Lecture 6 Environmental microbiology and Aqueous Geochemistry of Natural Waters

Size: px
Start display at page:

Download "Lecture 6 Environmental microbiology and Aqueous Geochemistry of Natural Waters"

Transcription

1 Lecture 6 Environmental microbiology and Aqueous Geochemistry of Natural Waters Please read these Manahan chapters: Ch 5 (aquatic microbial biochemistry) Ch 21 (environmental biochemistry) (Aquatic) Microbial Biochemistry Almost all geochemical processes that occur within the exogenic cycle are influenced by biological activity Some examples include: production/ consumption of organic matter oxidation-reduction dissolution/ precipitation of inorganic materials. Many polluted/contaminated environments are also rife with microbial life and associated chemical transformations. 1

2 All organisms can be classified as either producers - those that utilize light or other energy sources to create complex organic molecules (autotrophs) or reducers - those that re-extract energy by breaking down those organic molecules (heterotrophs) producers reducers Microorganisms can also be classified based on where they derive their energy and carbon: Respiration Energy sources Carbon sources Organic matter Inorganic carbon (CO 2, HCO 3- ) Chemical Chemoheterotrophs All fungi and protozoans, most bacteria. Chemoheterotrophs use organic sources for both energy and carbon. Chemoautotrophs Use CO 2, for biomass and oxidize substances such as H 2 (Pseudomonas), NH 4+, (Nitrosomonas), S (Thiobacillus) for energy Photochemical (light) Photoheterotrophs A few specialized bacteria that use photoenergy, but are dependent on organic matter for a carbon source Photoautotrophs Algae, cyanobacteria ("bluegreen algae"), photosynthetic bacteria that use light energy to convert CO 2 (HCO 3- ) to biomass by photosynthesis Figure 6.2. (Manahan) Classification of microorganisms among chemoheterotrophs, chemoautotrophs, photo- heterotrophs, and photoautotrophs. harvest solar energy, but can t synthesize organic matter from inorganic carbon - rare. Carbon fixation (synthesize organic matter from inorganic carbon) w/o energy from sun light: use chemical energy not solar energy. Photosynthesis 2

3 Photoautotrophs and Photosynthesis Algae are one important class of producer, Photoautotroph, aquatic microorganism that conduct photosynthesis. Photosynthesis can be crudely abbreviated as [A]. nco 2 + nh 2 O [CH 2 O] n + no 2 where [CH 2 O] n is generic carbohydrate. photosynthetic production of organic matter actually requires other nutrients, particularly N and P. Our text gives a somewhat more accurate equation for photosynthesis by aquatic organisms: the Fogg formula Wikimedia Commons [B]. 5.7CO H 2 O +NH 3 C 5.7 H 9.8 O 2.3 N O 2 [C]. We use a still better depiction: the Redfield equation 106CO 2 +16NO 3- + HPO H 2 O +18H + C 106 H 263 O 110 N 16 P + 138O 2 or (CH 2 O) 106 (NH 3 ) 16 (H 3 PO 4 ) + 138O 2 Green algae The Redfield ratio C:O:N:P=106:110:16:1 is an important relationship to remember. The Redfield Ratio is a mean value for aquatic autotrophs that holds to within a percent for marine phytoplankton and maybe a few percent for most freshwater organisms. In all three versions of the photosynthesis reaction, Respiration is the reverse reaction. 3

4 notice important stoichiometric relationships N and P "move" in these ratios in much of the hydrosphere O 2 (+)/ CO 2 (-) = 138/106 = 1.3 N (+)/ P (+) = 16/1 = 16 CO 2 (+)/ N (+) = 106/16 = 6.6 CO 2 (+)/ P (+) = 106/1 =106 O 2 (+)/ N(-) = 138/16 = 8.6 & O 2 (+)/ P(-) = 138/1 = 138 also... Photosynthesis consumes hydrogen ions. Respiration liberates hydrogen ions N (+)/ H + (+) = 16/18 = 0.9 (about equal) CO 2 (+)/ H + (+) = 106/18 = 5.9 Notice the signs of all of these changes. e.g., as O 2 diminishes, CO 2, NO 3- and PO 4 3- all increase. This is occurs at excess respiration over photosynthesis. The opposite is true during photosynthesis ("free" N, P and C are consumed and O 2 is liberated) (Aquatic) Microbial Biochemistry Your book divides microorganisms into 2 categories Eukaryotes: (having well-defined cell nuclei enclosed in a membrane). These include Plants, Fungi, Animals, etc. Only some eukaryotes are microorganisms Prokaryotes: (lacking in nuclei and having genetic material more dispersed through out the cell). These include "True bacteria" and possibly precursor organisms to cellular organelles such as mitochondria or chloroplasts. All prokaryotes are microorganisms. cyanobacteria (previously known as bluegreen algae) are an ancient bacteria group that are photosynthetic prokaryotes. 4

5 There are two taxonomic types of Prokaryote in this classification scheme: Bacteria and Archaea (or Archaebacteria). Archaea were first discovered in the 1970s. Archaea exist in some of the most extreme environments on Earth (high temperature, low temperature, high pressure, etc..), as well as more normal settings. Together with some bacterial groups, they are likely candidates organisms for extra-terrestrial environments. Archaea include very ancient types of organisms that are "tuned" to survive in special environments; some are chemosynthetic; i.e., producers that use chemical energy sources to synthesize biomolecules (e.g., Methanogens, Halophiles, Sulfolobus, and their relatives). Methanococcus janaschii Microorganisms are widely dispersed in the environment. Many exploit specific ecological niches at chemical or physical interfaces where food sources tend to accumulate. For example: The air-sea interface Biofilms coating rocks or water A microbial mat The sediment-water interface oxidized-reduced interface in soils, sediments, etc. 5

