated there are about 8.6 million species on earth. Only 1.8 million species have been identified and named. *Chromista is a sub-kingdom group

More information

Biology 2201 Unit Test Holy Spirit High Mr. Pretty Name: ANSWER KEY

Biology 2201 Unit Test Holy Spirit High Mr. Pretty Name: ANSWER KEY Biology 2201 Unit Test Holy Spirit High Mr. Pretty Name: ANSWER KEY 1.) Which of the following increases as you proceed down classification levels from kingdom to species? A) Activity B) Diversity among

More information

Unit Two: Biodiversity. Chapter 4

Unit Two: Biodiversity. Chapter 4 Unit Two: Biodiversity Chapter 4 A. Classifying Living Things (Ch.4 - page 100) Scientific knowledge is constantly evolving ( changing ): new evidence is discovered laws and theories are tested and possibly

More information

Biology Classification Unit 11. CLASSIFICATION: process of dividing organisms into groups with similar characteristics

Biology Classification Unit 11. CLASSIFICATION: process of dividing organisms into groups with similar characteristics Biology Classification Unit 11 11:1 Classification and Taxonomy CLASSIFICATION: process of dividing organisms into groups with similar characteristics TAXONOMY: the science of classifying living things

More information

Classification of Living Things. Unit II pp 98

Classification of Living Things. Unit II pp 98 Classification of Living Things Unit II pp 98 Why There is a Need for Classifying There are over 2 million different types of organisms known. biologists can organize living things into groups. Taxonomy

More information

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved.

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved. Chapter Presentation Visual Concepts Transparencies Standardized Test Prep Introduction to Animals Table of Contents Section 2 Animal Body Systems Objectives Identify the features that animals have in

More information

Taxonomy Taxonomy: field of biology that identifies and classifies organisms

Taxonomy Taxonomy: field of biology that identifies and classifies organisms Taxonomy Taxonomy: field of biology that identifies and classifies organisms Why do we need it? problems with different languages common names can be confusing examples: woodchuck, groundhog crayfish,

More information

Creating a Dichotomous Key

Creating a Dichotomous Key Dichotomous Keys A tool used that allows users to determine the identity of unknown species Keys consist of a series of choices, where the user selects from a series of connected pairs Each pair of choices

More information

Biology Unit 02 Biodiversity Section 01 Test Taxonomy/Classification

Biology Unit 02 Biodiversity Section 01 Test Taxonomy/Classification Biology 2201(A) Unit 02 Biodiversity Page 1 of 12 Biology 2201 Unit 02 Biodiversity Section 01 Test Taxonomy/Classification Instructions for Students: 1. This test is composed of two parts. Part 1 consists

More information

Biology Unit 1 Warm Ups. Mrs. Hilliard

Biology Unit 1 Warm Ups. Mrs. Hilliard Biology Unit 1 Warm Ups Mrs. Hilliard Communication in Science Choose one of the three topics to write a detailed procedure for. 1. How to make a peanut butter and jelly sandwich. 2. How to brush your

More information

Section 1 Lesson 1 Living Versus Nonliving

Section 1 Lesson 1 Living Versus Nonliving Page 1 of 12 Section 1 Lesson 1 Living Versus Nonliving Characteristics of Living Things In order to be considered living, an organism must possess the following Six (6) characteristics. a. Living things

More information

Zoology. Classification

Zoology. Classification Zoology Zoology involves studying all aspects of organisms belonging to the animal kingdom taxonomy, animal physiology, comparative anatomy, and ecology. Our study of Zoology will be focused on the different

More information

CLASSIFICATION OF LIVING THINGS

CLASSIFICATION OF LIVING THINGS CLASSIFICATION OF LIVING THINGS 1. Taxonomy The branch of biology that deals with the classification of living organisms About 1.8 million species of plants and animals have been identified. Some scientists

More information

PSI Biology Classification Classification

PSI Biology Classification Classification Classification Classification & Naming Classwork 1. What is the correct order of the current classification hierarchy, from most general to most specific? 2. Are two organisms in domain more or less closely

More information

Classification Chapter 18

Classification Chapter 18 Classification Chapter 18 The domain system Prokaryotic domains Bacteria and Archaea Eukaryotes Are in the domain Eukarya Bacteria Archaea Eukarya Earliest organisms Prokaryotes Eukoryotes Figure 15.10B

