2303ENV Zoology. Lecture week 1: Phylogeny and Classification

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "2303ENV Zoology. Lecture week 1: Phylogeny and Classification"

Transcription

1 Lecture week 1: Phylogeny and Classification 2303ENV Zoology Definition of animals: multicellular, eukaryotic, motile (can move independently and spontaneously), heterotrophic (must ingest other organisms or their products), lack cell walls and produce sperm cells. Body plan of most animals eventually becomes fixed. First appeared about 540Mya ago. First 2 kingdoms (Prokaryota and Eukaryota), then 4 (plants, animals, fungi, unicellular organisms), then 5 (plants, animals, fungi, protists and bacteria) and finally 6 (plants, animals, fungi, protista, eubacteria and archaebacteria). The 4 first are eukaryotic kingdoms, the two last are prokaryotic kingdoms. Prokaryotic cells are smaller and simpler, doesn t not have a nucleus or organelles, the DNA is circular, the reproduction is always asexual etc.. Classical Classification The naming of organisms is called taxonomy, the grouping classification. Relatedness: sharing a common ancestor. Evolutionary history of a species = phylogeny. Many species of tiny parasitic animals have been impossible to classify = incertae sedis (uncertain placement) Based on characters essential to the species (flower structure or embryo form). Molecular phylogeny of life Molecular genetics based on ribosomal RNA and mitochondrial DNA because of their fairly regular evolutionary pace. Diversity of life is much more in the Prokaryota than Eukaryota. Fungi/plants/animals very close to each other and fungi and animals closer to each other than with plants. 3 domains: Bacteria (biggest), Archaea, Eukarya. LUCA (last universal common ancestor) known because the same code is used to pass from DNA to protein in any living things. Most basal organisms are the Archea (closest to LUCA). Archea and Eukaryotes closer than either is to Bacteria. Most of the genetic diversity in Eukarya is among the unicellular Protists. Proto-protists became mitochondria. Cyanobacteria enable photosynthesis and became chloroplasts. Animals The name of the Kingdom is Metazoa (Animalia). Parazoa ( next to animals ) animals without any specific form and without any organised tissues. Eumetazoa ( true animals ) animals with true tissues, organised into two or three layers, and which possess neurons and a blastula in early development. Levels of Classification Life Domain Kingdom Phylum Class Order Family Genus Species About 35/36 Phyla Each level is called a clade. We thought that sponges were the basal animal but should be comb jelly according to molecular genetics.

2 Lecture week 1: Basal animals Sponges (Phylum Porifera) Sponges belong to the Phylum Porifera. They are aquatic animals almost all marine. They feed from suspended particles in the water such as bacteria, but a few also have photosyntethic endosymbionts and a very small number are carnivores and trap and feed on small crustaceans. Sponges have cells lining the body cavity called choanocytes. These cells drive the water through the cavity and out the major opening called osculum. Food is then captured on the inner wall by choanocytes. The pores in the body wall allows water to enter the sponge and are called ostia. The mesohyl in the sponge tissues provide the only skeletal support thanks to collagen fibres. Some sponges also have spicules which provide a skeletal support also. Some cells can directly ingest food particles, others need the help of specialised cells called amoebocytes to distribute them the food. The fossil record of sponges dates back to 580Mya. Even if sponges have a very simple body form, comb jelly are believed to be closer to the basal animals because sponges have become simplified through evolutionary time and then have arisen from more complex and probably more motile predecessors. Trichoplax (Phylum Placozoa) Trichoplax are tiny multicellular creatures with no fixed form, which differ them to amoeba. The species is known to be entirely female as no male genes nor sperm have been found. Orthonectids (Phylum Orthonectida) Very tiny endoparasites of marine invertebrates. They are among the simplest animals known and are eutelic (eutelic= having a fixed number of cells for a given species). They live in the body spaces of various marine invertebrates and cause host castration. Dicyemids (Phylum Rhombozoa) Tiny parasites found in the kidney of squid and octopus. Ii makes the host in difficulty but the effects are still unclear. They are, like orthonectids, eutelic. Lecture week 2: Radiata vs Bilateria & Ctenophora and Cnidaria. Eumetazoa includes organisms with fixed body forms and organ systems. This sub-kingdom is divided into two very unequal groups: Radiata (animals with a radial symmetry) and Bilateria (animals with bilaterial symmetry). Radiata is not really a clade because the two phylum are more distantly related to each other than they are to some bilaterians. They don t share a common ancestor that is closer to them than to any other extant animals. However, the two phyla are united by homoplasy (*analogous but not

