Cells: The Working Units of Life

Size: px
Start display at page:

Download "Cells: The Working Units of Life"

Transcription

1 4 Cells: The Working Units of Life

2 Chapter 4 Cells: The Working Units of Life Key Concepts 4.1 Cells Provide Compartments for Biochemical Reactions 4.2 Prokaryotic Cells Do Not Have a Nucleus 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments 4.4 The Cytoskeleton Provides Strength and Movement 4.5 Extracellular Structures Provide Support and Protection For Cells and Tissues

3 Concept 4.1 Cells Provide Compartments for Biochemical Reactions Cell theory was the first unifying theory of biology: Cells are the fundamental units of life. All organisms are composed of cells. All cells come from preexisting cells.

4 Concept 4.1 Cells Provide Compartments for Biochemical Reactions Important implications of cell theory: Studying cell biology is the same as studying life. Life is continuous all the way back to the evolution of the first living cells.

5 Concept 4.1 Cells Provide Compartments for Biochemical Reactions Most cells are tiny (1-100 micrometers), in order to maintain a good surface area-tovolume ratio. The volume of a cell determines its metabolic activity per unit of time. The surface area of a cell determines the amount of substances that can enter or leave the cell.

6 Figure 4.1 The Scale of Life

7 Figure 4.2 Why Cells Are Small

8 Concept 4.1 Cells Provide Compartments for Biochemical Reactions As cells grow larger, metabolic activity and need for resources and rate of waste production increases faster than surface area. Some large cells increase surface area by folds in the cell membrane.

9 Concept 4.1 Cells Provide Compartments for Biochemical Reactions To see small cells, there are two types of microscopes: Light microscopes use glass lenses and light Resolution = 0.2 μm Electron microscopes electromagnets focus an electron beam Resolution = 2 nm

10 Figure 4.3 Microscopy

11 Concept 4.1 Cells Provide Compartments for Biochemical Reactions Chemical analysis of cells involves breaking them open to make a cell-free extract. The composition and chemical reactions of the extract can be examined. Properties of the cell-free extract are the same as those inside the cell. Cell structures and macromolecules can be separated according to size in a centrifuge.

12 Figure 4.4 Centrifugation

13 Concept 4.1 Cells Provide Compartments for Biochemical Reactions The cell membrane: A selectively permeable barrier that allows cells to maintain a stable internal environment (homeostasis) Important in communication and receiving signals Often has proteins for binding and adhering to adjacent cells

14 Concept 4.1 Cells Provide Compartments for Biochemical Reactions Two types of cells: Prokaryotes have no membrane-enclosed compartments. Eukaryotes have membrane-enclosed compartments called organelles, such as the nucleus.

15 Concept 4.2 Prokaryotic Cells Do Not Have a Nucleus Prokaryotic cells: Are enclosed by a cell membrane Have DNA located in the nucleoid region The rest of the cytoplasm consists of: Cytosol (water and dissolved material) and suspended particles Ribosomes sites of protein synthesis

16 Figure 4.5 A Prokaryotic Cell

17 Concept 4.2 Prokaryotic Cells Do Not Have a Nucleus Most prokaryotes have a rigid cell wall outside the cell membrane. Bacterial cell walls contain peptidoglycans. Some bacteria have an additional outer membrane that is very permeable. Other bacteria have a slimy layer of polysaccharides, called the capsule.

18 Concept 4.2 Prokaryotic Cells Do Not Have a Nucleus Some bacteria, including cyanobacteria, have an internal membrane system that contains molecules needed for photosynthesis.

19 Concept 4.2 Prokaryotic Cells Do Not Have a Nucleus Some prokaryotes swim by means of flagella, made of the protein flagellin. A motor protein anchored to the cell membrane or outer membrane spins each flagellum and drives the cell.

20 Figure 4.6 Prokaryotic Flagella (Part 1)

21 Figure 4.6 Prokaryotic Flagella (Part 2)

22 Concept 4.2 Prokaryotic Cells Do Not Have a Nucleus Cytoskeleton: Some rod-shaped bacteria have a network of helical actin-like protein structures to help maintain their shape.

23 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Eukaryotic cells have a cell membrane, cytoplasm, and ribosomes, as well as membrane-enclosed compartments called organelles. Each organelle plays a specific role in the cell.

24 Figure 4.7 Eukaryotic Cells (Part 1)

25 Figure 4.7 Eukaryotic Cells (Part 2)

26 Figure 4.7 Eukaryotic Cells (Part 3)

27 Figure 4.7 Eukaryotic Cells (Part 4)

28 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Ribosomes translate the nucleotide sequence of a messenger RNA molecule into a polypeptide. They occur in both prokaryotic and eukaryotic cells and consist of one large and one small subunit. Each subunit consists of ribosomal RNA (rrna) bound to smaller protein molecules.

29 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Ribosomes are not membrane-bound organelles. In eukaryotes, they are free in the cytoplasm, attached to the endoplasmic reticulum, or inside mitochondria and chloroplasts. In prokaryotes, ribosomes float freely in the cytoplasm.

30 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments The nucleus is usually the largest organelle: Location of DNA and DNA replication Site where DNA is transcribed to RNA Contains the nucleolus, where assembly of ribosomes from RNA and proteins begins

31 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments The nucleus is surrounded by two membranes that form the nuclear envelope. Nuclear pores in the envelope control movement of molecules between nucleus and cytoplasm. In the nucleus, DNA combines with proteins to form chromatin in long, thin threads called chromosomes. The outer membrane of the envelope is continuous with the endoplasmic reticulum.

32 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments The endomembrane system includes the nuclear envelope, endoplasmic reticulum, Golgi apparatus, and lysosomes. Tiny, membrane-surrounded vesicles shuttle substances between the various components, as well as to the cell membrane.

33 Figure 4.8 The Endomembrane System

34 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Endoplasmic reticulum (ER) network of interconnected membranes in the cytoplasm, with a large surface area Two types of ER: Rough endoplasmic reticulum (RER) Smooth endoplasmic reticulum (SER)

35 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Rough endoplasmic reticulum (RER) has ribosomes attached to its outer surface. Newly made proteins enter the RER lumen where they are chemically modified and tagged for delivery to specific locations. The proteins are transported in vesicles that pinch off from the ER. All secreted proteins and most membrane proteins pass through the RER.