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Class: _ Date: _ Ch 17 Practice test 1. A segment of DNA that stores genetic information is called a(n) a. amino acid. b. gene. c. protein. d. intron. 2. In which of the following processes does change

More information

What is a Plant? Plant Life Cycle. What did they evolve from? Original Habitat 1/15/2018. Plant Life Cycle Alternation of Generations

What is a Plant? Plant Life Cycle. What did they evolve from? Original Habitat 1/15/2018. Plant Life Cycle Alternation of Generations What is a Plant? Multicellular Eukaryotic Autotrophic (photosynthesis) Has cell walls containing cellulose Lack mobility (sessile) Display Alternation of Generations in their life cycle Introduction to

More information

Chapter 8-9 Intro to Animals. Image from:

Chapter 8-9 Intro to Animals. Image from: Chapter 8-9 Intro to Animals Image from: http://animaldiversity.ummz.umich.edu/index.html Zoology Definition: the scientific study of the behavior, structure, physiology, classification, and distribution

More information

Chapter 18: Classification

Chapter 18: Classification Chapter 18: Classification Dichotomous Key A way to identify unknown organisms Contains major characteristics of groups of organisms Pairs of CONTRASTING descriptions 4. After each description key either

More information

Classification. copyright cmassengale

Classification. copyright cmassengale Classification 1 Species of Organisms There are 13 billion known species of organisms This is only 5% of all organisms that ever lived!!!!! New organisms are still being found and identified 2 What is

More information

Concept Modern Taxonomy reflects evolutionary history.

Concept Modern Taxonomy reflects evolutionary history. Concept 15.4 Modern Taxonomy reflects evolutionary history. What is Taxonomy: identification, naming, and classification of species. Common Names: can cause confusion - May refer to several species (ex.

More information

Comparing Plants & Animals

Comparing Plants & Animals Section 6.1 Comparing Plants & Animals p. 164-168 Major Similarities: They are both multi-cellular, eukaryotes. Their sizes both range from microscopic to very large. Major Differences: How they obtain

More information

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia What Is an Animal? What characteristics do all animals have? Animals come in many shapes, forms, and sizes. Scientists estimate that there are between 1 and 2 million species of animals! Some, like whales

More information

Vocabulary Classification the process of arranging organisms into groups based on similarities Taxonomy the science of naming and classifying

Vocabulary Classification the process of arranging organisms into groups based on similarities Taxonomy the science of naming and classifying Classification.. Vocabulary Classification the process of arranging organisms into groups based on similarities Taxonomy the science of naming and classifying organisms trait a characteristic or behavior

More information

Section 18-1 Finding Order in Diversity

Section 18-1 Finding Order in Diversity Name Class Date Section 18-1 Finding Order in Diversity (pages 447-450) Key Concepts How are living things organized for study? What is binomial nomenclature? What is Linnaeus s system of classification?

More information

The Tree of Life. Chapter 17

The Tree of Life. Chapter 17 The Tree of Life Chapter 17 1 17.1 Taxonomy The science of naming and classifying organisms 2000 years ago Aristotle Grouped plants and animals Based on structural similarities Greeks and Romans included

More information

Sorting It All Out CLASSIFICATION OF ORGANISMS

Sorting It All Out CLASSIFICATION OF ORGANISMS Sorting It All Out CLASSIFICATION OF ORGANISMS 1 WHAT DO I NEED TO LEARN FROM THIS UNIT? Classify organisms into the currently recognized kingdoms according to characteristics that they share. Be familiar

More information

Kingdom Animalia. Zoology the study of animals

Kingdom Animalia. Zoology the study of animals Kingdom Animalia Zoology the study of animals Summary Animals are multicellular and eukaryotic. consume and digest organic materials thereby being heterotrophs. Most are motile at some time in their lives.

More information

Distinguishes between unicellular and multicellular organisms. Understands that kingdoms are subdivided into phylum etc.

