Understanding how vines deal with heat and water deficit

Size: px
Start display at page:

Download "Understanding how vines deal with heat and water deficit"

Transcription

1 Understanding how vines deal with heat and water deficit Everard Edwards CSIRO AGRICULTURE & FOOD

2 How hot is too hot? Cell death will occur in any vine tissue beyond a threshold (lethal) temperature cell membrane can melt, proteins can become denatured. Threshold temperature for a grapevine leaf is probably >5 C exact temperature will depend on variety & level of heat acclimation. We don t grow vines in regions with air temperatures this high, so why is heat a problem?

3 The problem with heat Water? Exposed tissues (e.g. leaves) are absorbing energy from sunlight. Energy that cannot be utilised (i.e. photosynthesis) will heat the leaf. Vine productivity can be affected photosynthetic apparatus may be permanently damaged 1 C below lethal temperature, any leaf death reduces future carbon accumulation. But, does the leaf reach >5 C? usually thought hydraulic failure precedes lethal temperatures.

4 Plants need water Water is required for: cell function, photosynthesis, transport of photosynthate & nutrients. Water moves from root to shoot and is lost from the leaves. The plant is part of the soilto-air continuum. Water deficit interferes with these processes.

5 Stomata and transpiration Movement of water from the vine to the air is termed transpiration and occurs through the stomata. The underside of a vine leaf is covered in small pores: stomata. H 2 O

6 Stomatal conductance Water loss and carbon uptake are directly linked! The stomata are also the site where CO 2 enters the leaf (for photosynthesis). Stomatal opening is under tight control by the plant. The extent of stomatal opening is termed conductance. CO 2 H 2 O

7 Vapour pressure deficit Vine water use is determined by: stomatal conductance, canopy size, vapour pressure deficit. Vapour pressure deficit (VPD): VPD = amount of water in saturated air (1 %RH) - actual amount of water in the air The amount of water required to saturate air increases with temperature. Therefore, VPD typically increases with temperature. VPD (kpa) 7 Relative humidity of 5% at 25 C Air Temperature ( C) higher %RH less transpiration lower %RH more transpiration

8 Effect of VPD and conductance on transpiration Transpiration (arbitrary units) mmol m -2 s -1 3 mmol m -2 s mmol m -2 s mmol m -2 s -1 Water loss increases even with a 7% reduction in conductance VPD (kpa) Increasing VPD results in greater water loss from the leaf for a given value of conductance. Effect of high temperature on water use may be greater than the effect of reduced conductance.

9 Conductance responds to VPD: varietal differences Transpiration (arbitrary units) mmol m -2 s -1 3 mmol m -2 s mmol m -2 s mmol m -2 s -1 Water loss increases even with a 7% reduction in conductance VPD (kpa) Conductance (mmol m -2 s -1 ) Transpiration (mol m -2 s -1 ) Low VPD High VPD Grenache Chardonnay Shiraz Soar et al. (26) AJGWR

10 Drivers of vine water use an example 8 Vine water use is a function of: vapour pressure deficit (VPD)*, canopy size/structure, stomatal opening. Daily vine water use (L d -1 ) Large canopy Moderate canopy Small canopy Small canopy + water stress Daily ET o (mm) *modified by boundary layer/wind. Cabernet Sauvignon, Sunraysia (Edwards et al.)

11 Effect of water deficit on conductance Stomatal conductance (mmol m -2 s -1 ) ML ha Sustained deficit irrigation (reduced from fruit-set to leaf fall). Impact of reduced soil water availability present throughout season. Low conductance reduces vine water use, but also reduces photosynthesis. Pre-harvest Post-harvest Loveys et al. unpublished. Cabernet Sauvignon vines in the Riverland.

12 Transpiration affects leaf temperature Leaf temperature C Air temperature Seconds Slide courtesy of Brian Loveys

13 Transpiration affects leaf temperature Leaf temperature C Air temperature Seconds Slide courtesy of Brian Loveys

14 Transpiration affects leaf temperature Leaf temperature C Air temperature Seconds Slide courtesy of Brian Loveys

15 What is a heatwave? High-temperature event and heatwave are relative terms: high temperature stress in one region may be normal growing temperature in another, the same temperature at different times of the season may have a different impact. However: absolute temperature is important, duration is important, humidity is important. High VPD will stress the vine at any temperature. Low VPD may reduce the potential effects of high temperature.

16 Impacts of heat on well-watered vines Under well watered conditions, even air temperatures of 45 C may generate only mild heat stress symptoms in the canopy. Supported by data from the field (under both natural and artificial heatwaves) and from the glasshouse (using both mature vines in large pots and young vines in small pots) Conductance (mol m -2 s -1 ) C 43 C Transpiration (mmol m -2 s -1 ) C 43 C Photosynthesis (μ mol m -2 s -1 ) C 43 C Edwards et al. (213) unpublished. Artificial heatwave with Cabernet Sauvignon vines, Murray Valley.

17 Heatwaves and water deficit But under water deficit conditions vines cannot cope with heatwaves. Well-watered 29/1 season, 13 days >4 C, Murray Valley. Water-stressed Edwards et al. (21) Cabernet Sauvignon vines from the same row.