6 No organisms have a greater effect on more environments than microorganisms Another key aspect of bacteria & archaea are their small size: 0.5 µm to several µm. This size and their broad ranges of shapes gives bacteria surface area to volume ratios that are times larger than eukaryotic cells. This means that a relatively small bacterial biomass can have a very large impact on natural waters, compared to a similar mass of Eukaryotic cells. Lifestyles of the small and not so famous bacteria are small and widely dispersed in the environment. Bacteria have relatively simple life cycles, which may last only hours to years. Nevertheless, bacteria can effect very rapid chemical transformations in aquatic environments. Fecal coliform bacteria from a polluted stream. a typical view of a marine microbial community stained with SYBR Gold 2X Marine bacteria, St. Petersburg, FL, USA 6

7 Bacterial population dynamics After "getting used to" a new environment (the lag phase), growth progresses in exponential fashion (the log phase). Exponential growth continues until some resource (space, food, etc..) is used up or some other byproduct of metabolism accumulates to toxic concentration (stationary phase). The death phase begins some time after this. From Manahan, Environmental Chemistry Temperature, substrate concentration, and variables like ph also control bacterial growth and activity rates. The effects of substrate concentration, temperature and ph on bacterial metabolism are shown below. Many bacteria are adapted to live and flourish in semi restricted ranges of ph and temperature. Bacterial metabolism rates are measured by enzymatic activity, the enzyme being used in some way to catalyze a reaction that occurs during growth. Under favorable conditions bacterial growth can be extremely rapid. From Manahan, Environmental Chemistry 7

8 Classification of microorganism types 2 approaches to the tree of life classification of organisms: the traditional 5 kingdoms approach using physiological differences (Linnaean Phylogeny) 16S rrna using genetic differences (molecular phylogeny) 5 kingdoms approach 16S rrna Uses size, structure and behavior uses genetic differences Stick length reflects extent of difference in genetic make-up Microorganisms emphasized in the lecture are highlighted in red. Figure from Nealson, Ann. Rev Earth Planet. Sci. 8

9 Physical differences amongst eukaryotes, e.g., animals, are much greater than amongst the procaryotes, leading to the large animal branch and the small procharea branches in the classical phylogeny Figure from Nealson, Ann. Rev Earth Planet. Sci. Metabolic differences: big rrna differences between bacteria (compared to for instance all animals), largely reflects the wide range of bacterial (and archaeal) metabolisms vs. the limited variation in animals. The current view of Life s Major Domains 9

10 Bacterial metabolism Heterotrophic metabolism is based on the oxidation of organic chemicals, such as sugars, proteins, etc.., to yield ATP and simpler organic compounds. These chemicals are in turn used by bacterial cells for biosynthethesis or for transformative and assimilatory reactions. Bacterial metabolism 2 related activities Bacterial anabolism: the physiological and biochemical activities for acquisition, synthesis, and organization of the chemical constituents of a bacterial cell. Bacterial catabolism: the biochemical activities for the net breakdown of complex substances to simpler substances by living cells. Substances with a high energy level are converted to substances of low energy content, and the organism utilizes a portion of the released energy for cellular processes. 10

11 Bacterial metabolism anabolism Raw materials Complex bio molecules ATP cycle catabolism Usable energy Bacteria and Archaea As mentioned earlier, these prokaryotes include both heterotrophs and autotrophs. Together, these microscopic organisms are responsible for many of the important transformations of organic and inorganic matter in the environment, such as oxidation and reduction processes in aquatic environments. Recall from last time Aerobic Respiration Recall, respiring organisms utilize O 2 H 2 O to oxidize organic matter. Anaerobic Respiration Once O 2 is used up, various bacteria continue to oxidize available organic matter to derive energy for their metabolism, leading to the redox-ladder. They play a vital role in poising pe and thus governing the geochemistry of many metals in the hydrosphere. 11

12 Redox Ladder transformations of Fe by Chemoautotrophs in polluted Environments: Examples from acid mine drainage Ground or surface waters issuing from metal ore mines are often acidic because of the oxidation of pyrite associated with the ore body. 4FeS 2 (s) + 14O 2 (g) + 4H 2 O(l) 4Fe 2+ (aq) + 8SO 4 2- (aq) + 8H+(aq) Abiotic pyrite oxidation to produce ferric ions and hydrogen ions is slow. 30,000X magnification But Thiobacillus ferrooxidans (left) catalyzes the oxidation of FeS 2, producing ferric ions and hydrogen ions. It is responsible for iron and inorganic sulfur oxidation of in mine tailings and coal deposits where these compounds are abundant. Subsequent Fe 2+ oxidation by organisms like Gallionella produces Fe 3+ in these environments (next 2 slides) Gallionella is a microbe that catalyzes Fe oxidation to get energy. 4Fe 2+ (aq) + O 2 (g) + 4H + (aq) 4Fe 3+ (aq) + 2H 2 O(l) 12

13 This organism probably produces Fe-hydroxide strands as a means of eliminating waste Fe(III) 4Fe 3+ (aq) + 12 H 2 O(l) 4Fe(OH) 3 (s) + 12H + (aq) Fe(OH) 3 precipitates cause a rusty color in acid mine drainage waters. Low ph makes these waters quite corrosive in the environment, an attribute that remediation needs to eliminate. stry/acidminedrainage.html see also a related site for a great description of Cr(VI) remediation: rriers/cr-tce_treatment/cr-tce_treatment.html 13

14 Artificial wetland as passive treatment of acid mine drainage. Abundant plant organic matter provides reducing capacity required to drive waters anoxic, allowing microbial sulfate reduction to kick-in. What are the beneficial consequences of this? Microbes and Material Transformation in Exogenic Cycles and Ecosystems Microbes play numerous important roles in chemical transformations in Earth s surface reservoirs. 14

15 Microbes are responsible for: a. fixation of the nutrient element N to biologically usable forms b. regeneration of nutrient elements from decaying organic matter (cycling nutrients through an ecosystem multiple times) c. releasing inorganic nutrients from minerals. Microbes and organic matter cycling Microbes play an essential role in the cycling of organic matter in various subreservoirs of a healthy ecosystem via the reaction types we have just discussed (and many others) 15