Distinguishes between unicellular and multicellular organisms. Understands that kingdoms are subdivided into phylum etc. August Living Things - Develops an understanding of the organism. Classification Distinguishes between unicellular and multicellular organisms. Recognizes organisms are organized into tissues, organs,

More information

What makes things alive? CRITERIA FOR LIFE

What makes things alive? CRITERIA FOR LIFE What makes things alive? CRITERIA FOR LIFE Learning Goals I can determine if something is alive based on the criteria for life. I can describe the history of life on Earth. I can describe how organisms

More information

Biological Kingdoms. An introduction to the six kingdoms of living things

Biological Kingdoms. An introduction to the six kingdoms of living things Biological Kingdoms An introduction to the six kingdoms of living things 3 Domains Archaea 6 Kingdoms Archaebacteria Bacteria Eubacteria Eukaryota Plantae Animalia Fungi Protista Domain Eukaryota Kingdom

More information

Classification of organisms. The grouping of objects or information based on similarities Taxonomy: branch of biology that classifies organisms

Classification of organisms. The grouping of objects or information based on similarities Taxonomy: branch of biology that classifies organisms Bell Work: Think about your CD, video game, DVD or book collection at home. How would you separate this collection into different groups? What would the groups be? Try to come up with 4 or 5. Classification

More information

The Living Environment Unit 4 History of Biological Diversity Unit 17: Organizing the Diversity of Life-class key.

The Living Environment Unit 4 History of Biological Diversity Unit 17: Organizing the Diversity of Life-class key. Name: Period: Chapter 17 assignments Pages/Sections Date Assigned Date Due Topic: The Tree of Life Objective: How may we organize so many different organisms? The Tree of Life o organize organisms by structure

More information

Taxonomy. Taxonomy is the science of classifying organisms. It has two main purposes: to identify organisms to represent relationships among organisms

Taxonomy. Taxonomy is the science of classifying organisms. It has two main purposes: to identify organisms to represent relationships among organisms Taxonomy Taxonomy Taxonomy is the science of classifying organisms. It has two main purposes: to identify organisms to represent relationships among organisms Binomial Nomenclature Our present biological

More information

Biology. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47. Classification

Biology. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47. Classification Slide 1 / 47 Slide 2 / 47 Biology lassification 2015-10-28 www.njctl.org 1 Which of the following accurately lists the levels of classification in our current taxonomic system? Slide 3 / 47 A Phylum, kingdom,

More information

Classification. Essential Question Why is it important to place living things into categories?

Classification. Essential Question Why is it important to place living things into categories? Classification Essential Question Why is it important to place living things into categories? Compare and contrast Taxonomy comparison 18.1 History of Taxonomy Objectives Describe Aristotle s classification

More information

NAME: DATE: PER: CLASSIFICATION OF LIFE Powerpoint Notes

NAME: DATE: PER: CLASSIFICATION OF LIFE Powerpoint Notes NAME: DATE: PER: CLASSIFICATION OF LIFE Powerpoint Notes 1. Species of Organisms a) There are known species of organisms b) This is only of all organisms that ever lived. c) are still being found and identified.

More information

SG 9.2 notes Ideas about targets and terms: 9.2 In the past, all living things were classified in either the kingdom of animals or plants

SG 9.2 notes Ideas about targets and terms: 9.2 In the past, all living things were classified in either the kingdom of animals or plants Ideas about targets and terms: 9.2 In the past, all living things were classified in either the kingdom of animals or plants Euglena are singled celled organisms in pond water They are green, so contain,

More information

A. Correct! Taxonomy is the science of classification. B. Incorrect! Taxonomy is the science of classification.

A. Correct! Taxonomy is the science of classification. B. Incorrect! Taxonomy is the science of classification. DAT - Problem Drill 07: Diversity of Life Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully, (2) Work the problems on paper as 1. What is taxonomy? Question #01 (A) Taxonomy

More information

Classification Cladistics & The Three Domains of Life. Biology Mrs. Flannery

Classification Cladistics & The Three Domains of Life. Biology Mrs. Flannery Classification Cladistics & The Three Domains of Life Biology Mrs. Flannery Finding Order in Diversity Earth is over 4.5 billion years old. Life on Earth appeared approximately 3.5 billion years ago and

More information

Classification and Viruses Practice Test

Classification and Viruses Practice Test Classification and Viruses Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Biologists use a classification system to group organisms in part

More information

4. Which structure controls the amount of light that reaches the object being viewed?

4. Which structure controls the amount of light that reaches the object being viewed? Biology 2201 Midterm Name: Part A: Multiple Choice Questions Transfer Answers to the answer sheet attached at the back. 1. Which supports the cell theory? abiogenesis biogenesis comparative DNA spontaneous

More information

Plants. SC.912.L.14.7 Relate the structure of each of the major plant organs and tissues to physiological processes.