18 Water deficit and high temperature in combination In general water deficit (drought) exacerbates heat stress due to: greater stomatal closure, resulting in higher leaf temperatures, reduced vine water status, increasing risk of hydraulic failure and wilting. High temperature usually results in high VPD (low %RH), increasing water loss, even with low stomatal conductance. Wilting of canopy increases fruit exposure and temperature.

19 Heatwaves and water deficit conductance & transpiration Difficult to study in the field, CSIRO has run a number of glasshouse experiments Transpiration (mmol m -2 s -1 ) Conductance (mmol m -2 s -1 ) Heat Heat Heat Heat Edwards et al. (211), AJGWR.

20 Heatwaves and water deficit leaf temperature Difficult to study in the field, CSIRO has run a number of glasshouse experiments Transpiration (mmol m -2 s -1 ) Leaf Temperature ( C) Heat Heat 2 Heat Heat Edwards et al. (211), AJGWR.

21 Heatwaves and water deficit water status Difficult to study in the field, CSIRO has run a number of glasshouse experiments.. Pre-heat stress. During artificial heatwave Water status: Ψ stem (kpa) Water status: Ψ stem (kpa) Heat Heat Tesfamicael, Edwards, Rodriguez (217), unpublished.

22 Heatwaves and water deficit - damage The vine s ability to cope with heatwaves is proportional to the water stress present No damage 2 12 Number of Vines 8 4 <25% leaf loss 25-5% leaf loss 5-75% leaf loss Number of Vines % leaf loss 4 Heat Heat 1% 25% 5% Treatment Leaf loss in vines heated to >45 C. Edwards et al. (211), AJGWR.

23 Summary of biology Damage to tissues by heat stress likely due to lack of water supply rather than heat per se. Therefore, water status of canopy is key to heat stress tolerance in short-term. VPD (%RH) is the primary driver of day-to-day changes in vine water use. Maintaining open stomata/high transpiration (cooling) during heatwave can require four-fold increase in water uptake. Protect canopy to protect fruit. Longer-term solutions may also include considering solar radiation load.

24 Acknowledgements Past and current staff and students of grapevine physiology team at CSIRO. Work described funded by Wine Australia & CSIRO. CSIRO Agriculture and Food Everard Edwards Research Team Leader t e Everard.edwards@csiro.au w AGRICULTURE AND FOOD

Water Relations in Viticulture BRIANNA HOGE AND JIM KAMAS

Water Relations in Viticulture BRIANNA HOGE AND JIM KAMAS Water Relations in Viticulture BRIANNA HOGE AND JIM KAMAS Overview Introduction Important Concepts for Understanding water Movement through Vines Osmosis Water Potential Cell Expansion and the Acid Growth

More information

Exchanging Materials in Plants

Exchanging Materials in Plants Exchanging Materials in Plants 1 of 23 Boardworks Ltd 2012 2 of 23 Boardworks Ltd 2012 3 of 23 Boardworks Ltd 2012 All living things need to exchange materials Plants need to obtain certain materials for

More information

Temperature and light as ecological factors for plants

Temperature and light as ecological factors for plants PLB/EVE 117 Plant Ecology Fall 2005 1 Temperature and light as ecological factors for plants I. Temperature as an environmental factor A. The influence of temperature as an environmental factor is pervasive

More information

Topic 10: Transpiration, transport and support in plants

Topic 10: Transpiration, transport and support in plants Topic 10: Transpiration, transport and support in plants 1. Transpiration is A. the loss of water vapour from the surfaces of plants due to evaporation B. the gain of water vapour from the surfaces of

More information

Plant Ecophysiology in a Restoration Context

Plant Ecophysiology in a Restoration Context Objectives: How can the foundations of and theory in plant ecophysiological restoration ecology ecological restoration? Light and energy relations Photosynthesis Microclimate Belowground resource availability

More information

Chapter 35 Regulation and Transport in Plants

Chapter 35 Regulation and Transport in Plants Chapter 35 Regulation and Remember what plants need Photosynthesis light reactions Calvin cycle light sun H 2 O ground CO 2 air What structures have plants evolved to supply these needs? Interdependent

More information

Other Metabolic Functions of Water in Grapevines

Other Metabolic Functions of Water in Grapevines Other Metabolic Functions of Water in Grapevines Jim Kamas Assoc. Professor & Extension Specialist Texas A&M Agrilife Extension Viticulture & Fruit Lab Fredericksburg, TX Water is. 80 90% of the fresh

More information

Stomata and water fluxes through plants

Stomata and water fluxes through plants Stomata and water fluxes through plants Bill Davies The Lancaster Environment Centre, UK Summary Stomata and responses to the environment Conductance, a function of frequency and aperture Measuring/estimating

More information

Common Effects of Abiotic Stress Factors on Plants

Common Effects of Abiotic Stress Factors on Plants Common Effects of Abiotic Stress Factors on Plants Plants are living organisms which lack ability of locomotion. Animals can move easily from one location to other. Immovable property of plants makes it

More information

Interactions between ozone and drought stress in plants: mechanisms and implications. Sally Wilkinson and William J. Davies, Lancaster University

Interactions between ozone and drought stress in plants: mechanisms and implications. Sally Wilkinson and William J. Davies, Lancaster University Interactions between ozone and drought stress in plants: mechanisms and implications Sally Wilkinson and William J. Davies, Lancaster University STOMATA: At the leaf surface water is lost to the atmosphere