36 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Polypeptides are transported into the RER lumen as they are being synthesized. In the lumen they are folded into their tertiary structures. Many are linked to carbohydrate groups, becoming glycoproteins. Many glycoproteins are important in recognition and interactions between cells.

37 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Smooth endoplasmic reticulum (SER) more tubular, no ribosomes Chemically modifies small molecules such as drugs and pesticides Site of glycogen degradation in animal cells Site of synthesis of lipids and steroids Stores calcium ions, which trigger many cell responses

38 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Golgi apparatus: flattened sacs (cisternae) and small membrane-enclosed vesicles. Receives proteins from the RER and can further modify them Concentrates, packages, and sorts proteins Adds carbohydrates to proteins Site of polysaccharide synthesis for plant cell walls

39 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Golgi apparatus has three regions: cis region: receives vesicles containing proteins from the ER trans region: vesicles bud off from the Golgi apparatus and travel to the cell membrane or to lysosomes medial region: in between trans and cis regions

40 Figure 4.8 The Endomembrane System

41 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Primary lysosomes originate from the Golgi apparatus. They contain hydrolases (digestive enzymes), and are the site where macromolecules are hydrolyzed into monomers.

42 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Macromolecules may enter the cell by phagocytosis part of the cell membrane encloses the material and a phagosome is formed. Phagosomes then fuse with primary lysosomes to form secondary lysosomes. Enzymes in the secondary lysosome hydrolyze the food molecules.

43 Figure 4.9 Lysosomes Isolate Digestive Enzymes from the Cytoplasm

44 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Phagocytes are cells specialized to take in materials and break them down. Autophagy is the programmed destruction of cell components. Cells break down their own materials, and even entire organelles, within lysosomes. Lysosomal storage diseases occur when lysosomes fail to digest cell components.

45 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments In eukaryotes, breakdown of energy-rich molecules begins in the cytosol. The partially digested molecules enter the mitochondria, where chemical energy is converted to energy-rich ATP. Cells that require a lot of energy often have more mitochondria.

46 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Mitochondria have two membranes: Outer membrane very porous Inner membrane extensive folds called cristae increase surface area The fluid-filled matrix contains enzymes, DNA, and ribosomes.

47 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Plant and algae cells contain plastids that can differentiate into organelles some are used for storage. Chloroplast: contains chlorophyll; site of photosynthesis Photosynthesis converts light energy into chemical energy (anabolic process).

48 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Chloroplasts have two membranes, plus internal membranes called thylakoids. Granum a stack of thylakoids; light energy is converted to chemical energy on these membranes. Stroma aqueous matrix around grana; contains ribosomes and DNA; carbohydrates are synthesized here.

49 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Other plastids: Chromoplasts make and store red, yellow, and orange pigments, especially in flowers and fruits.

50 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Leucoplasts store macromolecules such as starch.

51 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Other organelles perform specialized functions. Peroxisomes collect and break down toxic by-products of metabolism, such as H 2 O 2, using specialized enzymes. Glyoxysomes (only in plants) lipids are converted to carbohydrates for growth.

52 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Vacuoles (mainly in plants and fungi) have several functions: Storage of waste products and toxic compounds; some may deter herbivores. Structure for plant cells water enters the vacuole by osmosis, creating turgor pressure.

53 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Reproduction vacuoles in flowers and fruits contain pigments whose colors attract pollinators and aid seed dispersal. Catabolism digestive enzymes in seed vacuoles hydrolyze stored food for early growth.

54 Concept 4.3 Eukaryotic Cells Have a Nucleus and Other Membrane-Bound Compartments Contractile vacuoles in freshwater protists get rid of excess water entering the cell due to solute imbalance. The contractile vacuole enlarges as water enters, then quickly contracts to force water out through special pores.

55 Concept 4.4 The Cytoskeleton Provides Strength and Movement The cytoskeleton: Supports and maintains cell shape Holds organelles in position Moves organelles Involved in cytoplasmic streaming Interacts with extracellular structures to anchor cell in place

56 Concept 4.4 The Cytoskeleton Provides Strength and Movement The cytoskeleton has three components with very different functions: Microfilaments Intermediate filaments Microtubules

57 Concept 4.4 The Cytoskeleton Provides Strength and Movement Microfilaments: Help a cell or parts of a cell to move Determine cell shape Made from actin monomers that attach to the plus end and detach at the minus end of the filament

58 Figure 4.10 The Cytoskeleton (Part 1)

59 Concept 4.4 The Cytoskeleton Provides Strength and Movement Intermediate filaments: At least 50 different kinds in six molecular classes Tough, ropelike protein assemblages; more permanent than other filaments and do not show dynamic instability Anchor cell structures in place Resist tension, maintain rigidity

60 Figure 4.10 The Cytoskeleton (Part 2)

61 Concept 4.4 The Cytoskeleton Provides Strength and Movement Microtubules: Thickest cytoskeleton elements. Form a rigid internal skeleton for some cells or regions Act as a framework for motor proteins to move structures in the cell

62 Figure 4.10 The Cytoskeleton (Part 3)

63 Concept 4.4 The Cytoskeleton Provides Strength and Movement Microtubules form an internal skeleton for moveable cellular appendages: Cilia short, usually many present; move stiffly to propel a cell, or move fluid over a stationary cell Flagella longer, usually one or two present; push or pull cell through water

64 Figure 4.11 Cilia

65 Concept 4.5 Extracellular Structures Provide Support and Protection for Cells and Tissues Plant cell wall: semi-rigid structure outside the cell membrane The fibrous component is the polysaccharide cellulose. The gel-like matrix contains cross-linked polysaccharides and proteins.

66 Figure 4.15 The Plant Cell Wall

67 Concept 4.5 Extracellular Structures Provide Support and Protection for Cells and Tissues The plant cell wall has three major roles: Provides support for the cell and limits its volume by remaining rigid Acts as a barrier to infection Contributes to form during growth and development

68 Concept 4.5 Extracellular Structures Provide Support and Protection for Cells and Tissues Adjacent plant cells are connected by cell membrane-lined channels called plasmodesmata. These channels allow movement of water, ions, small molecules, hormones, and some RNA and proteins.