3 homologous structures that have similar form or function, but were not present in the last common ancestor of those groups): radial symmetry and simplicity of tissues and structure. Comb jellies (Phylum: Ctenophora) Closest to the basal animal. They are called comb jellies because they swim by means of coordinated beating of usually eight rows of cilia (comb rows). Marine free swimming predatory animals. Distinguished from all other animals by possession of colloblasts: specialised cells that capture prey by squirting glue. Their body is largely a mass of jelly with a single layer of cells on the outside and inside. These layers are two cells deep and are held together by a basement membrane to give them strength. Lack an organised brain but they do have a nervous network allowing them to swim, close their mouth, and retract their tentacles. They feed on small prey. Some ctenophores also specialise in eating other ctenophores. Only 100 to 150 species named. They are economically important because if they are too numerous, they eat the plankton and then fish can t eat it anymore. It is important to control their number in order to control the population of fish in some seas around the world. Phylum: Cnidaria Exclusively aquatic and mostly marine animals, more than recognised species. Their body are made of three layers one cell thick, a mass of jelly-like mesoglea and an inner cell layer also one cell thick. Size from 5mm to 75m long and 2m across the bell. They are distinguished by the possession of cnidocytes on their tentacles, the main type of which are called nematocysts: which are harpoons that inject venom into prey and usually have barbs to keep them embedded in the victims. They are polymorphic and have juvenile (sessile polyp) and adult forms (swimming medusa). Both polyp and medusa have linear differentiation into an oral end and an aboral end. Medusa have their mouth on the underside and polyp on the upper side. Prey are caught on the tentacles and bring to the mouth by contraction of these tentacles. Some big jellyfish swim upwards in the mater column, spread their tentacles and sink to maximise food collection capacity. Nutrients are then absorbed by the cells that line the cavity and diffused to external epidermal or transferred through the mesoglea by mobile mesogleal cells. Some species (mostly corals) host endosymbiotic algae that contribute to their nutrition. All known cnidarian can restore lost tissues and regenerate after fragmentation. Reproduction by fission or sexually:

4 Coral animals and Sea Anemones (Phylum: Cnidaria, Class: Anthozoa) Can move slowly over surfaces. Corals host endosymbiotic algae (zooxanthellae) that contribute to their nutrition. Don t have a medusa phase, thus they are cnidarian polyp capable of sexual reproduction. The polyps have cylindrical body, with a ring of tentacles and mouth at the top. The mouth leads to a gastrovascular cavity which is subdivided into partitions (unique amongst cnidarians). Anemones and some corals are solitary but most corals are colonial. Coral reefs are limited to tropical regions with a maximum depth of 50m, water btw 20 to 28degrees, high salinity, low nutrients and low carbon dioxide level. Hydras (Phylum: Cnidaria, Class: Hydrozoa) May be colonial or solitary. Can dispensed a medusa stage or not. Siphonophores are unique in that the colonial organism is comprised of both polypoid and medusoid individuals, specialised for particular functions. Box jellyfish (Phylum: Cnidaria, Class: Cubozoa) Box jellyfish get their name from their cuboidal shape, with four tentacles (or sets of tentacles) at the corners of a hollow box-shaped bell. They are faster than other jellyfish, a much more developed nervous system and have four eyes. They pursue their prey more like a fish than a jellyfish. Only 36 species are known. They are notorious for their potent venom, and the bow jellyfish Chironex fleckeri is the most lethal jellyfish in the world. In Australia the medusoid jellyfish develop between the coast and the Reef in spring and early summer and then return to the coast to find estuaries in late summer. They swim up estuaries and in fresh water lay eggs that develop into polyps on submerged surfaces. In late winter the polyps produce medusae that wash back to sea. Irukandji are more concern to swimmers in Australia because it is a tiny creature, transparent but with long tentacles. It has venom on the bell as well and several deaths have been attributed to this creature. It is much more common than Chironex fleckeri and the population seems to be increasing. True jellyfish (Phylum: Cnidaria, Class: Scyphozoa) Only marine animals. About 200 species known. Owns tentacles and arms which assist it in feeding. They often possess statocysts and ocelli on the rim of the umbrella (which allows them to detect up and down, and the direction of light and darkness). Jellyfish blooms are thought to be caused by (i) overfishing that has drastically removed the predatory species that feed on medusae, (ii) increases in plankton that were fed on by smaller fish, (iii) increasing warmth of the oceans from global warming and (iv) increasing nutrient loads in nearshore (and pelagic) waters from changes in land-use.