16 Microbes and Elemental Cycling The nitrogen cycle stands out as being particular dependent upon microbial activity because of the wide number of oxidation states and forms of Nitrogen, whose transformations are microbialy-mediated. Microbes and Elemental Cycling Nitrogen is very important in metabolic pathways and is an abundant element in Earth's exogenic environment (e.g., it is the most abundant element in the atmosphere). But... the most common form of nitrogen (N 2 ) is not utilizable by most organisms. For instance, we breath N 2 in and out thousands of time each day without changing it. It is largely through the action of microorganism that "fix" N 2 molecules to either oxidized or reduced forms, that N is made usable to the rest of the biosphere for biomolecule synthesis. 16

17 Microbes and Elemental Cycling Most biomolecules are based on Nitrogen Nitrogen in the -3 oxidation state (e.g., amines and amino acids). N +5 in NO 3- is the form of N that is easiest for plants to absorb from the environment. Oxidized forms such as this can be absorbed by organisms but must then be enzymatically reduced to N -3 be used in OM synthesis. Biological nitrogen fixation The primary Nitrogen fixation mechanism is by reduction to ammonia via the enzyme nitrogenase, which contains Fe S - Mo cluster complexes as electron transfer centers. Redox! MoFe protein-fe protein complex from involved in nitrogen conversion to ammonia. 17

18 Biological nitrogen fixation Energy Intensive: It takes a great deal of energy to break the N N triple bond in N 2. Energy Source: Microbial nitrogen reduction ( fixation ) by nitrogenase uses energy from soil organic matter or from sunlight stored in ATP. When microbes have a symbiotic relationship with a the host plant the plant often provides the energy source as fixed OM. Locally Reducing Conditions: Nitrogenase is very sensitive to oxygen, therefore the organism or its host adopts strategies to exclude oxygen from the sites of nitrogenase activity. Biological nitrogen fixation N 2 is converted into plant-utilizable oxidation states by a few genera of microorganisms, providing an important source of this nutrient to natural and agricultural ecosystems. Nitrogen fixing bacteria take two main forms: free-iiving in soil symbiosis with plants. 18

19 Nitrogen-fixing bacteria form symbiotic associations with the roots of legumes (e.g., clover and lupine) and trees (e.g., alder and locust). Visible nodules are created where bacteria infect a growing root hair. Nodules formed where Rhizobium bacteria infected soybean roots. The plant supplies simple carbon compounds to the bacteria, and the bacteria convert N 2 into a form the plant host can use. When leaves or roots from the host plant decompose, soil nitrogen increases in the surrounding area. Phosphorous cycling is less dependent on microbial transformations that convert oxidation state, but microorganisms in soil and water do control transformations between organic and inorganic forms. hydrosphere Anthrosphere biosphere geosphere 19

20 Fungal Microorganism and Phosphorous Cycling Arbuscular mycorrhizas are an important type of fungus found on the vast majority of wild and crop plants, with an important role in mineral nutrient uptake (especially Phosphorous) and sometimes in protecting against drought or pathogenic attack. The fungus obtains sugars from the plant, and the plant obtains mineral nutrients that the fungus absorbs from the soil. Root hairs arbuscules Vesicles Part of a clover root infected by an AM fungus. The site of penetration is shown at top right, where the fungus produced a pre-penetration swelling, (then it grew between the root cells and formed finely branched arbuscules (thought to be sites of nutrient exchange) and swollen vesicles (thought to be used for storage). 20

Prokaryotes Vs. Eukaryotes

Prokaryotes Vs. Eukaryotes The Microbial World Prokaryotes Vs. Eukaryotes Mircrobes of the Ocean Primary Producers Are the organisms that produce bio-mass from inorganic compounds (autotrophs). -Photosynthetic autotrophs Phytoplankton

More information

The Prokaryotic World

The Prokaryotic World The Prokaryotic World A. An overview of prokaryotic life There is no doubt that prokaryotes are everywhere. By everywhere, I mean living in every geographic region, in extremes of environmental conditions,

More information

ET Life #17. Today: Reminders: Energy of Life. Paper Proposal Due Friday First Mid-term Next Monday

ET Life #17. Today: Reminders: Energy of Life. Paper Proposal Due Friday First Mid-term Next Monday ET Life #17 Today: Energy of Life Reminders: Paper Proposal Due Friday First Mid-term Next Monday Origin of Life: Summary 1. Early Organic Molecules 2. Complex organics developed (mineral templates?).

More information

Chapter 19 Notes Kingdoms Archaebacteria andeubacteria

Chapter 19 Notes Kingdoms Archaebacteria andeubacteria Chapter 19 Notes Kingdoms Archaebacteria andeubacteria All bacteria are Prokaryotic. This means that they are organisms that are one-celled and do not contain a nucleus or other membrane bound organelles.

More information

Chapter 1. Basics of Microbiology

Chapter 1. Basics of Microbiology Chapter 1 Basics of Microbiology Objectives How microorganisms are classified (taxonomy) What they look like (morphology) The major divisions among microorganisms based upon their function in the environment

More information

Kingdom Monera(Archaebacteria & Eubacteria)

Kingdom Monera(Archaebacteria & Eubacteria) Kingdom Monera(Archaebacteria & All bacteria are prokaryotes Characteristics: 1. No nucleus Eubacteria) 2. No membrane bound organelles 3. Smaller & less ribosomes 4. Most are smaller than eukaryotes 5.

More information

CHAPTER 5 WARM UPS. Mrs. Hilliard

CHAPTER 5 WARM UPS. Mrs. Hilliard CHAPTER 5 WARM UPS Mrs. Hilliard CHAPTER 5 VOCABULARY 1. Photosynthesis 2. Cellular respiration 3. Producer 4. Consumer 5. Decomposer 6. Food chain 7. Food web 8. Trophic level 9. Carbon cycle 10. Nitrogen-fixing

More information

Page 1. Name: UNIT: PHOTOSYNTHESIS AND RESPIRATION TOPIC: PHOTOSYNTHESIS

Page 1. Name: UNIT: PHOTOSYNTHESIS AND RESPIRATION TOPIC: PHOTOSYNTHESIS Name: 4667-1 - Page 1 UNIT: PHOTOSYNTHESIS AND RESPIRATION TOPIC: PHOTOSYNTHESIS 1) The diagram below illustrates the movement of materials involved in a process that is vital for the energy needs of organisms.