69 Concept 4.5 Extracellular Structures Provide Support and Protection for Cells and Tissues Many animal cells are surrounded by an extracellular matrix. The fibrous component is the protein collagen. The gel-like matrix consists of proteoglycans. A third group of proteins links the collagen and the matrix together.

70 Figure 4.16 An Extracellular Matrix

71 Concept 4.5 Extracellular Structures Provide Support and Protection for Cells and Tissues Extracellular matrices in animal cells: Hold cells together in tissues Contribute to physical properties of cartilage, skin, bone, and other tissues Help filter materials (e.g., in kidneys) Orient cell movement during development and tissue repair

72 Concept 4.5 Extracellular Structures Provide Support and Protection for Cells and Tissues Cell junctions are specialized structures that protrude from adjacent cells and glue them together: Tight junctions Desmosomes Gap junctions

73 Concept 4.5 Extracellular Structures Provide Support and Protection for Cells and Tissues Tight junctions prevent substances from moving through spaces between cells. Desmosomes hold cells together but allow materials to move in the matrix. Gap junctions are channels that run between membrane pores in adjacent cells, allowing substances to pass between the cells.

74 Figure 4.18 Junctions Link Animal Cells (Part 1)

75 Figure 4.18 Junctions Link Animal Cells (Part 2)

76 Figure 4.18 Junctions Link Animal Cells (Part 3)

77 Figure 4.18 Junctions Link Animal Cells (Part 4)

Cell Structure. Chapter 4

Cell Structure. Chapter 4 Cell Structure Chapter 4 Cell Theory Cells were discovered in 1665 by Robert Hooke. Early studies of cells were conducted by - Mathias Schleiden (1838) - Theodor Schwann (1839) Schleiden and Schwann proposed

More information

Biology: Life on Earth

Biology: Life on Earth Teresa Audesirk Gerald Audesirk Bruce E. Byers Biology: Life on Earth Eighth Edition Lecture for Chapter 4 Cell Structure and Function Copyright 2008 Pearson Prentice Hall, Inc. Chapter 4 Outline 4.1 What

More information

Cell Structure. Chapter 4. Cell Theory. Cells were discovered in 1665 by Robert Hooke.

Cell Structure. Chapter 4. Cell Theory. Cells were discovered in 1665 by Robert Hooke. Cell Structure Chapter 4 Cell Theory Cells were discovered in 1665 by Robert Hooke. Early studies of cells were conducted by - Mathias Schleiden (1838) - Theodor Schwann (1839) Schleiden and Schwann proposed

More information

A. The Cell: The Basic Unit of Life. B. Prokaryotic Cells. D. Organelles that Process Information. E. Organelles that Process Energy

A. The Cell: The Basic Unit of Life. B. Prokaryotic Cells. D. Organelles that Process Information. E. Organelles that Process Energy The Organization of Cells A. The Cell: The Basic Unit of Life Lecture Series 4 The Organization of Cells B. Prokaryotic Cells C. Eukaryotic Cells D. Organelles that Process Information E. Organelles that

More information

10/1/2014. Chapter Explain why the cell is considered to be the basic unit of life.

10/1/2014. Chapter Explain why the cell is considered to be the basic unit of life. Chapter 4 PSAT $ by October by October 11 Test 3- Tuesday October 14 over Chapter 4 and 5 DFA- Monday October 20 over everything covered so far (Chapters 1-5) Review on Thursday and Friday before 1. Explain

More information

A. The Cell: The Basic Unit of Life. B. Prokaryotic Cells. C. Eukaryotic Cells. D. Organelles that Process Information

A. The Cell: The Basic Unit of Life. B. Prokaryotic Cells. C. Eukaryotic Cells. D. Organelles that Process Information The Organization of Cells A. The Cell: The Basic Unit of Life Lecture Series 4 The Organization of Cells B. Prokaryotic Cells C. Eukaryotic Cells D. Organelles that Process Information E. Organelles that

More information

Chapter 4 A Tour of the Cell*

Chapter 4 A Tour of the Cell* Chapter 4 A Tour of the Cell* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Fundamental Units of Life Cells

More information

Basic Structure of a Cell

Basic Structure of a Cell Basic Structure of a Cell Prokaryotic Cells No nucleus Archaea & Eubacteria One circular chromosome Extremely small Eukaryotic Cells Has a nucleus!!! Membrane-bound organelles Plants, Animals, Fungi, &

More information

Overview of Cells. Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory

Overview of Cells. Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory Overview of Cells Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory Prokaryotic Cells Archaea Bacteria Come in many different shapes and sizes.5 µm 2 µm, up to 60 µm long Have large

More information

Components of a functional cell. Boundary-membrane Cytoplasm: Cytosol (soluble components) & particulates DNA-information Ribosomes-protein synthesis

Components of a functional cell. Boundary-membrane Cytoplasm: Cytosol (soluble components) & particulates DNA-information Ribosomes-protein synthesis Cell (Outline) - Components of a functional cell - Major Events in the History of Earth: abiotic and biotic phases; anaerobic and aerobic atmosphere - Prokaryotic cells impact on the biosphere - Origin

More information

The Cell Notes 1 of 11

The Cell Notes 1 of 11 The Cell The basic unit of structure and function in living things The smallest units in living things The smallest units in living things that show the characteristics of life Organisms can be made of

More information

Chapter 6: A Tour of the Cell

Chapter 6: A Tour of the Cell Chapter 6: A Tour of the Cell 1. The study of cells has been limited by their small size, and so they were not seen and described until 1665, when Robert Hooke first looked at dead cells from an oak tree.