5 Lecture week 2: Bilateria: Acoelomorpha, Xenoturbellida, Chaetognatha & Deuterostomia vs Prostomia. Bilateria: all animals that have bilaterial symmetry and most of which have organ systems. Bilateria is divided in three groups: (1) the uncertainly-placed Acoelomorpha and Xenoturbellida, (2) the Mesozoa and (3) the Nephrozoa. Bilateria is the major group of animals. Typically, bilaterian embryos are triploblastic, having three germ layers: endoderm, mesoderm, and ectoderm. Nearly all are bilaterally symmetrical, at least at some stage of their life Acoelomates: lack body cavities. Acoelomorphs: more advanced and have a couple of well-defined organ systems. Hermaphrodites may be sequential (occur in species in which the individual is born as one sex, but can later change into the opposite sex) or simultaneous (an adult organism that has both male and female sexual organs at the same time). Acoelomorpha: Asexual reproduction can occur by simple fission (e.g. Convolutriloba, species are distinguished by their usual mode of fission in which part of the body attaches to the substrate and is torn away as the animal moves). Statocyst helps them orient to gravity. Xenoturbellida: Worm-like marine animals, inhabiting soft substrates up to 100 m depth in the far northern hemisphere (off Sweden, Scotland and Iceland). Based on molecular analysis they were once thought to be degenerate molluscs, but this was based on food in their gut and not their own tissue: they are often connected with molluscs, and it is speculated that the earliest stages may be endoparasites of some mollusc larvae or parasitoids of mollusc embryos. Chaetognatha: This Phylum (Chaetognatha) is accepted as a nephrozoan, but its placement in either Deuterostomia or Protostomia is doubtful, so it sits outside these clades in incertae sedis. Chaetognatha is an enigmatic Phylum: comparative anatomy and embryology suggest alliance with the Deuterostomes while molecular biology and nervous system layout suggest Protostomes. A credible scenario is that they are close to the basal nephrozoan which split from Protostome line very soon after the Deuterostomes and Protostomes split. They may be found in tidal pools in arctic regions, the tropics, open ocean and the deep sea. Chaetognaths are hermaphrodites, possessing both male and female reproductive organs in their body. Bundles of sperm (spermatophores) are transferred from one individual to another, and fertilized eggs are subsequently released into the sea. They hatch as miniature versions of the adult and no larval stage exists.

An Introduction to the Invertebrates, Part One Phyla Placozoa, Porifera, Cnidaria, Ctenophora. Reference: Chapter 33.1, 33.2

An Introduction to the Invertebrates, Part One Phyla Placozoa, Porifera, Cnidaria, Ctenophora. Reference: Chapter 33.1, 33.2 An Introduction to the Invertebrates, Part One Phyla Placozoa, Porifera, Cnidaria, Ctenophora Reference: Chapter 33.1, 33.2 Overview: Life Without a Backbone v Invertebrates are animals that lack a backbone

More information

Learning Objectives. The Animal Kingdom: An Introduction to Animal Diversity. Sexual Reproduction

Learning Objectives. The Animal Kingdom: An Introduction to Animal Diversity. Sexual Reproduction Learning Objectives The Animal Kingdom: An Introduction to Animal Diversity Chapter 29 What characters are common to most animals? Advantages and disadvantages of different environments Searching for relationships

More information

Sponge and Cnidarian Review

Sponge and Cnidarian Review Name Period Date Sponge and Cnidarian Review Matching On the lines provided, write the letter of the definition that matches each term. 1. Invertebrate 2. Filter feeder 3. Asymmetry 4. Radial 5. Medusa

More information

09/12/2012. Classification. Characteristics. Learning Outcome G2. Student Achievement Indicators. Phylum Porifera The Sponges

09/12/2012. Classification. Characteristics. Learning Outcome G2. Student Achievement Indicators. Phylum Porifera The Sponges Learning Outcome G2 Analyse the increasing complexity of the Phylum Porifera and the Phylum Cnidaria Learning Outcome G2 Phylum Porifera & Phylum Cnidaria Student Achievement Indicators Students who have

More information

Ph. Porifera and Ph. Cnidaria

Ph. Porifera and Ph. Cnidaria I. Phylum Porifera (sponges; pore bearer ) A. General characteristics 1. simplest animals 2. asymmetric 3. aquatic habitats a. typically marine 4. live alone or in colonies a. often members of reef habitats

More information

Sponges and Cnidarians

Sponges and Cnidarians The Animal Kingdom Multicellular Sponges and Cnidarians Biology : Chapter 26 Eukaryotic Heterotrophs Cells lack cell walls 95% are invertebrates What Animals Do to Survive Feeding Response Respiration

More information

Intro to Animals. Chapter 32

Intro to Animals. Chapter 32 Intro to Animals Chapter 32 1) Multicellular Organization (Different cells have different functions) Specialization: adaptation of a cell for a particular function Remember: cells tissues organs organ

More information

What is a Cnidarian?