More information

Kingdom Bacteria Kingdom Archaea

Kingdom Bacteria Kingdom Archaea Section 5.1 Kingdom Bacteria Kingdom Archaea p. 132-139 Kingdom Bacteria General Characteristics: Cell Type: all are prokaryotic. Body Form: most are unicellular, some are colonial. Three main shapes are:

More information

Lecture 16: Soil Acidity; Introduction to Soil Ecology

Lecture 16: Soil Acidity; Introduction to Soil Ecology Lecture 16: Soil Acidity; Introduction to Soil Ecology Aluminum and Soil Acidity Aluminum Toxicity in Acid Soils Tolerant Sensitive Tolerant Sensitive Plants often are sensitive to the presence of dissolved

More information

Soil Biology. Chapter 10

Soil Biology. Chapter 10 Soil Biology Chapter 10 The Sounds of Soil Soil as a Transition Between Aquatic and Aerial System Bacteria in a Drying Environment Wet (open structure) Dry (dense) Holden P.A., J.R. Hunt, and M. K. Firestone,

More information

Classifying Prokaryotes: Eubacteria Plasma Membrane. Ribosomes. Plasmid (DNA) Capsule. Cytoplasm. Outer Membrane DNA. Flagellum.

Classifying Prokaryotes: Eubacteria Plasma Membrane. Ribosomes. Plasmid (DNA) Capsule. Cytoplasm. Outer Membrane DNA. Flagellum. Bacteria The yellow band surrounding this hot spring is sulfur, a waste product of extremophilic prokaryotes, probably of the Domain Archaea, Kingdom Archaebacteria. Bacteria are prokaryotic cells (no

More information

Mineral and Organic Components. Soil Organisms, Biology, and Nutrients. Homework III: The State Soil of Florida. Posted on website.

Mineral and Organic Components. Soil Organisms, Biology, and Nutrients. Homework III: The State Soil of Florida. Posted on website. Homework III: The State Soil of Florida Posted on website 5 bonus points Type all answers Soil Organisms, Biology, and Nutrients Mineral and Organic Components Functions of soils: recycler of raw materials

More information

13. The diagram below shows two different kinds of substances, A and B, entering a cell.

13. The diagram below shows two different kinds of substances, A and B, entering a cell. Name 1. In the binomial system of nomenclature, which two classification groups provide the scientific name of an organism? A) kingdom and phylum B) phylum and species C) kingdom and genus D) genus and

More information

Energy in the World of Life

Energy in the World of Life Cellular Energy Energy in the World of Life Sustaining life s organization requires ongoing energy inputs Assembly of the molecules of life starts with energy input into living cells Energy Conversion

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs self-feeders Capture free energy from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 16. Phylogenetic tree. Metabolism. Carbon and

More information

Lecture 2 Carbon and Energy Transformations

Lecture 2 Carbon and Energy Transformations 1.018/7.30J Fall 2003 Fundamentals of Ecology Lecture 2 Carbon and Energy Transformations READINGS FOR NEXT LECTURE: Krebs Chapter 25: Ecosystem Metabolism I: Primary Productivity Luria. 1975. Overview

More information

PHOTOSYNTHESIS Student Packet SUMMARY

PHOTOSYNTHESIS Student Packet SUMMARY PHOTOSYNTHESIS Student Packet SUMMARY LIVING SYSTEMS REQUIRE ENERGY AND MATTER TO MAINTAIN ORDER, GROW AND REPRODUCE Energy input must exceed energy lost and used by an organism. Organisms use various

More information

Chapter 8.1. How Organisms Obtain Energy

Chapter 8.1. How Organisms Obtain Energy Chapter 8.1 How Organisms Obtain Energy Main Idea All living organisms use energy to carry out all biological processes. Energy Energy is the ability to do work. Quick Review: Heterotrophs are organisms

More information

Oceans: the cradle of life? Chapter 5. Cells: a sense of scale. Head of a needle

Oceans: the cradle of life? Chapter 5. Cells: a sense of scale. Head of a needle Oceans: the cradle of life? Highest diversity of life, particularly archae, bacteria, and animals Will start discussion of life in the ocean with prokaryote microorganisms Prokaryotes are also believed

More information

Chapter 03 Lecture Outline

Chapter 03 Lecture Outline Chapter 03 Lecture Outline William P. Cunningham University of Minnesota Mary Ann Cunningham Vassar College Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1

More information

The Tree of Life. Metabolic Pathways. Calculation Of Energy Yields

The Tree of Life. Metabolic Pathways. Calculation Of Energy Yields The Tree of Life Metabolic Pathways Calculation Of Energy Yields OCN 401 - Biogeochemical Systems 8/27/09 Earth s History (continental crust) 170 Oldest oceanic crust Ga = billions of years ago The Traditional

More information

Bio Ch 6 Photosynthesis Notes

Bio Ch 6 Photosynthesis Notes Bio Ch 6 Photosynthesis Notes I. Photosynthesis Basics A. What is photosynthesis? 1. Photosynthesis is a chemical reaction in which light energy is converted to chemical energy in glucose. 2. It is the

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs Capture from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic molecules (occurs

More information

Overview of Photosynthesis *

Overview of Photosynthesis * OpenStax-CNX module: m47330 1 Overview of Photosynthesis * Robert Bear David Rintoul Based on Overview of Photosynthesis by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative

More information

Energy and Matter. Principles of Biology. Organisms interact with their environment, exchanging energy and matter. Topics Covered in this Module

Energy and Matter. Principles of Biology. Organisms interact with their environment, exchanging energy and matter. Topics Covered in this Module Principles of Biology contents 2 Energy and Matter Organisms interact with their environment, exchanging energy and matter. The Sun. Most ecosystems receive their energy from the Sun's radiation. NASA/European

More information

The invention of the microscope has opened to us a world of extraordinary numbers. A singular drop of pond water reveals countless life forms