More information

Cell (Learning Objectives)

Cell (Learning Objectives) Cell (Learning Objectives) 1. Understand & describe the basic components necessary for a functional cell. 2. Review the order of appearance of cells on earth and explain the endosymbiotic theory. 3. Compare

More information

Cell Theory. Cell Structure. Chapter 4. Cell is basic unit of life. Cells discovered in 1665 by Robert Hooke

Cell Theory. Cell Structure. Chapter 4. Cell is basic unit of life. Cells discovered in 1665 by Robert Hooke Cell Structure Chapter 4 Cell is basic unit of life Cell Theory Cells discovered in 1665 by Robert Hooke Early cell studies conducted by - Mathias Schleiden (1838) - Theodor Schwann (1839) Schleiden &

More information

A cell is chemical system that is able to maintain its structure and reproduce. Cells are the fundamental unit of life. All living things are cells

A cell is chemical system that is able to maintain its structure and reproduce. Cells are the fundamental unit of life. All living things are cells Cell Biology A cell is chemical system that is able to maintain its structure and reproduce. Cells are the fundamental unit of life. All living things are cells or composed of cells. 1 The interior contents

More information

Chapter 6 A Tour of the Cell

Chapter 6 A Tour of the Cell Chapter 6 A Tour of the Cell The cell is the basic unit of life Although cells differ substantially from one another, they all share certain characteristics that reflect a common ancestry and remind us

More information

The Discovery of Cells

The Discovery of Cells The Discovery of Cells Microscope observations! General Cell & Organelle Discovery 1600s Observations made by scientists using more powerful microscopes in the 1800s led to the formation of the cell theory.

More information

Chapter 6: A Tour of the Cell

Chapter 6: A Tour of the Cell AP Biology Reading Guide Fred and Theresa Holtzclaw Chapter 6: A Tour of the Cell Name Period Chapter 6: A Tour of the Cell Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry

More information

Cell Structure and Function

Cell Structure and Function Cell Structure and Function Cell size comparison Animal cell Bacterial cell What jobs do cells have to do for an organism to live Gas exchange CO 2 & O 2 Eat (take in & digest food) Make energy ATP Build

More information

Chapter 4 Active Reading Guide A Tour of the Cell

Chapter 4 Active Reading Guide A Tour of the Cell Name: AP Biology Mr. Croft Chapter 4 Active Reading Guide A Tour of the Cell Section 1 1. The study of cells has been limited by their small size, and so they were not seen and described until 1665, when

More information

Outline. Cell Structure and Function. Cell Theory Cell Size Prokaryotic Cells Eukaryotic Cells Organelles. Chapter 4

Outline. Cell Structure and Function. Cell Theory Cell Size Prokaryotic Cells Eukaryotic Cells Organelles. Chapter 4 Cell Structure and Function Chapter 4 Cell Theory Cell Size Prokaryotic Cells Eukaryotic Cells Organelles! Nucleus Outline! Endomembrane System! Cytoskeleton! Centrioles, Cilia, and Flagella 1 2 Cell Theory

More information

UNIT 3 CP BIOLOGY: Cell Structure

UNIT 3 CP BIOLOGY: Cell Structure UNIT 3 CP BIOLOGY: Cell Structure Page CP: CHAPTER 3, Sections 1-3; HN: CHAPTER 7, Sections 1-2 Standard B-2: The student will demonstrate an understanding of the structure and function of cells and their

More information

7-2 Eukaryotic Cell Structure

7-2 Eukaryotic Cell Structure 1 of 49 Comparing the Cell to a Factory Eukaryotic Cell Structures Structures within a eukaryotic cell that perform important cellular functions are known as organelles. Cell biologists divide the eukaryotic

More information

Lecture Series 3 The Organization of Cells

Lecture Series 3 The Organization of Cells Lecture Series 3 The Organization of Cells Reading Assignments Read Chapter 15 Endomembrane System Read Chapter 17 Cytoskeleton A. The Cell: The Basic Unit of Life Cell Theory: All cells come from preexisting

More information

Reading Assignments. A. The Cell: The Basic Unit of Life. Lecture Series 3 The Organization of Cells

Reading Assignments. A. The Cell: The Basic Unit of Life. Lecture Series 3 The Organization of Cells Lecture Series 3 The Organization of Cells Reading Assignments Read Chapter 15 Endomembrane System Read Chapter 17 Cytoskeleton A. The Cell: The Basic Unit of Life Cell Theory: All cells come from preexisting

More information

O.k., Now Starts the Good Stuff (Part II) Eukaryotic Cell Structure and Function

O.k., Now Starts the Good Stuff (Part II) Eukaryotic Cell Structure and Function O.k., Now Starts the Good Stuff (Part II) Eukaryotic Cell Structure and Function Eukaryotic Cells These cells have membrane-bound structures called organelles. Cell processes occur in these organelles.

More information

Topic 3: Cells Ch. 6. Microscopes pp Microscopes. Microscopes. Microscopes. Microscopes

Topic 3: Cells Ch. 6. Microscopes pp Microscopes. Microscopes. Microscopes. Microscopes Topic 3: Cells Ch. 6 -All life is composed of cells and all cells have a plasma membrane, cytoplasm, and DNA. pp.105-107 - The development of the microscope was the key to understanding that all living

More information

7.L.1.2 Plant and Animal Cells. Plant and Animal Cells

7.L.1.2 Plant and Animal Cells. Plant and Animal Cells 7.L.1.2 Plant and Animal Cells Plant and Animal Cells Clarifying Objective: 7.L.1.2 Compare the structures and functions of plant and animal cells; include major organelles (cell membrane, cell wall, nucleus,

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology Tour of the Cell 1 Types of cells Prokaryote bacteria cells - no organelles - organelles Eukaryote animal cells Eukaryote plant cells Why organelles? Specialized structures u specialized functions cilia

More information

Cell Types. Prokaryotes

Cell Types. Prokaryotes Cell Types Prokaryotes before nucleus no membrane-bound nucleus only organelle present is the ribosome all other reactions occur in the cytoplasm not very efficient Ex.: bacteria 1 Cell Types Eukaryotes

More information

Class Work 31. Describe the function of the Golgi apparatus? 32. How do proteins travel from the E.R. to the Golgi apparatus? 33. After proteins are m

Class Work 31. Describe the function of the Golgi apparatus? 32. How do proteins travel from the E.R. to the Golgi apparatus? 33. After proteins are m Eukaryotes Class Work 1. What does the word eukaryote mean? 2. What is the one major difference between eukaryotes and prokaryotes? 3. List the different kingdoms of the eukaryote domain in the order in

More information

4.1 Cells are the Fundamental Units of Life. Cell Structure. Cells. Fundamental units of life Cell theory. Except possibly viruses.