Plants. SC.912.L.14.7 Relate the structure of each of the major plant organs and tissues to physiological processes. Plants SC.912.L.14.7 Relate the structure of each of the major plant organs and tissues to physiological processes. 1. Students will explain how the structures of plant tissues and organs are directly

More information

Prokaryote vs. Eukaryote

Prokaryote vs. Eukaryote DIVERSITY OF LIVING THINGS Prokaryote vs. Eukaryote 1. Test Monday 2. Lab Report Rough Draft (typed) due Wednesday 3. Lab Report Due Friday Oct 7th 4. Letter to MP due Tuesday Oct 11 th CAROLUS LINNAEUS

More information

copyright cmassengale Kingdoms and Classification

copyright cmassengale Kingdoms and Classification 1 Kingdoms and Classification 2 Domains Broadest, most inclusive taxon Three domains Archaea and Eubacteria are unicellular prokaryotes (no nucleus or membrane-bound organelles) Eukarya are more complex

More information

Biology Test Review: Classification/Taxonomy

Biology Test Review: Classification/Taxonomy Name: Period: Biology Test Review: Classification/Taxonomy MAKE SURE YOUR BOOKLET IS COMPLETELY FINISHED! If you are missing information, it can be found on your teacher s webpage. I. Definitions Try to

More information

Phylogeny 9/8/2014. Evolutionary Relationships. Data Supporting Phylogeny. Chapter 26

Phylogeny 9/8/2014. Evolutionary Relationships. Data Supporting Phylogeny. Chapter 26 Phylogeny Chapter 26 Taxonomy Taxonomy: ordered division of organisms into categories based on a set of characteristics used to assess similarities and differences Carolus Linnaeus developed binomial nomenclature,

More information

What is classification?

What is classification? Classification Table of Contents Objectives Explain why and how organisms are classified. List the eight levels of classification. Explain scientific names. Describe how dichotomous keys help in identifying

More information

Chapter 1. How Do Biologists Study Life?

Chapter 1. How Do Biologists Study Life? Chapter 1 How Do Biologists Study Life? Biology is the study of life Biologists ask questions about all aspects of living organisms Bios logos means a discourse on life in Greek Biology has many sub-disciplines

More information

3) What are the names of the SIX kingdoms? Next to each one, write whether it is prokaryotic or Eukaryotic

3) What are the names of the SIX kingdoms? Next to each one, write whether it is prokaryotic or Eukaryotic Topic #1: Taxonomy 1) What is taxonomy? system of naming and classifying organisms 2) Name the eight levels of taxonomic categories, starting with the most general and ending with the most specific. Domain,

More information

Classification of Living Things Ch.11 Notes

Classification of Living Things Ch.11 Notes Classification of Living Things Ch.11 Notes Why do we classify things?! Supermarket aisles! Libraries! Classes! Teams/sports! Members of a family! Roads! Cities! Money What is classification?! Classification:

More information

What is classification? Basically classification is a fancy word for organization.

What is classification? Basically classification is a fancy word for organization. Classification What is classification? Basically classification is a fancy word for organization. Some Scientists believe there are as many as 200 million different kinds of living things on our planet.

More information

Unit 9: Taxonomy (Classification) Notes

Unit 9: Taxonomy (Classification) Notes Name Exam Date Class Unit 9: Taxonomy (Classification) Notes What is Classification? is when we place organisms into based on their. Classification is also known as. Taxonomists are scientists that & organisms

More information

Station 1. Explain how scientists use each item below to determine the evolutionary relationships among organisms. 1. Structural similarities:

Station 1. Explain how scientists use each item below to determine the evolutionary relationships among organisms. 1. Structural similarities: Station 1 Explain how scientists use each item below to determine the evolutionary relationships among organisms. 1. Structural similarities: 2. Breeding behavior: 3. Geographical distribution: 4. Chromosome

More information

The Plant Kingdom If you were to walk around a forest, what would you see? Most things that you would probably name are plants.