What is a Cnidarian? Invertebrate What is a Cnidarian? 9000 species of jellyfishes, corals, sea anemones, hydras Mostly marine animals Radially symmetrical One body opening Two layers of cells organized into tissues with specific

More information

Notes - Porifera and Cnideria

Notes - Porifera and Cnideria Notes - Porifera and Cnideria - Animals exist on every continent on the planet. Most people consider animals to be the most important kingdom as we are considered animals. But, what is an animal? What

More information

3. Choanoflagellates resemble what? What is the significance of this resemblance?

3. Choanoflagellates resemble what? What is the significance of this resemblance? I. Animal Diversity 1. What are some basic characteristics of the animal kingdom? What characteristics make them different from plants? - Eukaryotic, heterotrophic (we don t make our own food), we store

More information

Characteristics of Animals

Characteristics of Animals Characteristics of Animals Multicellular Cellular Organization What is this? Heterotrophic Adaptations CHAPTER 9 Cellular Organization 4 Major Functions of Animals Obtain food and water Sustain metabolism

More information

Invertebrate Zoology. Unit 2: Phylums: Porifera, Cnidaria, and Ctenophora

Invertebrate Zoology. Unit 2: Phylums: Porifera, Cnidaria, and Ctenophora Invertebrate Zoology Unit 2: Phylums: Porifera, Cnidaria, and Ctenophora Objective 1: Differentiate between the 3 types of Poriferians (Asconoids, Syconoids, and Leuconoids) and the three main classes

More information

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny BIOSC 041 Overview of Animal Diversity: Animal Body Plans Reference: Chapter 32 Outline v Definition and major characteristics of animals v Dividing animals into groups based on: Body symmetry Tissues

More information

Lab 2 Phylum Porifera and phylum Cnidaria. Grantia. Phylum Porifera. Kingdom :- Animalia. Phylum:- Porifera. Class:- Calcarea. Order:- Leucosolenida

Lab 2 Phylum Porifera and phylum Cnidaria. Grantia. Phylum Porifera. Kingdom :- Animalia. Phylum:- Porifera. Class:- Calcarea. Order:- Leucosolenida Lab 2 Phylum Porifera and phylum Cnidaria Phylum Porifera Adults sessile and attached Radial symmetry or asymmetrical Multi-cellular ; loose aggregation of cells Skeleton made of collagen and spicules

More information

Chapter 7. Marine Animals Without a Backbone

Chapter 7. Marine Animals Without a Backbone Chapter 7 Marine Animals Without a Backbone General Characteristics of Animals Multicellular, diploid organisms with tissues, organs or organ systems in most Heterotrophic Require oxygen for aerobic

More information

v Scientists have identified 1.3 million living species of animals v The definition of an animal

v Scientists have identified 1.3 million living species of animals v The definition of an animal Biosc 41 9/10 Announcements BIOSC 041 v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal

More information

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 33 An Introduction to Invertebrates Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 33.UN08 Metazoa Eumetazoa

More information

Biosc 41 9/10 Announcements

Biosc 41 9/10 Announcements Biosc 41 9/10 Announcements v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal Body Plans

More information

COMPARISON BETWEEN PORIFERA AND CNIDARIA. Colwyn Sleep

COMPARISON BETWEEN PORIFERA AND CNIDARIA. Colwyn Sleep COMPARISON BETWEEN PORIFERA AND CNIDARIA Colwyn Sleep INTRODUCTION Porifera Cnidaria Porifera and Cnidaria are organisms which share similar characteristics with one another. -They are both multicellular,

More information

Animal Diversity. Features shared by all animals. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers

Animal Diversity. Features shared by all animals. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animal Diversity Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Nutritional mode Ingest food and use enzymes in the body to digest Cell structure and

More information

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017 Animal Diversity Chapter 32 Which of these organisms are animals? Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animals share the same: Nutritional

More information

Chapter 8. Sponges Phylum Porifera Basic characteristics: simple asymmetric sessile

Chapter 8. Sponges Phylum Porifera Basic characteristics: simple asymmetric sessile Chapter 8 Key Concepts Sponges are asymmetric, sessile animals that filter food from the water circulating through their bodies. Sponges provide habitats for other animals. Cnidarians and ctenophores exhibit