4.1 Cells are the Fundamental Units of Life. Cell Structure. Cells. Fundamental units of life Cell theory. Except possibly viruses. Cells 4.1 Cells are the Fundamental Units of Life Fundamental units of life Cell theory All living things are composed of one or more cells. The cell is the most basic unit of life. All cells come from

More information

Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology?

Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology? Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology? 2) How does an electron microscope work and what is the difference

More information

Biology, 7e (Campbell) Chapter 6: A Tour of the Cell

Biology, 7e (Campbell) Chapter 6: A Tour of the Cell Biology, 7e (Campbell) Chapter 6: A Tour of the Cell Chapter Questions 1) What limits the resolving power of a light microscope? A) the type of lens used to magnify the object under study B) the shortest

More information

122-Biology Guide-5thPass 12/06/14. Topic 1 An overview of the topic

122-Biology Guide-5thPass 12/06/14. Topic 1  An overview of the topic Topic 1 http://bioichiban.blogspot.com Cellular Functions 1.1 The eukaryotic cell* An overview of the topic Key idea 1: Cell Organelles Key idea 2: Plasma Membrane Key idea 3: Transport Across Membrane

More information

CELL PART Expanded Definition Cell Structure Illustration Function Summary Location ALL CELLS DNA Common in Animals Uncommon in Plants Lysosome

CELL PART Expanded Definition Cell Structure Illustration Function Summary Location ALL CELLS DNA Common in Animals Uncommon in Plants Lysosome CELL PART Expanded Definition Cell Structure Illustration Function Summary Location is the material that contains the Carry genetic ALL CELLS information that determines material inherited characteristics.

More information

Lecture Series 3 The Organization of Cells

Lecture Series 3 The Organization of Cells Lecture Series 3 The Organization of Cells Reading Assignments Read Chapter 15 Endomembrane System Read Chapter 17 Cytoskeleton A. The Cell: The Basic Unit of Life Cell Theory: All cells come from preexisting

More information

Goals: Viruses: not considered alive. Living cells. Plants. Bacteria. Animals. Archae Bacteria. Protists. Fungi. The prokaryotic cell structure

Goals: Viruses: not considered alive. Living cells. Plants. Bacteria. Animals. Archae Bacteria. Protists. Fungi. The prokaryotic cell structure Goals: Identify the structures of eukaryotic and prokaryotic cells Identify the differences between viruses, prokaryotes and eukaryotes Use knowledge about differences between types of cells to solve a

More information

Today s materials: Cell Structure and Function. 1. Prokaryote and Eukaryote 2. DNA as a blue print of life Prokaryote and Eukaryote. What is a cell?

Today s materials: Cell Structure and Function. 1. Prokaryote and Eukaryote 2. DNA as a blue print of life Prokaryote and Eukaryote. What is a cell? Today s materials: 1. Prokaryote and Eukaryote 2. DNA as a blue print of life Prokaryote and Eukaryote Achadiah Rachmawati What is a cell? Cell Structure and Function All living things are made of cells

More information

Guided Reading Activities

Guided Reading Activities Name Period Chapter 4: A Tour of the Cell Guided Reading Activities Big Idea: Introduction to the Cell Answer the following questions as you read Modules 4.1 4.4: 1. A(n) uses a beam of light to illuminate

More information

Basic Structure of a Cell

Basic Structure of a Cell Basic Structure of a Cell 1 Nonliving Levels ATOMS MOLECULES ORGANELLES 2 Living Levels CELLS life starts here TISSUES Similar cells working together 3 More Living Levels ORGANS ORGAN SYSTEMS ORGANISM

More information

Chapter 4: Cells: The Working Units of Life

Chapter 4: Cells: The Working Units of Life Name Period Chapter 4: Cells: The Working Units of Life 1. What are the three critical components of the cell theory? 2. What are the two important conceptual implications of the cell theory? 3. Which

More information

Biology. 7-2 Eukaryotic Cell Structure 10/29/2013. Eukaryotic Cell Structures

Biology. 7-2 Eukaryotic Cell Structure 10/29/2013. Eukaryotic Cell Structures Biology Biology 1of 49 2of 49 Eukaryotic Cell Structures Eukaryotic Cell Structures Structures within a eukaryotic cell that perform important cellular functions are known as organelles. Cell biologists

More information

Chapter 4. Table of Contents. Section 1 The History of Cell Biology. Section 2 Introduction to Cells. Section 3 Cell Organelles and Features

Chapter 4. Table of Contents. Section 1 The History of Cell Biology. Section 2 Introduction to Cells. Section 3 Cell Organelles and Features Cell Structure and Function Table of Contents Section 1 The History of Cell Biology Section 2 Introduction to Cells Section 3 Cell Organelles and Features Section 4 Unique Features of Plant Cells Section

More information

II. Eukaryotic Cell Structure A. Boundaries 1. plasma membrane a. serves as a boundary b/w the cell and its environment b. controls movement of

II. Eukaryotic Cell Structure A. Boundaries 1. plasma membrane a. serves as a boundary b/w the cell and its environment b. controls movement of I. History of the cell theory A. Anton van Leeuwenhoek (1600s) - dutch lens maker could see things with his lenses that were invisible to the naked eye - developed the simple microscope B. Robert Hooke

More information

and their organelles

and their organelles and their organelles Discovery Video: Cells REVIEW!!!! The Cell Theory 1. Every living organism is made of one or more cells. 2. The cell is the basic unit of structure and function. It is the smallest

More information

7 Characteristics of Life

7 Characteristics of Life 7 Characteristics of Life 1. Interdependence 2. Metabolism 3. Homeostasis 4. Cellular Structure and Function 5. Reproduction 6. Heredity 7. Evolution The Cell Theory All living things are composed of one

More information

cells - relatively simple cells - lack nuclear membrane and many organelles - bacteria and their relatives are all prokaryotic

cells - relatively simple cells - lack nuclear membrane and many organelles - bacteria and their relatives are all prokaryotic Cell Biology A cell is chemical system that is able to maintain its structure and reproduce. Cells are the fundamental unit of life. All living things are cells or composed of cells. 1 The interior contents

More information

Cell Is the basic structural, functional, and biological unit of all known living organisms. Cells are the smallest unit of life and are often called

Cell Is the basic structural, functional, and biological unit of all known living organisms. Cells are the smallest unit of life and are often called The Cell Cell Is the basic structural, functional, and biological unit of all known living organisms. Cells are the smallest unit of life and are often called the "building blocks of life". The study of

More information

Unit 3: Cells. Objective: To be able to compare and contrast the differences between Prokaryotic and Eukaryotic Cells.