The invention of the microscope has opened to us a world of extraordinary numbers. A singular drop of pond water reveals countless life forms Biology Chapter 19 Notes - Bacteria and Viruses The invention of the microscope has opened to us a world of extraordinary numbers. A singular drop of pond water reveals countless life forms I. Classifying

More information

chapter five: microbial metabolism

chapter five: microbial metabolism chapter five: microbial metabolism Revised 9/22/2016 oxidation-reduction redox reaction: coupled reactions e- donor oxidized donor Ox Red ADP + P i ATP Ox Red reduced A chemical A redox reactions aerobic

More information

First, an supershort History of the Earth by Eon

First, an supershort History of the Earth by Eon HISTORY OF LIFE WRITTEN IN THE ROCKS (geological record): notice how at first no life, very simple if for billions of years, complex life only recently 600 mya In these chapters, two primary themes: History

More information

Lecture 5. More Aqueous Geochemistry of Natural Waters OXIDATION/REDUCTION (aka Redox)

Lecture 5. More Aqueous Geochemistry of Natural Waters OXIDATION/REDUCTION (aka Redox) Lecture 5 More Aqueous Geochemistry of Natural Waters OXIDATION/REDUCTION (aka Redox) Redox state and ph are two fundamental controls on chemical make up of natural and non-natural waters. Pease read chapter

More information

Life: Levels of Organization, Cell Structure & Function, Major Processes for Fueling Life s Activity

Life: Levels of Organization, Cell Structure & Function, Major Processes for Fueling Life s Activity 1 EVPP 110 Lecture Dr. Largen - Fall 2003 Life: Levels of Organization, Cell Structure & Function, Major Processes for Fueling Life s Activity 2 Levels of Organization of Life Levels of organization of

More information

The branch of biology dealing with interactions among organisms and between organisms and their environment is called. ecology.

The branch of biology dealing with interactions among organisms and between organisms and their environment is called. ecology. The branch of biology dealing with interactions among organisms and between organisms and their environment is called ecology. The simplest grouping of more than one kind of organism in the biosphere is

More information

10/4/2016. Matter, Energy, and Life

10/4/2016. Matter, Energy, and Life DISCLAIMER: Principles and concepts on atomic structure, the Periodic Table, atoms, ions, ionic and covalent compounds, metals, and nonmetals will not be covered in this course. You are expected to know

More information

Outline. Viruses, Bacteria, and Archaea. Viruses Structure Classification Reproduction Prokaryotes Structure Reproduction Nutrition Bacteria Archaea

Outline. Viruses, Bacteria, and Archaea. Viruses Structure Classification Reproduction Prokaryotes Structure Reproduction Nutrition Bacteria Archaea Viruses, Bacteria, and Archaea Chapter 21 Viruses Structure Classification Reproduction Prokaryotes Structure Reproduction Nutrition Bacteria Archaea Outline The Viruses The Viruses Viruses are noncellular

More information

Ch. 9 - Cellular Respiration/Fermentation Study Guide

Ch. 9 - Cellular Respiration/Fermentation Study Guide Ch. 9 - Cellular Respiration/Fermentation Study Guide A. Introduction 1. All living things need energy for metabolism. a. Plants produce glucose through photosynthesis; break down glucose during cellular

More information

BIOLOGY. Photosynthesis CAMPBELL. Concept 10.1: Photosynthesis converts light energy to the chemical energy of food. Anabolic pathways endergonic

BIOLOGY. Photosynthesis CAMPBELL. Concept 10.1: Photosynthesis converts light energy to the chemical energy of food. Anabolic pathways endergonic 10 Photosynthesis CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick energy ECOSYSTEM CO 2 H 2 O Organic O 2 powers

More information

1 Name. ECOSYSTEMS: THE ROLE OF ABIOTIC FACTORS from the series Biology: The Science of Life Pre-Test

1 Name. ECOSYSTEMS: THE ROLE OF ABIOTIC FACTORS from the series Biology: The Science of Life Pre-Test 1 Pre-Test Directions: Answer each of the following either true or false: 1. In ecosystems, non-living (abiotic) factors usually have insignificant effects on living things. True False 2. Carbon dioxide

More information

S Illustrate and explain how carbon, nitrogen, and oxygen are cycled through an ecosystem.

S Illustrate and explain how carbon, nitrogen, and oxygen are cycled through an ecosystem. Biogeochemical Cycles S2-1-01 Illustrate and explain how carbon, nitrogen, and oxygen are cycled through an ecosystem. Biogeochemical Cycles Let s take a closer look at the interactions between LIVING

More information

Outcome: Explain the process of photosynthesis.

Outcome: Explain the process of photosynthesis. Outcome: Explain the process of photosynthesis. Warm-up: 1. Compare the two types of cells. Give examples for each. 2. Using double bubble map, differentiate plants and animal cells. 3. What organelles

More information

Name Date Class. Photosynthesis and Respiration

Name Date Class. Photosynthesis and Respiration Concept Mapping Photosynthesis and Respiration Complete the Venn diagram about photosynthesis and respiration. These terms may be used more than once: absorbs, Calvin cycle, chlorophyll, CO 2, H 2 O, Krebs

More information

Unit One: The Science of Biology

Unit One: The Science of Biology Unit One: The Science of Biology 1 The process by which an organism reaches death In an organism, a condition in which there is reproduction, growth, development, metabolism, use of energy, excretion,

More information

Text Readings. Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # Geologic Time...

Text Readings. Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # Geologic Time... Text Readings Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # 332-145. Geologic Time........ Geological Sources - 4.5 Billion Years Atmospheric Gases: Nitrogen (N 2 ) Water Vapor

More information

Endosymbiotic Theory

Endosymbiotic Theory Endosymbiotic Theory Evolution of Prokaryotes The oldest known fossils are 3.5 bya = stromatolites which are rock like layers of bacteria and sediment. Earliest life forms may have emerged as early as

More information

Which row in the chart below identifies the lettered substances in this process?