More information

The role of transpiration in ameliorating leaf temperature in wheat in relation to changing environmental conditions

The role of transpiration in ameliorating leaf temperature in wheat in relation to changing environmental conditions THE UWA INSTITUTE OF AGRICULTURE Postgraduate Showcase 2015 The role of transpiration in ameliorating leaf temperature in wheat in relation to changing environmental conditions Chandima Ranawana School

More information

Kevin Foster. School of Plant Biology Faculty of Natural and Agricultural Sciences

Kevin Foster. School of Plant Biology Faculty of Natural and Agricultural Sciences Kevin Foster School of Plant Biology Faculty of Natural and Agricultural Sciences Kevin holds a Bachelor of Science degree from Curtin University and a Diploma in Agricultural Technology. He is currently

More information

BIOL 221 Concepts of Botany Water Relations, Osmosis and Transpiration:

BIOL 221 Concepts of Botany Water Relations, Osmosis and Transpiration: BIOL 221 Concepts of Botany Topic 12: Water Relations, Osmosis and Transpiration: A. Water Relations Water plays a critical role in plants. Water is the universal solvent that allows biochemical reactions

More information

BIOL 221 Concepts of Botany Spring Water Relations, Osmosis and Transpiration

BIOL 221 Concepts of Botany Spring Water Relations, Osmosis and Transpiration BIOL 221 Concepts of Botany Spring 2008 Topic 07: Water Relations, Osmosis and Transpiration A. Water Relations Water plays a critical role in plants. Water is the universal solvent that allows biochemical

More information

Breeding for Drought Resistance in Cacao Paul Hadley

Breeding for Drought Resistance in Cacao Paul Hadley Breeding for Drought Resistance in Cacao Paul Hadley University of Reading Second American Cocoa Breeders Meeting, El Salvador, 9-11 September 215 9 September 215 University of Reading 26 www.reading.ac.uk

More information

CHAPTER TRANSPORT

CHAPTER TRANSPORT CHAPTER 2 2.4 TRANSPORT Uptake of CO2 FOCUS: Uptake and transport of water and mineral salts Transport of organic substances Physical forces drive the transport of materials in plants over a range of distances

More information

Plant Growth and Development Part I I

Plant Growth and Development Part I I Plant Growth and Development Part I I 1 Simply defined as: making with light Chlorophyll is needed (in the cells) to trap light energy to make sugars and starches Optimum temperature: 65 o F to 85 o F

More information

Unit B: Cells and Systems

Unit B: Cells and Systems Unit B: Cells and Systems Topic 4: Fluid Movement in Cells The Cell Membrane A cell membrane allows some to enter or leave the cell, while stopping other substances. It is a selectively membrane. (A permeable

More information

Hormonal and other chemical effects on plant growth and functioning. Bill Davies Lancaster Environment Centre, UK

Hormonal and other chemical effects on plant growth and functioning. Bill Davies Lancaster Environment Centre, UK Hormonal and other chemical effects on plant growth and functioning Bill Davies Lancaster Environment Centre, UK Integrating the impacts of soil drought and atmospheric stress High radiant load Reduced

More information

Transport in Plant (IGCSE Biology Syllabus )

Transport in Plant (IGCSE Biology Syllabus ) Transport in Plant (IGCSE Biology Syllabus 2016-2018) Plants have transport systems to move food, water and minerals around. These systems use continuous tubes called xylem and phloem: - Xylem vessels

More information

Transportation in Plants

Transportation in Plants Transportation in Plants Bell Ringer - 5 Min Why do you need transportation in living organisms? Explain your answer with a suitable example. Water movement through plants How does water move through a

More information

Effect of high humidity on stomata and its implication for (ornamental) plants quality

Effect of high humidity on stomata and its implication for (ornamental) plants quality Effect of high humidity on stomata and its implication for (ornamental) plants quality Habtamu Giday and Carl-Otto Ottosen Department of Food Science, Aarhus University Stomata: adjustable pores on the

More information

Grapevine Water Relations

Grapevine Water Relations 16 1 2 1 Grapevine Water Relations L a r r y E. W i l l i a m s Water is important to all living organisms. It is an essential constituent of cells: 8 to 9 percent of the fresh weight of living cells is

More information

Effect of high humidity on stomata and its implication for (ornamental) plants quality

Effect of high humidity on stomata and its implication for (ornamental) plants quality Effect of high humidity on stomata and its implication for (ornamental) plants quality Habtamu Giday and Carl-Otto Ottosen Department of Food Science, Aarhus University Stomata: adjustable pores on the

More information

1. Transpiration may be defined as the loss of water vapour by diffusion from a plant to its environment.

1. Transpiration may be defined as the loss of water vapour by diffusion from a plant to its environment. 1. Transpiration may be defined as the loss of water vapour by diffusion from a plant to its environment. The diagram below shows apparatus that can be used to estimate transpiration rates of a leafy shoot.