Unit 3: Cells. Objective: To be able to compare and contrast the differences between Prokaryotic and Eukaryotic Cells. Unit 3: Cells Objective: To be able to compare and contrast the differences between Prokaryotic and Eukaryotic Cells. The Cell Theory All living things are composed of cells (unicellular or multicellular).

More information

Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry

Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry Name Period Chapter 6: A Tour of the Cell Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry 1. The study of cells has been limited by their small size, and so they were

More information

Overview: The Fundamental Units of Life Concept 6.1: Biologists use microscopes and the tools of biochemistry to study cells Microscopy

Overview: The Fundamental Units of Life Concept 6.1: Biologists use microscopes and the tools of biochemistry to study cells Microscopy Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collection of matter that can be alive Cell structure is correlated to cellular function All cells are related

More information

Class IX: Biology Chapter 5: The fundamental unit of life. Chapter Notes. 1) In 1665, Robert Hooke first discovered and named the cells.

Class IX: Biology Chapter 5: The fundamental unit of life. Chapter Notes. 1) In 1665, Robert Hooke first discovered and named the cells. Class IX: Biology Chapter 5: The fundamental unit of life. Key learnings: Chapter Notes 1) In 1665, Robert Hooke first discovered and named the cells. 2) Cell is the structural and functional unit of all

More information

Bio 111 Study Guide Chapter 6 Tour of the Cell

Bio 111 Study Guide Chapter 6 Tour of the Cell Bio 111 Study Guide Chapter 6 Tour of the Cell BEFORE CLASS: Reading: Read the whole chapter from p. 93-121, mostly skimming Concept 6.1 on microscopy. Figure 6.8 on pp. 100-101 is really helpful in showing

More information

Cell Organelles. a review of structure and function

Cell Organelles. a review of structure and function Cell Organelles a review of structure and function TEKS and Student Expectations (SE s) B.4 Science concepts. The student knows that cells are the basic structures of all living things with specialized

More information

Cell Theory and Structure. Discoveries What are Cells? Cell Theory Cell Structures Organelles

Cell Theory and Structure. Discoveries What are Cells? Cell Theory Cell Structures Organelles Cell Theory and Structure Discoveries What are Cells? Cell Theory Cell Structures Organelles Discoveries In 1665 Robert Hooke observed a thin slice of cork from an oak tree What he saw reminded him of

More information

Chapter 7.2. Cell Structure

Chapter 7.2. Cell Structure Chapter 7.2 Cell Structure Daily Objectives Describe the structure and function of the cell nucleus. Describe the function and structure of membrane bound organelles found within the cell. Describe the

More information

CONTENTS. Physics Chemistry Motion Work, Energy and Power Gravitation Properties of Fluid 22-23

CONTENTS. Physics Chemistry Motion Work, Energy and Power Gravitation Properties of Fluid 22-23 CONTENTS Physics...5-58 1. Motion 7-13 2. Work, Energy and Power 14-16 3. Gravitation 17-21 4. Properties of Fluid 22-23 5. Heat 24-27 6. Wave 28-30 7. Sound 31-35 8. Light 36-46 9. Electricity and Magnetism

More information

History of Cell Theory. Organization of Life

History of Cell Theory. Organization of Life History of Cell Theory Robert Hooke first observed cells while examining cork under the microscope (mid- 1600 s) Anton van Leeuwenhoek first observed microscopic organisms in pond water, as well as blood

More information

Golgi Apparatus. BIOLOGY 1408 Chapter 4 : Tour of the cell part II 9/28/15

Golgi Apparatus. BIOLOGY 1408 Chapter 4 : Tour of the cell part II 9/28/15 BIOLOGY 1408 Chapter 4 : Tour of the cell part II Golgi Apparatus n The Golgi apparatus functions in conjunction with the ER by modifying products of the ER Products travel in transport vesicles from the

More information

Chapter 4. Cell Structure and Function. Including some materials from lectures by Gregory Ahearn University of North Florida Ammended by John Crocker

Chapter 4. Cell Structure and Function. Including some materials from lectures by Gregory Ahearn University of North Florida Ammended by John Crocker Chapter 4 Cell Structure and Function Including some materials from lectures by Gregory Ahearn University of North Florida Ammended by John Crocker Copyright 2009 Pearson Education, Inc.. What Is the Cell

More information

DTU Systems Biology Mette Voldby Larsen, CBS, Building 208 Feb, 2013

DTU Systems Biology Mette Voldby Larsen, CBS, Building 208 Feb, 2013 DTU Systems Biology Mette Voldby Larsen, CBS, Building 208 Feb, 2013 Study Guide Textbook: Sadava et al.: Life. The Science of Biology, 9. Ed. Vol. I The Cell and Heredity. NB! The comments are meant to

More information

8/25/ Opening Questions: Are all living things made of cells? What are at least five things you know about cells?