Which row in the chart below identifies the lettered substances in this process? 1. A biological process that occurs in both plants and animals is shown below. Which row in the chart below identifies the lettered substances in this process? A) 1 B) 2 C) 3 D) 4 2. All life depends on

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Outline I. Energy and Carbon Cycle II. Photosynthesis A. Introduction B. Reactions II. Cellular Respiration A. Introduction B. Reactions Carbon Cycle All organisms

More information

KINGDOM MONERA. Bacterial Cell Shape 8/22/2010. The Prokaryotes: Archaebacteria and Eubacteria

KINGDOM MONERA. Bacterial Cell Shape 8/22/2010. The Prokaryotes: Archaebacteria and Eubacteria KINGDOM MONERA The Prokaryotes: Archaebacteria and Eubacteria Bacteria are the most organisms living on the Earth. (i.e. 10mL of soil contains 1 x 10 10 bacteria. They are found in nearly every habitat

More information

Sunday, August 25, 2013 PHOTOSYNTHESIS

Sunday, August 25, 2013 PHOTOSYNTHESIS PHOTOSYNTHESIS PREFACE The sun is the ultimate source of energy. The sun powers nearly all life forms. Photosynthesis converts solar energy into chemical energy. Photoautotrophs use solar energy to synthesize

More information

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels Cellular Respiration: Harvesting Chemical Energy 9.1 Catabolic pathways yield energy by oxidizing organic fuels 9.2 Glycolysis harvests chemical energy by oxidizing glucose to pyruvate 9.3 The citric acid

More information

Chapter 8: Cellular Energy

Chapter 8: Cellular Energy Chapter 8: Cellular Energy Section 1: How Organisms Obtain Energy Transformation of Energy All cellular activities require Energy!! ( The ability to do work). The study of flow and the transformation of

More information

Heterotrophs: Organisms that depend on an external source of organic compounds

Heterotrophs: Organisms that depend on an external source of organic compounds Heterotrophs: Organisms that depend on an external source of organic compounds Autotrophs: Organisms capable of surviving on CO2 as their principle carbon source. 2 types: chemoautotrophs and photoautotrophs

More information

Photosynthesis (Chapter 7 Outline) A. For life based on organic compounds, two questions can be raised:

Photosynthesis (Chapter 7 Outline) A. For life based on organic compounds, two questions can be raised: Photosynthesis (Chapter 7 Outline) Sun, Rain, and Survival A. For life based on organic compounds, two questions can be raised: 1. Where does the carbon come from? 2. Where does the energy come from to

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

AQA Biology A-level Topic 5: Energy transfers in and between organisms

AQA Biology A-level Topic 5: Energy transfers in and between organisms AQA Biology A-level Topic 5: Energy transfers in and between organisms Notes Photosynthesis Photosynthesis is a reaction in which light energy is used to produce glucose in plants. The process requires

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

Photosynthesis: Light reactions

Photosynthesis: Light reactions 5.21.08 Photosynthesis: Light reactions Reading Assignment: Chapter 14 Nice tutorial on photosynthesis http://bioweb.wku.edu/courses/biol120/images/photosynthesis.asp Another decent site on photosynthesis

More information

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg Energy Conversions Photosynthesis Chapter 10 Pg. 184 205 Life on Earth is solar-powered by autotrophs Autotrophs make their own food and have no need to consume other organisms. They are the ultimate source

More information

Outline 10: Origin of Life. Better Living Through Chemistry

Outline 10: Origin of Life. Better Living Through Chemistry Outline 10: Origin of Life Better Living Through Chemistry What is Life? Internal chemical activity providing growth, repair, and generation of energy. The ability to reproduce. The capacity to respond

More information

Microbial Biogeochemistry

Microbial Biogeochemistry Microbial Biogeochemistry Chemical reactions occurring in the environment mediated by microbial communities Outline Metabolic Classifications. Winogradsky columns, Microenvironments. Redox Reactions. Microbes

More information

AP Biology Energy Exam Study Guide. Enzymes, Cellular Respiration, Metabolic Patterns, and Photosynthesis

AP Biology Energy Exam Study Guide. Enzymes, Cellular Respiration, Metabolic Patterns, and Photosynthesis AP Biology Energy Exam Study Guide Enzymes, Cellular Respiration, Metabolic Patterns, and Photosynthesis 1. In which orientation must these two amino acids be brought together to form a dipeptide bond?

More information

Ch. 4 Cells and Energy. Photosynthesis and Cellular Respiration

Ch. 4 Cells and Energy. Photosynthesis and Cellular Respiration Ch. 4 Cells and Energy Photosynthesis and Cellular Respiration 1 2 4.1 Chemical Energy and ATP Living organisms need energy Most comes indirectly from sun! Some change sunlight into organic compounds Others

More information

Title: Plant Nitrogen Speaker: Bill Pan. online.wsu.edu

Title: Plant Nitrogen Speaker: Bill Pan. online.wsu.edu Title: Plant Nitrogen Speaker: Bill Pan online.wsu.edu Lesson 2.3 Plant Nitrogen Nitrogen distribution in the soil-plantatmosphere Chemical N forms and oxidation states Biological roles of N in plants

More information

Ecology - the study of how living things interact with each other and their environment

Ecology - the study of how living things interact with each other and their environment Ecology Ecology - the study of how living things interact with each other and their environment Biotic Factors - the living parts of a habitat Abiotic Factors - the non-living parts of a habitat examples:

More information

Nutrient Cycling in Land Plants

Nutrient Cycling in Land Plants Nutrient Cycling in Land Plants OCN 401 - Biogeochemical Systems 10 September 2015 Reading: Chapter 6 2015 Frank Sansone Outline 1. Plant nutrient requirements and sources 2. Nutrient uptake by plants

More information

PHOTOSYNTHESIS PHOTOSYNTHESIS

PHOTOSYNTHESIS PHOTOSYNTHESIS PHOTOSYNTHESIS PHOTOSYNTHESIS Life Processes are the basic functions performed by living organisms to maintain their life on this earth. Nutrition is the process by which the organisms can assimilate and