More information

Transport, Storage and Gas Exchange in Flowering Plants

Transport, Storage and Gas Exchange in Flowering Plants Sixth Year Biology Transport, Storage and Gas Exchange in Flowering Plants Miss Rochford In this topic: Uptake and transport of: Water and minerals Carbon dioxide Gas exchange Transport of photosynthesis

More information

BioWash as an Adjuvant, Translocation Promoter, and Cationic Exchange Stimulator Overview of Processes within the Plant

BioWash as an Adjuvant, Translocation Promoter, and Cationic Exchange Stimulator Overview of Processes within the Plant BioWash as an Adjuvant, Translocation Promoter, and Cationic Exchange Stimulator Overview of Processes within the Plant Photosynthesis is the primary driver of the plant. Through a series of complex steps,

More information

Water Acquisition and Transport - Whole Plants. 3 possible pathways for water movement across the soil-plant-atmosphere continuum

Water Acquisition and Transport - Whole Plants. 3 possible pathways for water movement across the soil-plant-atmosphere continuum Water transport across the entire soil-plant-atmosphere continuum Water Acquisition and Transport - Whole Plants 3 possible pathways for water movement across the soil-plant-atmosphere continuum Apoplast

More information

Chapter 25 Plant Processes. Biology II

Chapter 25 Plant Processes. Biology II Chapter 25 Plant Processes Biology II 25.1 Nutrients and Transport Plants grow by adding new cells through cell division Must have steady supply of raw materials to build new cells Nutrients (most) Plants

More information

TREES. Functions, structure, physiology

TREES. Functions, structure, physiology TREES Functions, structure, physiology Trees in Agroecosystems - 1 Microclimate effects lower soil temperature alter soil moisture reduce temperature fluctuations Maintain or increase soil fertility biological

More information

AP Biology Chapter 36

AP Biology Chapter 36 Chapter 36 Chapter 36 Transport in Plants 2006-2007 Transport in plants - Overview H2O & minerals transport in xylem transpiration evaporation, adhesion & cohesion negative pressure Sugars transport in

More information

Welcome to the Iowa Certified Nursery Professional Training program Module 2: How Plants Work: Plant Growth and Development.

Welcome to the Iowa Certified Nursery Professional Training program Module 2: How Plants Work: Plant Growth and Development. Welcome to the Iowa Certified Nursery Professional Training program Module 2: How Plants Work: Plant Growth and Development. 1 Upon completion of this module, you will be able to fulfill each of the objectives

More information

Stomatal conductance has a strong dependence upon humidity deficits

Stomatal conductance has a strong dependence upon humidity deficits Stomatal conductance has a strong dependence upon humidity deficits 1 There is no universal function between stomatal conductance and humidity deficits. Some plants are more sensitive than others Hall

More information

Name AP Biology - Lab 06

Name AP Biology - Lab 06 LAB 06 Transpiration Objectives: To understand how water moves from roots to leaves in terms of the physical/chemical properties of water and the forces provided by differences in water potential. To test

More information

Introduction to Plant Transport

Introduction to Plant Transport Introduction to Plant Transport The algal ancestors of plants were completely immersed in water and dissolved minerals. The adaptation to land involved the differentiation of the plant body into roots,

More information

Organs and leaf structure

Organs and leaf structure Organs and leaf structure Different types of tissues are arranged together to form organs. Structure: 2 parts (Petiole and Leaf Blade) Thin flat blade, large surface area Leaves contain all 3 types of

More information

Biology. Slide 1 of 32. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 32. End Show. Copyright Pearson Prentice Hall Biology 1 of 32 23 4 Leaves 2 of 32 Leaf Structure Leaf Structure How does the structure of a leaf enable it to carry out photosynthesis? 3 of 32 Leaf Structure The structure of a leaf is optimized for

More information

screw clip air bubble Transpiration itself is not measured directly by a potometer....

screw clip air bubble Transpiration itself is not measured directly by a potometer.... 1. Transpiration is the loss of water from plants by evaporation. The diagram below shows a potometer, an apparatus used to estimate transpiration rates. water reservoir leafy shoot screw clip air bubble

More information

POTASSIUM IN PLANT GROWTH AND YIELD. by Ismail Cakmak Sabanci University Istanbul, Turkey

POTASSIUM IN PLANT GROWTH AND YIELD. by Ismail Cakmak Sabanci University Istanbul, Turkey POTASSIUM IN PLANT GROWTH AND YIELD by Ismail Cakmak Sabanci University Istanbul, Turkey Low K High K High K Low K Low K High K Low K High K Control K Deficiency Cakmak et al., 1994, J. Experimental Bot.

More information

Basic stoichiometric equation on photosynthesis and the production of sugar and oxygen via the consumption of CO2, water, and light

Basic stoichiometric equation on photosynthesis and the production of sugar and oxygen via the consumption of CO2, water, and light 1 2 Basic stoichiometric equation on photosynthesis and the production of sugar and oxygen via the consumption of CO2, water, and light 3 Several pathways exist for fixing CO2 into sugar 4 Photosynthesis

More information

Avocado Tree Physiology Understanding the Basis of Productivity

Avocado Tree Physiology Understanding the Basis of Productivity Avocado Tree Physiology Understanding the Basis of Productivity R. L. Heath, M. L. Arpaia UC, Riverside M. V. Mickelbart Purdue University Raw Materials Labor Product Light Carbon Dioxide Temperature Water