8/25/ Opening Questions: Are all living things made of cells? What are at least five things you know about cells? Chapter 3 The Cell: Module Hyperlinks 3.1 Cells are the fundamental units of life 3.2 Plant vs. animal cells 3.3 Membranes: structure 3.4 Membranes: function 3.5 The nucleus 3.6 Organelles in protein production

More information

Cell Organelles. 2. Cells are the basic unit of organization in an organism Cells tissues organ organ system organism

Cell Organelles. 2. Cells are the basic unit of organization in an organism Cells tissues organ organ system organism Cell Organelles What are some of the differences you see between these two cells? A. Cell Theory 1. All organisms are made up of one or more cells 2. Cells are the basic unit of organization in an organism

More information

Introduction to Cells. Intro to Cells. Scientists who contributed to cell theory. Cell Theory. There are 2 types of cells: All Cells:

Introduction to Cells. Intro to Cells. Scientists who contributed to cell theory. Cell Theory. There are 2 types of cells: All Cells: Intro to Cells Key Concept: Cells are the basic unit of life. Introduction to Cells Cells are the basic units of organisms Cells can only be observed under microscope Basic types of cells: 1 Animal Cell

More information

11/18/2009. History. History. Small Living Things, What Surrounds Them, & How to Keep Them the Same

11/18/2009. History. History. Small Living Things, What Surrounds Them, & How to Keep Them the Same Or Small Living Things, What Surrounds Them, & How to Keep Them the Same History 1663 Robert Hooke - Using a simple microscope, looked at cork, saw little boxes of cells Thought that they were sacks filled

More information

Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology?

Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology? Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology? 2) How does an electron microscope work and what is the difference

More information

Function and Illustration. Nucleus. Nucleolus. Cell membrane. Cell wall. Capsule. Mitochondrion

Function and Illustration. Nucleus. Nucleolus. Cell membrane. Cell wall. Capsule. Mitochondrion Intro to Organelles Name: Block: Organelles are small structures inside cells. They are often covered in membranes. Each organelle has a job to do in the cell. Their name means little organ. Just like

More information

Eukaryotic cells are more complex than prokaryotic cells. They are identified by the presence of certain membrane-bound organelles.

Eukaryotic cells are more complex than prokaryotic cells. They are identified by the presence of certain membrane-bound organelles. Eukaryotic Cells Eukaryotic cells are more complex than prokaryotic cells. They are identified by the presence of certain membrane-bound organelles. Prokaryotic cells have organelles too, but much fewer

More information

CHARACTERISTICS OF LIFE ORGANIZATION OF LIFE CELL THEORY TIMELINE

CHARACTERISTICS OF LIFE ORGANIZATION OF LIFE CELL THEORY TIMELINE CHARACTERISTICS OF LIFE 1. composed of cells either uni/multi 2. reproduce sexual and/or asexual 3. contain DNA in cells 4. grow and develop 5. use material/energy in metabolic reactions 6. respond to

More information

Ask yourself. Chapter 3 Cell Structure and Function. Examples of Cells. A is cell the smallest unit that is capable of performing life functions.

Ask yourself. Chapter 3 Cell Structure and Function. Examples of Cells. A is cell the smallest unit that is capable of performing life functions. Chapter 3 Cell Structure and Function Ask yourself If you were a scientist living in the 1500s, what kind of questions would you ask yourself if you were the one to discover cells? Let me think. Cell Video

More information

prokaryotic eukaryotic

prokaryotic eukaryotic Cell Basics Two Basic Cell Types All cells are either prokaryotic or eukaryotic Prokaryotic Cells a.k.a. Bacteria Prokaryotes, which includes all bacteria. They are the simplest cellular organisms. They

More information

CELL HISTORY, STRUCTURE AND FUNCTION

CELL HISTORY, STRUCTURE AND FUNCTION CELL HISTORY, STRUCTURE AND FUNCTION The cell is the smallest unit of life that can carry out life processes. Chapter 4 Robert Hooke 1665 -observed cork through a light microscope. Anton Van Leewenhoek

More information

Chapter Life Is Cellular

Chapter Life Is Cellular Chapter 7 7-1 Life Is Cellular The Discovery of the Cell Anton van Leeuwenhoek used a single-lens microscope to observe tiny little organisms in pond water. The Discovery of the Cell In 1665, Robert Hooke

More information

Cell Theory Essential Questions

Cell Theory Essential Questions Cells Vocab words 1. Cell 2. Cell theory 3. Nucleus 4. Eukaryote 5. Prokaryote 6. Organelle 7. Cytoplasm 8. Nuclear envelope 9. Chromatin 10. Chromosome 11. Nucleolus 12. Ribosome 13. Endoplasmic reticulum

More information

Warm-Up Pairs Discuss the diagram What Where Which Why

Warm-Up Pairs Discuss the diagram What Where Which Why Warm-Up In Pairs Discuss the diagram What is it? Where does it come from? Which parts can you label? (in pencil) Why do you think you will learn about it? 5 m Eukaryote: Organelles, Structure and Function

More information

CELLS STRUCTURE AND FUNCTION

CELLS STRUCTURE AND FUNCTION CELLS STRUCTURE AND FUNCTION Jhia Anjela D. Rivera Department of Biological Sciences School of Science and Technology Centro Escolar University DISCOVERY OF CELLS Robert Hooke (1665): Observed a thin slice

More information

Chapter 6: A Tour of the Cell

Chapter 6: A Tour of the Cell Chapter 6: A Tour of the Cell Concept 6.2 Eukaryotic cells have internal membranes that compartmentalize their functions 1. Which two domains consist of prokaryotic cells? 2. A major difference between

More information

Big Idea 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis.

Big Idea 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis. Big Idea 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis. Enduring understanding 2.B: Growth, reproduction and dynamic

More information

Cells Cytology = the study of cells. Nonliving Levels. Organization Levels of Life. Living Levels 11/14/13. More Living Levels

Cells Cytology = the study of cells. Nonliving Levels. Organization Levels of Life. Living Levels 11/14/13. More Living Levels Cells Cytology = the study of cells What Are the Main Characteristics of organisms? 1. Made of CELLS 2. Require ENERGY (food) 3. REPRODUCE (species) 4. Maintain HOMEOSTASIS 5. ORGANIZED 6. RESPOND to environment

More information

CELL TYPE. Unit #4: Cell Structure & Func2on. Classifica(on, Endosymbiosis, Cell Type, Cell Organelles

CELL TYPE. Unit #4: Cell Structure & Func2on. Classifica(on, Endosymbiosis, Cell Type, Cell Organelles Unit #4: Cell Structure & Func2on Classifica(on, Endosymbiosis, Cell Type, Cell Organelles How are prokaryo(c cells and eukaryo(c cells similar? different? CELL TYPE Cell Theory Many scientists were involved

More information

Biochemistry: A Review and Introduction

Biochemistry: A Review and Introduction Biochemistry: A Review and Introduction CHAPTER 1 Chem 40/ Chem 35/ Fundamentals of 1 Outline: I. Essence of Biochemistry II. Essential Elements for Living Systems III. Classes of Organic Compounds IV.