More information

Eubacteria Archaea Eukarya

Eubacteria Archaea Eukarya Taxonomy Eubacteria Archaea Eukarya, mostly heterotrophic, live in all sorts of environments Largest group of organisms on Earth Only a small amount cause disease Most have very important roles:, such

More information

BBS2710 Microbial Physiology. Module 5 - Energy and Metabolism

BBS2710 Microbial Physiology. Module 5 - Energy and Metabolism BBS2710 Microbial Physiology Module 5 - Energy and Metabolism Topics Energy production - an overview Fermentation Aerobic respiration Alternative approaches to respiration Photosynthesis Summary Introduction

More information

20 Viruses and Prokaryotes Bacteria

20 Viruses and Prokaryotes Bacteria 20 Viruses and Prokaryotes 20.2 - Bacteria Classifying Prokaryotes Prokaryote unicellular organisms that lacks a nucleus Most abundant and widespread organisms on Earth Divided into two groups Bacteria

More information

Organic Molecules: (All contain carbon) Inorganic Molecules: (Do NOT contain carbon)

Organic Molecules: (All contain carbon) Inorganic Molecules: (Do NOT contain carbon) Organic Molecules: (All contain carbon) 1.) Carbohydrates: Quick source of energy 2.) Lipids: Long-term energy storage 3.) Proteins: Raw materials and enzyme action (catalysts) Inorganic Molecules: (Do

More information

Name: Date: Period: BIOLOGY Final Exam Study Guide. 3. List the 4 major macromolecules (biomolecules), their monomers AND their functions. a.

Name: Date: Period: BIOLOGY Final Exam Study Guide. 3. List the 4 major macromolecules (biomolecules), their monomers AND their functions. a. Name: Date: Period: Water and Cells BIOLOGY Final Exam Study Guide 1. Define homeostasis: 2. Match the property of water with its correct description: a. High specific heat b. High heat of vaporization

More information

Classification. Old 5 Kingdom system. New 3 Domain system. reflects a greater understanding of evolution & molecular evidence

Classification. Old 5 Kingdom system. New 3 Domain system. reflects a greater understanding of evolution & molecular evidence Classification Old 5 Kingdom system Monera, Protists, Plants, Fungi, Animals New 3 Domain system reflects a greater understanding of evolution & molecular evidence Prokaryote: Bacteria Prokaryote: Archaebacteria

More information

Chapter 17B. Table of Contents. Section 1 Introduction to Kingdoms and Domains. Section 2 Advent of Multicellularity

Chapter 17B. Table of Contents. Section 1 Introduction to Kingdoms and Domains. Section 2 Advent of Multicellularity Introduction to the Kingdoms of Life Table of Contents Section 2 Advent of Multicellularity Section 3 Complex Multicellularity The Six Kingdoms of Life Living organisms are divided into six kingdoms and

More information

An Introduction to the Science of Botany. Chapter 1

An Introduction to the Science of Botany. Chapter 1 An Introduction to the Science of Botany Chapter 1 TTU MS 43131 LEARNING OBJECTIVES Briefly describe the field of botany, and give short definitions of at least five subdisciplines of plant biology Summarize

More information

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up:

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up: Warm-up Objective: Explain how photosynthesis converts light energy into chemical energy. Warm-up: In the light reactions, what is the electron donor? Where do the electrons end up? 2006-2007 Photosynthesis:

More information

Harvesting energy: photosynthesis & cellular respiration part 1

Harvesting energy: photosynthesis & cellular respiration part 1 Harvesting energy: photosynthesis & cellular respiration part 1 Agenda I. Overview (Big Pictures) of Photosynthesis & Cellular Respiration II. Making Glucose - Photosynthesis III. Making ATP - Cellular

More information

(review) Organization of life

(review) Organization of life Marine life: the plankton Production & Energy Transfer Part of Chapter 12, Chapter 13 (review) Organization of life Prokaryotes (usually no nucleus simple life forms) Domain Archaea: : most are extremophiles

More information

Photosynthesis (Outline)

Photosynthesis (Outline) Photosynthesis (Outline) 1. Overview of photosynthesis 2. Producers, consumers, and decomposers of the ecosystem (source of carbon and energy) 3. Plant structures: organ, tissue, cells, sub-cellular organelle,

More information

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation Cellular Energetics Photosynthesis, Cellular Respiration and Fermentation TEKS B.4 Science concepts. The student knows that cells are the basic structures of all living things with specialized parts that

More information

Chapter 6 Review. 1. Which of the following is an autotroph? A. lizard B. cactus C. shark D. deer

Chapter 6 Review. 1. Which of the following is an autotroph? A. lizard B. cactus C. shark D. deer k Chapter 6 Review Multiple Choice 1. Which of the following is an autotroph? A. lizard B. cactus C. shark D. deer 2. In heterotrophs energy for the life processes comes from the chemical energy stored

More information

Unit 8 Cell Metabolism. Foldable Notes

Unit 8 Cell Metabolism. Foldable Notes Unit 8 Cell Metabolism Foldable Notes Silently read pages 94-96 of your biology textbook Middle Inside Top Vocabulary 1. ATP 2. ADP 3. Product 4. Reactant 5. Chloroplast 6. Mitochondria 7. Heterotroph

More information

Chapter 3.1 Chemistry of Life

Chapter 3.1 Chemistry of Life Life Science Chapter 3: Cell Processes 1. Chemistry of Life 2. Moving Cellular Materials 3. Energy for Life http://www.connecticutvalleybiological.com/cell processes vhs p 14026.html Chapter 3.1 Chemistry

More information

Communities Structure and Dynamics

Communities Structure and Dynamics Communities Structure and Dynamics (Outline) 1. Community & niche. 2. Inter-specific interactions with examples. 3. The trophic structure of a community 4. Food chain: primary, secondary, tertiary, and

More information

Oxidation States. 1. Redox potential Oxic vs. anoxic Simple electrochemical cell Redox potential in nature