The Plant Kingdom If you were to walk around a forest, what would you see? Most things that you would probably name are plants. INTRODUCTION TO PLANTS The Plant Kingdom If you were to walk around a forest, what would you see? Most things that you would probably name are plants. Plants are abundant in almost every environment that

More information

An Introduction to the Science of Botany. Chapter 1

An Introduction to the Science of Botany. Chapter 1 An Introduction to the Science of Botany Chapter 1 TTU MS 43131 LEARNING OBJECTIVES Briefly describe the field of botany, and give short definitions of at least five subdisciplines of plant biology Summarize

More information

CLASSIFICATION NOTES

CLASSIFICATION NOTES CLASSIFICATION NOTES Classification Classification = arrangement of living things into groups according to their observed similarities. Important because it allows us to be able to study life easier Living

More information

Taxonomy. The science of naming organisms.

Taxonomy. The science of naming organisms. Taxonomy The science of naming organisms. Why Classify? Aristotle Did It Plant or animal? If an animal, does it Fly Swim Crawl Simple classifications Used common names Carolus Linnaeus did it better

More information

CLASSIFICATION. Similarities and Differences

CLASSIFICATION. Similarities and Differences CLASSIFICATION Similarities and Differences TEKS 8A: Students will define taxonomy and recognize the importance of a standard system to the scientific community 8B: Students will categorize organisms using

More information

Learning Outcome B1 13/10/2012. Student Achievement Indicators. Taxonomy: Scientific Classification. Student Achievement Indicators

Learning Outcome B1 13/10/2012. Student Achievement Indicators. Taxonomy: Scientific Classification. Student Achievement Indicators Classification of Living Organisms Learning Outcome B1 Learning Outcome B1 Apply the Kingdom System of classification to study the diversity of organisms. Student Achievement Indicators Students who have

More information

Objectives. Classification. Activity. Scientists classify millions of species

Objectives. Classification. Activity. Scientists classify millions of species Objectives Classification Notes 8.1 Summarize classification Describe the evidence used to classify organisms. List the seven levels of classification. Describe and list the six kingdoms of living organisms

More information

Plant Diversity & Evolution (Outline)

Plant Diversity & Evolution (Outline) Plant Diversity & Evolution (Outline) Review the Life cycle of Fungi Characteristics of organisms in the Kingdom Plantae. Evolution of plants: Challenges and adaptations to living on land Highlights of

More information

Unit 2B- The Plants. Plants can be classified according to the presence or absence of vascular tissue.

Unit 2B- The Plants. Plants can be classified according to the presence or absence of vascular tissue. Unit 2B- The Plants Botany is the study of plants. All plants are said to have a common ancestor; (ie.) it is thought that plants have evolved from an ancient group of green algae. Plants and green algae

More information

Plant Structure Size General Observations

Plant Structure Size General Observations Kingdom Plantae Plant Structure Size General Observations Diversity Within the Plant Kingdom Pine Trees What is a plant? Multicellular Eukaryotes Perform Photosynthesis (base of all terrestrial food chains)

More information

What is the purpose of the Classifying System? To allow the accurate identification of a particular organism

What is the purpose of the Classifying System? To allow the accurate identification of a particular organism What is the purpose of the Classifying System? To allow the accurate identification of a particular organism Taxonomy The practice of classifying organisms -Taxonomy was founded nearly 300 years ago by

More information

6 Kingdoms 1.Eubacteria 2.Archaebacteria 3.Protista 4.Fungi 5.Plantae 6.Animalia "Dear King Phillip Came Over From Greece Saturday"

6 Kingdoms 1.Eubacteria 2.Archaebacteria 3.Protista 4.Fungi 5.Plantae 6.Animalia Dear King Phillip Came Over From Greece Saturday Unit 7 Classification & Plants What you Need to Know: Classification: Classification, Taxonomy, Binomial Nomenclature + Scientific Names, Kingdoms, Cladograms, Kingdoms and Domains // Characteristics of

More information

Chapter What is a Plant? Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Chapter What is a Plant? Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Chapter 22.1 Biology What is a Plant? 1 of 33 Objectives 1. Describe the basic characteristics of life. 2. Describe what plants need to survive. 3. Describe the life cycle of plants. 4. Describe how the

More information

CLASSIFICATION. Why Classify? 2/18/2013. History of Taxonomy Biodiversity: variety of organisms at all levels from populations to ecosystems.