More information

Discovery of the Cell

Discovery of the Cell Cells Chapter 4 Discovery of the Cell 1665 Robert Hooke used a microscope to examine a piece of cork. He saw little boxes in the cork and called them cells. 1673 Anton van Leeuwenhoek was the first person

More information

Eukaryotic Cell Structure. 7.2 Biology Mr. Hines

Eukaryotic Cell Structure. 7.2 Biology Mr. Hines Eukaryotic Cell Structure 7.2 Biology Mr. Hines Comparing the cell to a factory In order for a cell to maintain its internal environment (homeostasis), many things must go on. This is similar to a factory.

More information

How do cell structures enable a cell to carry out basic life processes? Eukaryotic cells can be divided into two parts:

How do cell structures enable a cell to carry out basic life processes? Eukaryotic cells can be divided into two parts: Essential Question How do cell structures enable a cell to carry out basic life processes? Cell Organization Eukaryotic cells can be divided into two parts: 1. Nucleus 2. Cytoplasm-the portion of the cell

More information

Chapter 3: Cells. Lectures by Mark Manteuffel, St. Louis Community College

Chapter 3: Cells. Lectures by Mark Manteuffel, St. Louis Community College Chapter 3: Cells Lectures by Mark Manteuffel, St. Louis Community College Learning Objectives Be able to describe: what a cell is & two main classes of cells. structure & functions of cell membranes. how

More information

Biology 1 Notebook. Review Answers Pages 17 -?

Biology 1 Notebook. Review Answers Pages 17 -? Biology 1 Notebook Review Answers Pages 17 -? The History of Cell Studies 1. Robert Hook (1665) used a microscope to examine a thin slice of cork. The little boxes he observed reminded him of the small

More information

Some history. Now, we know that Robert Hooke was not looking at living cells, but the remains of dead cell walls.

Some history. Now, we know that Robert Hooke was not looking at living cells, but the remains of dead cell walls. The Life of a Cell Some history In 1665, Robert Hooke examined the bark of an oak tree under an early microscope. He thought he was looking at something similar to the small rooms of dormitories and prisons;

More information

CHAPTER 2 The Cell: An Overview

CHAPTER 2 The Cell: An Overview CHAPTER 2 The Cell: An Overview MULTIPLE CHOICE 1. Which plant tissue did the first observed cells come from? a. cork b. pollen c. a maple leaf d. human skin ANS: A PTS: 1 DIF: Easy REF: p. 25 TOP: 2.0

More information

Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry

Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry AP Biology Reading Guide Fred and Theresa Holtzclaw Chapter 6: A Tour of the Cell Name Period Chapter 6: A Tour of the Cell Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry

More information

Honors Biology-CW/HW Cell Biology 2018

Honors Biology-CW/HW Cell Biology 2018 Class: Date: Honors Biology-CW/HW Cell Biology 2018 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Hooke s discovery of cells was made observing a. living

More information

Chapter 3. Cell Structure & Function

Chapter 3. Cell Structure & Function Chapter 3 Cell Structure & Function Cytology Study of cells Cell basic unit of life Smallest structure capable of performing all the functions necessary for life Are extremely diverse Most microscopic

More information

Chapter 4 Cell Structure

Chapter 4 Cell Structure Chapter 4 Cell Structure 4.2 What Is a Cell? Cells First observed in the microscope of Antoni van Leeuwenhoek First called cells by Robert Cooke Smallest unit of life Cell theory is a foundation of modern

More information

The Cell. What is a cell?

The Cell. What is a cell? The Cell What is a cell? The Cell What is a cell? Structure which makes up living organisms. The Cell Theory l All living things are composed of cells. l Cells are the basic unit of life. l Cells come

More information

Discovery of the Cell

Discovery of the Cell Cell Structure Discovery of the Cell Who discovered cells? 1665 Robert Hooke used a compound microscope to examine a piece of cork (20X magnification) He saw little boxes in the cork and called them cells

More information

ATP ATP. The Jobs of Cells. Making Energy. Making Energy. Cells need power! ATP ATP 10/5/2015. Cells have 3 main jobs

ATP ATP. The Jobs of Cells. Making Energy. Making Energy. Cells need power! ATP ATP 10/5/2015. Cells have 3 main jobs The Jobs of Cells 2007-2008 Making Energy Cells have 3 main jobs make energy need energy for all activities need to clean up waste produced while making energy make proteins proteins do all the work in

More information

Cell Structure: What cells are made of. Can you pick out the cells from this picture?

Cell Structure: What cells are made of. Can you pick out the cells from this picture? Cell Structure: What cells are made of Can you pick out the cells from this picture? Review of the cell theory Microscope was developed 1610. Anton van Leeuwenhoek saw living things in pond water. 1677

More information

Cell Biology Review. The key components of cells that concern us are as follows: 1. Nucleus

Cell Biology Review. The key components of cells that concern us are as follows: 1. Nucleus Cell Biology Review Development involves the collective behavior and activities of cells, working together in a coordinated manner to construct an organism. As such, the regulation of development is intimately

More information

Cells. Modified by the MHJHS SD. [Adopted from James Holden & Clint Tucker]

Cells. Modified by the MHJHS SD. [Adopted from James Holden & Clint Tucker] Cells Modified by the MHJHS SD [Adopted from James Holden & Clint Tucker] The Cell Theory In 1855, a number of scientists put together a theory about cells 1) All living things are composed of Cells. 2)

More information

Chapter 7 Learning Targets Cell Structure & Function

Chapter 7 Learning Targets Cell Structure & Function Name: Chapter 7 Learning Targets Cell Structure & Function a. Define the word cell: 1. I know the history of the cell: b. Who discovered the cell? What did he observe? 2. I can list the three parts of

More information