More information

Ch. 36 Transport in Vascular Plants

Ch. 36 Transport in Vascular Plants Ch. 36 Transport in Vascular Plants Feb 4 1:32 PM 1 Essential Question: How does a tall tree get the water from its roots to the top of the tree? Feb 4 1:38 PM 2 Shoot architecture and Light Capture: Phyllotaxy

More information

NOTES: CH 36 - Transport in Plants

NOTES: CH 36 - Transport in Plants NOTES: CH 36 - Transport in Plants Recall that transport across the cell membrane of plant cells occurs by: -diffusion -facilitated diffusion -osmosis (diffusion of water) -active transport (done by transport

More information

Abiotic Stress in Crop Plants

Abiotic Stress in Crop Plants 1 Abiotic Stress in Crop Plants Mirza Hasanuzzaman, PhD Professor Department of Agronomy Sher-e-Bangla Agricultural University E-mail: mhzsauag@yahoo.com Stress Stress is usually defined as an external

More information

WATER. water in the biosphere. water in the landscape. water in the soil. water in the plant. (Atwell, Kriedemann & Turnbull 1999)

WATER. water in the biosphere. water in the landscape. water in the soil. water in the plant. (Atwell, Kriedemann & Turnbull 1999) WATER water in the biosphere water in the landscape water in the soil water in the plant (Atwell, Kriedemann & Turnbull 1999) precipitation (P) transpiration (Et) evaporation of intercepted precipitation

More information

Investigating Stomata

Investigating Stomata Investigating Stomata Learning Objectives: To be able to identify stomata and compare stomata on leaves of a plant To understand the function of stomata and the role they play in a plant To understand

More information

1 (a) carbon dioxide / CO 2 ; (aerobic) respiration ; (simple) diffusion ; [3] A excretion I gas exchange

1 (a) carbon dioxide / CO 2 ; (aerobic) respiration ; (simple) diffusion ; [3] A excretion I gas exchange 1 (a) carbon dioxide / CO 2 ; (aerobic) respiration ; (simple) diffusion ; [] A excretion I gas exchange (b) water enters by osmosis ; down a water potential gradient / high(er) to low(er) water potential

More information

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at Transport in plants

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at   Transport in plants Transport in plants Question Paper 1 Level A Level Subject Biology Exam Board OCR Topic Exchange and transport Sub-Topic Transport in plants Booklet Question Paper 1 Time Allowed: 75 minutes Score: / 62

More information

Photosynthesis. Water is one of the raw materials needed for photosynthesis When water is in short supply the rate of photosynthesis is limited

Photosynthesis. Water is one of the raw materials needed for photosynthesis When water is in short supply the rate of photosynthesis is limited Photosynthesis Water is one of the raw materials needed for photosynthesis When water is in short supply the rate of photosynthesis is limited Support Water is needed to ensure plant cells remain turgid

More information

AP Biology Transpiration and Stomata

AP Biology Transpiration and Stomata AP Biology Transpiration and Stomata Living things must exchange matter with the environment to survive, Example: Gas Exchange in Plants photosynthesis cellular respiration 1. During which hours does a

More information

Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences

Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences Environmental Plant Physiology Photosynthesis - Aging krreddy@ra.msstate.edu Department of Plant and Soil Sciences Photosynthesis and Environment Leaf and Canopy Aging Goals and Learning Objectives: To

More information

Photosynthesis - Aging Leaf Level. Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences

Photosynthesis - Aging Leaf Level. Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences Environmental Plant Physiology Photosynthesis and Environment Leaf and Canopy Aging krreddy@ra.msstate.edu Department of Plant and Soil Sciences Goals and Learning Objectives: To understand the effects

More information

TRANSPIRATION. An important regulator of transpiration is the stomatal complex composed of the opening or

TRANSPIRATION. An important regulator of transpiration is the stomatal complex composed of the opening or BIOL 1134 1 TRANSPIRATION LEARNING OBJECTIVES After completing this exercise, students should be able to: Describe the process of and principles behind transpiration. Describe how stomata, guard cells,

More information

Botany: Part I Overview of Plants & Plant Structure

Botany: Part I Overview of Plants & Plant Structure Botany: Part I Overview of Plants & Plant Structure Plant evolution Plant Evolution Chlorophytes Bryophytes (nonvascular plants) Seedless vascular plants Gymnosperms Angiosperms Chlorophytes are a green

More information

Introduction to Plant Transport

Introduction to Plant Transport Introduction to Plant Transport The algal ancestors of plants were completely immersed in water and dissolved minerals. The adaptation to land involved the differentiation of the plant body into roots,

More information

(i) The respiratory openings found on stems of woody plants. (ii) An apparatus to compare the rate of transpiration in cut shoots.

(i) The respiratory openings found on stems of woody plants. (ii) An apparatus to compare the rate of transpiration in cut shoots. SN Kansagra School Assignment-Transpiration Grade10 TRANSPIRATION :ASSIGNMENT Question.1. Name the following : (i) The respiratory openings found on stems of woody plants. (ii) An apparatus to compare

More information

water status detection in grapevine (Vitis vinifera L.) by thermography.

water status detection in grapevine (Vitis vinifera L.) by thermography. 46 December, 2009 Int J Agric & Biol Eng Open Access at http://www.ijabe.org Vol. 2 No.4 Non-invasive water status detection in grapevine (Vitis vinifera L.) by thermography Shamaila Zia 1, Klaus Spohrer

More information

The Flowering Plant and Photosynthesis

The Flowering Plant and Photosynthesis The Flowering Plant and Photosynthesis AIM To name and identify some common Irish trees To identify the parts of a flowering plant To list the function of the flowers, stem, leaves and roots To explain

More information

Importance. The Reaction of Life : The conversion of the sun s energy into a form man and other living creatures can use.