Oxidation States. 1. Redox potential Oxic vs. anoxic Simple electrochemical cell Redox potential in nature 1. Redox potential Oxic vs. anoxic Simple electrochemical cell Redox potential in nature 2. Redox reactions Redox potential of a reaction Eh ph diagrams Redox reactions in nature 3. Biogeochemical reactions

More information

Unit 5 Cellular Energy

Unit 5 Cellular Energy Unit 5 Cellular Energy I. Enzymes (159) 1.Are CATALYSTS: Speed up chemical reactions that would otherwise happen too slowly to support life. Catalysts DO NOT make reactions happen that couldn t happen

More information

Study for Test April 26, Chapter 4. Review of Metabolism and Photosynthesis and Carbohydrates, Fats (Lipids) & Proteins

Study for Test April 26, Chapter 4. Review of Metabolism and Photosynthesis and Carbohydrates, Fats (Lipids) & Proteins Chapter 4 Review of Metabolism and Photosynthesis and Carbohydrates, Fats (Lipids) & Proteins GLCE's L.OL.07.61:Recognize the need for light to provide energy for the production of carbohydrates, proteins,

More information

Ch. 10- Photosynthesis: Life from Light and Air

Ch. 10- Photosynthesis: Life from Light and Air Ch. 10- Photosynthesis: Life from Light and Air 2007-2008 Ch. 10 Photosynthesis: Life from Light and Air 2007-2008 Energy needs of life All life needs a constant input of energy consumers Heterotrophs

More information

Unit 7 Part I: Introductions to Biochemistry

Unit 7 Part I: Introductions to Biochemistry Unit 7 Part I: Introductions to Biochemistry Chemical Reactions, Enzymes and ATP 19-Mar-14 Averett 1 Chemical Reactions Chemical Reactions Process by which one set of chemicals is changed into another

More information

Day 1. What You ll Learn. 1. Organisms are living things. 2. All organisms are made of one or more cells.

Day 1. What You ll Learn. 1. Organisms are living things. 2. All organisms are made of one or more cells. What You ll Learn Day 1 1. Organisms are living things. 2. All organisms are made of one or more cells. 3. There are two main types of cells: Prokaryotic and Eukaryotic A cell is the basic unit and structure

More information

TRACING BACK TO THE BEGINNING

TRACING BACK TO THE BEGINNING BACTERIA! TRACING BACK TO THE BEGINNING PROKARYOTES KINGDOM EUBACTERIA KINGDOM ARCHAEBACTERIA CHARACTERISTICS: 1. NO NUCLEUS 2. NO MEMBRANE BOUND ORGANELLES 4. MOST ARE SMALLER THAN EUKARYOTES 5. ARE SINGLE-CELLED

More information

Cell Respiration/Photosynthesis

Cell Respiration/Photosynthesis ell Respiration/Photosynthesis Name: ate: 1. The equation below represents a summary of a biological process. carbon dioxide + water glucose + water + oxygen This process is completed in 3. Which process

More information

Untitled Document Eco Photo Cell resp Use the information below to answer the following question(s).

Untitled Document Eco Photo Cell resp Use the information below to answer the following question(s). Untitled Document Eco Photo Cell resp 25 1. Use the information below to answer the following question(s). The drawing below shows a field habitat. 3. An increase in which atmospheric gas would most likely

More information

Ch20_Ecology, community & ecosystems

Ch20_Ecology, community & ecosystems Community Ecology Populations of different species living in the same place NICHE The sum of all the different use of abiotic resources in the habitat by s given species what the organism does what is

More information

Amino sugars 5-10% Purine and Pyrimidine Bases trace amounts. Undescribed Lots - non-protein N Crude proteins Lignin - N

Amino sugars 5-10% Purine and Pyrimidine Bases trace amounts. Undescribed Lots - non-protein N Crude proteins Lignin - N N in Soil Note: soil concentrations can be anywhere, depending on vegetation, land use, etc. But a substantial amount indeed most (ca. 99%) soil nitrogen is organic Free amino acids trace amounts Amino

More information

Assessment Schedule 2016 Biology: Demonstrate understanding of biological ideas relating to micro-organisms (90927)

Assessment Schedule 2016 Biology: Demonstrate understanding of biological ideas relating to micro-organisms (90927) NCEA Level 1 Biology (90927) 2016 page 1 of 5 Assessment Schedule 2016 Biology: Demonstrate understanding of biological ideas relating to micro-organisms (90927) Evidence Statement Question One No response

More information

In Cellular Respiration, are removed from sugar and transferred to

In Cellular Respiration, are removed from sugar and transferred to 1 2 3 4 5 Bio 1101 Lec. 5, Part A (Guided Notes) Chapter 6: Cellular Respiration Energy is needed by cells to do work Chemical energy, a form of potential energy, is stored in bonds of food molecules (such

More information

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes.

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. A. Chemistry of Life B. Cells 1. Water How do the unique chemical

More information

Review for Biology Benchmark #2

Review for Biology Benchmark #2 1. For each lab tool, give the function: balance - measures mass, graduated cylinder - measures volume, ruler - measures length, pipet - (some measure) add small amounts of liquid, scapel - cut specimens.

More information

1/25/2018. Bio 1101 Lec. 5, Part A Chapter 6: Cellular Respiration

1/25/2018. Bio 1101 Lec. 5, Part A Chapter 6: Cellular Respiration 1 2 3 4 5 Bio 1101 Lec. 5, Part A Chapter 6: Cellular Respiration Energy is needed by cells to do work Chemical energy, a form of potential energy, is stored in bonds of food molecules (such as glucose)

More information

Soil Biology. The Sounds of Soil. Soils and Water, Spring Lecture 9, Soil Biology 1. Soil as a Transition Between Aquatic and Aerial System

Soil Biology. The Sounds of Soil. Soils and Water, Spring Lecture 9, Soil Biology 1. Soil as a Transition Between Aquatic and Aerial System Soil Biology Chapter 10 The Sounds of Soil Soil as a Transition Between Aquatic and Aerial System Lecture 9, Soil Biology 1 Bacteria in a Drying Environment Wet (open structure) Dry (dense) Holden P.A.,

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs:

More information