CLASSIFICATION. Why Classify? 2/18/2013. History of Taxonomy Biodiversity: variety of organisms at all levels from populations to ecosystems. Why Classify? Classification has been around ever since people paid attention to organisms. CLASSIFICATION One primeval system was based on harmful and non-harmful organisms. Life is easier when we organize

More information

Kingdoms in Eukarya: Protista, Fungi, Plantae, & Animalia Each Eukarya kingdom has distinguishing characteristics:

Kingdoms in Eukarya: Protista, Fungi, Plantae, & Animalia Each Eukarya kingdom has distinguishing characteristics: NAME pg. 1 Classification Domain Kingdom Phylum Class Order Family Genus species Eukarya Animalia Chordata Mammalia Primate Hominidae Homo sapiens Mnemonic: DUMB KING PHILIP CAME OVER FOR GOOD SOUP Domain

More information

9/19/2012. Chapter 17 Organizing Life s Diversity. Early Systems of Classification

9/19/2012. Chapter 17 Organizing Life s Diversity. Early Systems of Classification Section 1: The History of Classification Section 2: Modern Classification Section 3: Domains and Kingdoms Click on a lesson name to select. Early Systems of Classification Biologists use a system of classification

More information

1.1 Characteristics of Life Block: Date:

1.1 Characteristics of Life Block: Date: Biology 12 Name: 1.1 Characteristics of Life Block: Date: ization of Life (p. 3) Definition Cell Example Blood cell Tissue Muscle tissue Several tissues joined together to form a function system Circulatory

More information

1. Which of the following is a virus? C D. 2. Which of the following is found in both cells and viruses?

1. Which of the following is a virus? C D. 2. Which of the following is found in both cells and viruses? TEKS 4C compare the structures of viruses to cells, describe viral reproduction, and describe the role of viruses in causing diseases such as human immunodeficiency virus (HIV) and influenza 1. Which of

More information

Chapter 18: Classification Structured Notes

Chapter 18: Classification Structured Notes Chapter 18: Classification Structured Notes Why Classify? 1) ) Taxon = Taxonomy = Field of biology that deals with classifying and naming organisms Taxonomist = is a scientists who determines relationships

More information

Biodiversity and Classification

Biodiversity and Classification Biodiversity and Classification BIODIVERSITY AND CLASSIFICATION Biodiversity of life on earth There are a great variety of organisms (plants and animals) which co-inhabit the earth. These organisms occur

More information

Behavioral and Structural Adaptations PPT Guided Notes

Behavioral and Structural Adaptations PPT Guided Notes A Essential Standard 2.1.2 Analyze how various organisms accomplish the following life functions through adaptations with particular environments and that these adaptations have evolved to ensure survival

More information

Have cell walls Made of

Have cell walls Made of _ are unicellular fungi _ are multicellular fungi And can only Reproduce Using Can also reproduce Can spread using Because they do not make their own food Hyphae Mycelium Fruiting Body Heterotrophs Budding

More information

Taxonomy and Biodiversity

Taxonomy and Biodiversity Chapter 25/26 Taxonomy and Biodiversity Evolutionary biology The major goal of evolutionary biology is to reconstruct the history of life on earth Process: a- natural selection b- mechanisms that change

More information

Building the Tree of Life

Building the Tree of Life 18.3 Building the Tree of Life Changing Ideas About Kingdoms This diagram shows some of the ways in which organisms have been classified into kingdoms since the 1700s. Three Domains Genetic analysis has

More information

Classification. A. Why classify?

Classification. A. Why classify? Classification A. Why classify? 1. Organize in a meaningful way Too many living things to talk about without organization 2. Universal naming All scientists everywhere use the one same name. For example:

More information

Autotrophs/producers- make own energy through

Autotrophs/producers- make own energy through Name Class EXAM Date Unit 11 Plant Kingdom Characteristics of Plants Multicellular- made of cells Eukaryotes- have & membrane bound organelles Cell - made of Autotrophs/producers- make own energy through

More information

1. Construct and use dichotomous keys to identify organisms. 2. Define scientific name and the binomial system of nomenclature.