Importance. The Reaction of Life : The conversion of the sun s energy into a form man and other living creatures can use. PLANT PROCESSES Photosynthesis Importance The Reaction of Life : The conversion of the sun s energy into a form man and other living creatures can use. Photo light Synthesis to put together 3 Important

More information

23 4 Leaves Slide 1 of 32

23 4 Leaves Slide 1 of 32 23 4 Leaves 1 of 32 Leaf Structure The structure of a leaf is optimized for absorbing light and carrying out photosynthesis. 2 of 32 Leaf Structure To collect sunlight, most leaves have thin, flattened

More information

C MPETENC EN I C ES LECT EC UR U E R

C MPETENC EN I C ES LECT EC UR U E R LECTURE 7: SUGAR TRANSPORT COMPETENCIES Students, after mastering the materials of Plant Physiology course, should be able to: 1. To explain the pathway of sugar transport in plants 2. To explain the mechanism

More information

Oxygen and Hydrogen in Plants

Oxygen and Hydrogen in Plants Oxygen and Hydrogen in Plants Outline: Environmental factors Fractionation associated with uptake of water Metabolic Fractionation C3, CAM and C4 plants Environmental factors Regional Precipitation d 18

More information

Irrigation water salinity limits faba bean (Vicia faba L.) photosynthesis

Irrigation water salinity limits faba bean (Vicia faba L.) photosynthesis 5 th CASEE Conference Healthy Food Production and Environmental Preservation The Role of Agriculture, Forestry and Applied Biology Irrigation water salinity limits faba bean (Vicia faba L.) photosynthesis

More information

Sap flow technique as a tool for irrigation schedule in grapevines: control of the plant physiological status

Sap flow technique as a tool for irrigation schedule in grapevines: control of the plant physiological status Sap flow technique as a tool for irrigation schedule in grapevines: control of the plant physiological status Pons P.J., Truyols M., Flexas J., Cifre J., Medrano H., Ribas-Carbó M. in López-Francos A.

More information

Plant Responses. NOTE: plant responses involve growth and changes in growth. Their movement is much slower than that of animals.

Plant Responses. NOTE: plant responses involve growth and changes in growth. Their movement is much slower than that of animals. Plant Responses A stimulus is anything that causes a reaction in an organism. Examples: light, gravity and temperature A response is the activity of an organism as a result of a stimulus. Examples: Growth,

More information

[transport] in plants

[transport] in plants [transport] in plants learningobjectives Identify the main parts of the transport system in plants xylem and phloem. Explain the structural adaptation of the xylem (ie lumen, lignin and dead cells) Explain

More information

Effect of 1-MCP on Water Relations Parameters of Well-Watered and Water-Stressed Cotton Plants

Effect of 1-MCP on Water Relations Parameters of Well-Watered and Water-Stressed Cotton Plants Effect of 1-MCP on Water Relations Parameters of Well-Watered and Water-Stressed Cotton Plants Eduardo M. Kawakami, Derrick M. Oosterhuis, and John L. Snider 1 RESEARCH PROBLEM The cotton crop in the U.S.

More information

Trees are: woody complex, large, long-lived self-feeding shedding generating systems compartmented, self optimizing

Trees are: woody complex, large, long-lived self-feeding shedding generating systems compartmented, self optimizing BASIC TREE BIOLOGY Trees are: woody complex, large, long-lived self-feeding shedding generating systems compartmented, self optimizing Roots: absorb water and minerals store energy support and anchor

More information

References. 1 Introduction

References. 1 Introduction 1 Introduction 3 tion, conservation of soil water may result in greater soil evaporation, especially if the top soil layers remain wetter, and the full benefit of sustained plant physiological activity

More information

Laboratory 9: Transpiration

Laboratory 9: Transpiration Laboratory 9: Transpiration YOU MUST KNOW The role of water potential and transpiration in the movement of water from roots to leaves. The effects of various environmental conditions on the rate of transpiration.

More information

Jeddah Knowledge International School

Jeddah Knowledge International School Jeddah Knowledge International School Biology Revision Pack Answer key 2016-2017 Quarter 3 Grade 9 Name: Section: ANSWER KEY- SCIENCE GRADE 9, QUARTER 3 1 Mark Scheme Multiple Choice Part A 1. Which gas

More information

To Understand How Trees Decline and Die, We Must: What is Stress? Tree Physiology. Understand stress and how it affects trees. Why Do Trees Die?

To Understand How Trees Decline and Die, We Must: What is Stress? Tree Physiology. Understand stress and how it affects trees. Why Do Trees Die? To Understand How Trees Decline and Die, We Must: Why Do Trees Die? Rex Bastian, Ph.D. The Davey Tree Expert Co./The Care of Trees Wheeling, IL Understand stress and how it affects trees» To do this, we

More information

Stress responses of terrestrial vegetation and their manifestation in fluorescence and GPP Jaume Flexas

Stress responses of terrestrial vegetation and their manifestation in fluorescence and GPP Jaume Flexas Stress responses of terrestrial vegetation and their manifestation in fluorescence and GPP Jaume Flexas New Methods to Measure Photosynthesis from Space Workshop August,26-31, 2012 Stress responses of

More information

Relationship between Leaf Water Potential and Photosynthesis in Rice Plants

Relationship between Leaf Water Potential and Photosynthesis in Rice Plants Relationship between Leaf Water Potential and Photosynthesis in Rice Plants By KUNI ISHIHARA and HIDEO SAITO Faculty of Agriculture, Tokyo University of Agriculture and Technology (Saiwaicho,Fuchu, Tokyo,

More information

Transpiration Lab. Introduction

Transpiration Lab. Introduction Transpiration Lab Name Introduction The amount of water needed daily by plants for the growth and maintenance of tissues is small in comparison to the amount that is lost through the process of transpiration

More information

What factors, including environmental variables, affect the rate of transpiration in plants?

What factors, including environmental variables, affect the rate of transpiration in plants? Big Idea 4 Interactions investigation 11 TRANSPIRATION* What factors, including environmental variables, affect the rate of transpiration in plants? BACKGROUND Cells and organisms must exchange matter

More information

OCR (A) Biology A-level

OCR (A) Biology A-level OCR (A) Biology A-level Topic 3.3: Transport in plants Notes Plants require a transport system to ensure that all the cells of a plant receive a sufficient amount of nutrients. This is achieved through

More information

Chapter 36~ Transport in Plants

Chapter 36~ Transport in Plants Chapter 36~ Transport in Plants Structural Features Used for Resource Acquistion Roots and stems to do transport of resources Diffusion, active transport, and bulk flow Work in vascular plants to transport

More information

Tissues and organs PART 2

Tissues and organs PART 2 Tissues and organs PART 2 The structure and function of the mesophytic leaf (a plant organ) The mesopyhtic leaf (lives in a moderately moist environment) contains 7 layers of tissue: 1. Upper epidermis

More information

To Understand How Trees Decline and Die, We Must: What is Stress? Tree Physiology. Understand stress and how it affects trees. Why Do Trees Die?

To Understand How Trees Decline and Die, We Must: What is Stress? Tree Physiology. Understand stress and how it affects trees. Why Do Trees Die? To Understand How Trees Decline and Die, We Must: Why Do Trees Die? Rex Bastian, Ph.D. The Davey Tree Expert Co./The Care of Trees Wheeling, IL Understand stress and how it affects trees» To do this, we

More information

Two major categories. BIOLOGY 189 Fundamentals of Life Sciences. Spring 2004 Plant Structure and Function. Plant Structure and Function

Two major categories. BIOLOGY 189 Fundamentals of Life Sciences. Spring 2004 Plant Structure and Function. Plant Structure and Function BIOLOGY 189 Fundamentals of Life Sciences Spring 2004 Plant Structure and Function 18 16 14 12 10 8 6 Examination #1 Class Average: 33/60 for 55% 4 Chapters 31-32 32 2 0 6 10 15 20 25 30 35 40 45 50 55

More information

Plants and Photosynthesis. Chapters 6 and 31

Plants and Photosynthesis. Chapters 6 and 31 Plants and Photosynthesis Chapters 6 and 31 Unit 11, Lecture 1 Topics: Introduction to Plants The Shoot System: The Flower Covers information from: Chapter 31 (PG 598 619) Terms to Describe Plants Eukaryotic

More information

The Wheat Plant and Its Life Cycle

The Wheat Plant and Its Life Cycle The Wheat Plant and Its Life Cycle Week 1 Day 4 Lesson Overview The purpose of this lesson is to introduce students to the specific structures and functions of a wheat plant as well as to the wheat life

More information

2018 Version. Photosynthesis Junior Science

2018 Version. Photosynthesis Junior Science 2018 Version Photosynthesis Junior Science 1 Plants fill the role of Producers in a community Plants are special because they have leaves and are able to produce their own food by the process of photosynthesis

More information

The three principal organs of seed plants are roots, stems, and leaves.

The three principal organs of seed plants are roots, stems, and leaves. 23 1 Specialized Tissues in Plants Seed Plant Structure The three principal organs of seed plants are roots, stems, and leaves. 1 of 34 23 1 Specialized Tissues in Plants Seed Plant Structure Roots: absorb

More information

Bio Ch 6 Photosynthesis Notes

Bio Ch 6 Photosynthesis Notes Bio Ch 6 Photosynthesis Notes I. Photosynthesis Basics A. What is photosynthesis? 1. Photosynthesis is a chemical reaction in which light energy is converted to chemical energy in glucose. 2. It is the

More information

CROSS SECTION OF A LEAF INTRODUCTION

CROSS SECTION OF A LEAF INTRODUCTION CROSS SECTION OF A LEAF INTRODUCTION The leaf is an organ in a plant consisting of many different tissues. The primary function of a leaf is to make (synthesize) food through a chemical reaction called.