1. Construct and use dichotomous keys to identify organisms. 2. Define scientific name and the binomial system of nomenclature. OBJECTIVE SHEET TAXONOMY 1. Construct and use dichotomous keys to identify organisms. 2. Define scientific name and the binomial system of nomenclature. 3. Name and describe the general characteristics

More information

Chapter 26 Phylogeny and the Tree of Life

Chapter 26 Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life Biologists estimate that there are about 5 to 100 million species of organisms living on Earth today. Evidence from morphological, biochemical, and gene sequence

More information

Activity Activity Title. Chapter Title Chapter Description Lesson Title Lesson Description Introduction to Living Things

Activity Activity Title. Chapter Title Chapter Description Lesson Title Lesson Description Introduction to Living Things Introduction to Living Things Students will explore the characteristics of living things, life cycles, stimuli and behavior, and how organisms maintain homeostasis. Characteristics of Living Things differentiate

More information

BIOLOGY UNIT 4 COMMON ASSESSMENT

BIOLOGY UNIT 4 COMMON ASSESSMENT 1. Scientists used to group fungi with plants. Which of the following is a major factor that determines why fungi are not classified as part of the plant kingdom? A. Fungi do not have chitin B. Fungi grow

More information

Chapter 1-Plants in Our World

Chapter 1-Plants in Our World Chapter 1-Plants in Our World Formation of earth-4.5-4.6 billion years ago Evidence of life from organic material-3.8 billion years ago Many cyanobacteria are photosynthetic, but these microscopic organisms

More information

How are living things classified?

How are living things classified? Classification Systems How are living things classified?! Learning Goals 12, 13, 14, 15 & 16 on your rubric! TAXONOMY: The study of classification, or how living things are grouped! Aristotle classified

More information

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals Introduction to Animals Table of Contents Objectives Identify four important characteristics of animals. List two kinds of tissues found only in animals. Explain how the first animals may have evolved

More information

Evolution and Biodiversity 5.3- Classification and Biodiversity

Evolution and Biodiversity 5.3- Classification and Biodiversity Essential idea: Species are named and classified using an internationally agreed system. Evolution and Biodiversity 5.3- Classification and Biodiversity Nature of science: Cooperation and collaboration

More information

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen What Is an Animal? Section 25.1 Typical Animal Characteristics Biology II Mrs. Michaelsen I. Characteristics of Animals A. All animals are eukaryotic, multicellular, have ways of moving to reproduce, obtain

More information

Kingdoms of organisms. Presented by Dr. Jeya Kennedy 2014

Kingdoms of organisms. Presented by Dr. Jeya Kennedy 2014 Kingdoms of organisms Presented by Dr. Jeya Kennedy 2014 Learning Objectives: At the end you should be able to: Define biology and distinguish between living and nonliving things by describing the features

More information

Classification. Species of Organisms. What is Classification?

Classification. Species of Organisms. What is Classification? Classification 1 Species of Organisms There are known species of organisms This is organisms that ever lived!!!!! are still being found and identified 2 What is Classification? is the arrangement of organisms

More information

Education Transformation Office (ETO) 8 th Grade Unit #4 Assessment

Education Transformation Office (ETO) 8 th Grade Unit #4 Assessment Education Transformation Office (ETO) 8 th Grade Unit #4 Assessment 1. Which of these shows the correct hierarchical sequence? A. organs cells tissues organ systems B. cells tissues organs organ systems

More information

Finding Order in Diversity

Finding Order in Diversity Finding Order in Diversity Videos Scishow Taxonomy: https://youtu.be/f38bmgpcz_i Bozeman Taxonomy: https://youtu.be/tyl_8gv7rie Terms to Know 1. Radiometric Dating 12. Miller and Urey s 2. Geologic Time

More information

McDougal Littell Science, Cells and Heredity MAZER PDF. IL Essential Lesson. IL Extend Lesson. Program Planning Guide LP page.

McDougal Littell Science, Cells and Heredity MAZER PDF. IL Essential Lesson. IL Extend Lesson. Program Planning Guide LP page. s7an-ppg-pc-il-002-012.indd 2 7/18/05 2:46:40 PM 2 McDougal Littell Science, Cells and Heredity Chapter 1: The Cell, pp. 6 37 1.1 The cell is the basic unit of living things. pp. 9 17 Explore: Activity

More information

Carolus Linnaeus System for Classifying Organisms. Unit 3 Lesson 2

Carolus Linnaeus System for Classifying Organisms. Unit 3 Lesson 2 Carolus Linnaeus System for Classifying Organisms Unit 3 Lesson 2 Students will be able to: Conclude some of the classification benefits and importance. Define what is meant by species. Describe the binomial

More information