More information

How drought stress and CO2 concentration influence stomatal conductance and photosynthesis? Abstract. Introduction

How drought stress and CO2 concentration influence stomatal conductance and photosynthesis? Abstract. Introduction How drought stress and CO2 concentration influence stomatal conductance and photosynthesis? Simon Keck 1, Julian Müller 1, Dominik Guttschick 1, Kaisa Pajusalu 2, Elodie Quer 3, Maria Majekova 4 1 University

More information

How Plants Grow HOME GARDENING OSHER LIFELONG LEARNING SPRING 2015

How Plants Grow HOME GARDENING OSHER LIFELONG LEARNING SPRING 2015 How Plants Grow HOME GARDENING OSHER LIFELONG LEARNING SPRING 2015 What is a plant? 1.bp.blogspot.com What is a plant? Living organism that, unlike an animal, cannot move voluntarily, manufactures food

More information

Discovery of compounds that keep plants fresh ~ Controlling plant pore openings for drought tolerance and delay in leaf withering ~

Discovery of compounds that keep plants fresh ~ Controlling plant pore openings for drought tolerance and delay in leaf withering ~ Discovery of compounds that keep plants fresh ~ Controlling plant pore openings for drought tolerance and delay in leaf withering ~ April 9, 2018 A team of scientists at Nagoya University has discovered

More information

TUNDRA. Column 1 biome name Column 2 biome description Column 3 examples of plant adaptations

TUNDRA. Column 1 biome name Column 2 biome description Column 3 examples of plant adaptations Biome Cards (pp. 1 of 7) Cut out each biome card and divide each card into three sections. Place all sections in a plastic storage bag. Have one bag for every two students. Column 1 biome name Column 2

More information

in angiosperms 10/29/08 Roots take up water via roots Large surface area is needed Roots branch and have root hairs Cortex structure also helps uptake

in angiosperms 10/29/08 Roots take up water via roots Large surface area is needed Roots branch and have root hairs Cortex structure also helps uptake in angiosperms A. Root System Roots take up water via roots Large surface area is needed Roots branch and have root hairs Cortex structure also helps uptake 1 B. Minerals Nitrogen (NO 3-,NH 4+ ) Potassium

More information

Physiological Ecology. Physiological Ecology. Physiological Ecology. Nutrient and Energy Transfer. Introduction to Ecology

Physiological Ecology. Physiological Ecology. Physiological Ecology. Nutrient and Energy Transfer. Introduction to Ecology Physiological Ecology Outline Introduction to Ecology Evolution and Natural Selection Physiological Ecology Behavioural Ecology Physiological Ecology study of species needs and tolerances that determine

More information

Carbon Input to Ecosystems

Carbon Input to Ecosystems Objectives Carbon Input Leaves Photosynthetic pathways Canopies (i.e., ecosystems) Controls over carbon input Leaves Canopies (i.e., ecosystems) Terminology Photosynthesis vs. net photosynthesis vs. gross

More information

Salinity effects on the stomatal behaviour of grapevine

Salinity effects on the stomatal behaviour of grapevine New Phytol. (1990), 116, 499-503 Salinity effects on the stomatal behaviour of grapevine BY W. J. S. DOWNTON, B. R. LOVEYS AND W. J. R. GRANT CSIRO Division of Horticulture, GPO Box 350, Adelaide, 5001,

More information

Thuy Nguyen Uni Bonn 1

Thuy Nguyen Uni Bonn 1 Comparison of water balance and root water uptake models in simulating CO 2 and H 2 O fluxes and growth of wheat Authors: T. H. guyen a, *, M. Langensiepen a, J. Vanderborght c, H. Hueging a, C. M. Mboh

More information

Bio Factsheet. Transport in Plants. Number 342

Bio Factsheet. Transport in Plants.   Number 342 Number 342 Transport in Plants This Factsheet: Explains why plants need a transport system Describes what plants transport Describes the tissues which carry out transport Outlines the position of the xylem

More information

Recap. Waxy layer which protects the plant & conserves water. Contains chloroplasts: Specialized for light absorption.

Recap. Waxy layer which protects the plant & conserves water. Contains chloroplasts: Specialized for light absorption. Recap Contains chloroplasts: Specialized for light absorption Waxy layer which protects the plant & conserves water mesophyll Layer contains air spaces: Specialized for gas exchange Vascular Tissue Exchange

More information

Transport in Vascular Plants

Transport in Vascular Plants Chapter 36 Transport in Vascular Plants PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Vascular tissue Transports nutrients throughout a plant; such

More information

TREE WATER USE PATTERNS ARE MAINLY DRIVEN BY ENVIRONMENTAL VARIABLES AND TREE STRUCTURAL PARAMETERS IN HUMID TEMPERATE DECIDUOUS HARDWOOD FORESTS

TREE WATER USE PATTERNS ARE MAINLY DRIVEN BY ENVIRONMENTAL VARIABLES AND TREE STRUCTURAL PARAMETERS IN HUMID TEMPERATE DECIDUOUS HARDWOOD FORESTS TREE WATER USE PATTERNS ARE MAINLY DRIVEN BY ENVIRONMENTAL VARIABLES AND TREE STRUCTURAL PARAMETERS IN HUMID TEMPERATE DECIDUOUS HARDWOOD FORESTS Virginia Hernandez-Santana, Heidi Asbjornsen Presented

More information