More information

Intro to Invertebrate STUDENT NOTES Date: 1. Taxonomy : the science of classifying/grouping organisms

Intro to Invertebrate STUDENT NOTES Date: 1. Taxonomy : the science of classifying/grouping organisms Intro to Invertebrate STUDENT NOTES Date: 1 Warm up What does it mean to be an invertebrate? Taxonomy : the science of classifying/grouping organisms Who is the father of our modern day classification

More information

Chapter 8. Sponges, Cnidarians, Comb Jellies, and Marine Worms

Chapter 8. Sponges, Cnidarians, Comb Jellies, and Marine Worms Chapter 8 Sponges, Cnidarians, Comb Jellies, and Marine Worms Cnidarians: Animals with Stinging Cells Phylum Cnidaria Includes hydroids, corals, and sea anemones Coelenterate: synonym Named for their cnidocytes

More information

8/23/2014. Introduction to Animal Diversity

8/23/2014. Introduction to Animal Diversity Introduction to Animal Diversity Chapter 32 Objectives List the characteristics that combine to define animals Summarize key events of the Paleozoic, Mesozoic, and Cenozoic eras Distinguish between the

More information

Mesozoa, Parazoa, and Metazoa. Chapter 12 pg. 239

Mesozoa, Parazoa, and Metazoa. Chapter 12 pg. 239 Mesozoa, Parazoa, and Metazoa Chapter 12 pg. 239 3 Multicellular Groups: Mesozoa, Parazoa, Eumetazoa Multicellular organisms are divided into three groups: Mesozoa, Parazoa (phylum Porifera, phylum Placozoa)

More information

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification?

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? Animals What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? What synapomorphies unite Animals Multicellular Heterotrophs (Metazoans)?

More information

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida 1 Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida Objectives: Be able to distinguish radial symmetry from bilateral symmetry. Be able to identify which of the phyla

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

What is an animal? Introduction to Animals. Germ Layers. Tissues and Organs. Structural Support. Types of Symmetry 11/3/2015

What is an animal? Introduction to Animals. Germ Layers. Tissues and Organs. Structural Support. Types of Symmetry 11/3/2015 What is an animal? Introduction to Animals Multicellular chemoorganoheterotrophs Eukaryotes that lack cell walls and chloroplasts Have mitochondria Are motile at some point in their lives Contain collagen

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: Welcome to Your Kingdom The animal kingdom

More information

Chapter 32 Introduction to Animal Diversity. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Chapter 32 Introduction to Animal Diversity. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Chapter 32 Introduction to Animal Diversity Welcome to Your Kingdom The animal kingdom extends far beyond humans and other animals we may encounter 1.3 million living species of animals have been identified

More information

1. General Features of Animals

1. General Features of Animals Chapter 32: An Overview of Animal Diversity 1. General Features of Animals 2. The History of Animals 1. General Features of Animals General Characteristics of Animals animals are multicellular eukaryotic

More information

Phylum Cnidaria Test True/False Indicate whether the sentence or statement is true or false. Mark a for true and b for false.

Phylum Cnidaria Test True/False Indicate whether the sentence or statement is true or false. Mark a for true and b for false. PLEASE WRITE YOUR NAME HERE: 1 Phylum Cnidaria Test True/False Indicate whether the sentence or statement is true or false. Mark a for true and b for false. 1. Polyps are a body form of cnidarians that

More information

Module 4: Marine Invertebrates I. Kingdom Animalia

Module 4: Marine Invertebrates I. Kingdom Animalia Module 4: Marine Invertebrates I Kingdom Animalia Kingdom Animalia Contains the largest number of species We will split them into 2 large groups Invertebrates- Animals w/o a backbone Vertebrates- Animals

More information

Kingdom Animalia. Zoology the study of animals

Kingdom Animalia. Zoology the study of animals Kingdom Animalia Zoology the study of animals Summary Animals are multicellular and eukaryotic. consume and digest organic materials thereby being heterotrophs. Most are motile at some time in their lives.

More information

Chapter 13. Radiate Animals. Biological Contributions. Biological Contributions. Phylum Cnidaria. Definition. Position in Animal Kingdom

Chapter 13. Radiate Animals. Biological Contributions. Biological Contributions. Phylum Cnidaria. Definition. Position in Animal Kingdom Copyright The McGraw Hill Companies, Inc. Permission required for reproduction or display. Chapter 13 Radiate Animals Position in Animal Kingdom Both phyla Cnidaria and Ctenophora make up the radiate animals.

More information

Section 4 Professor Donald McFarlane

Section 4 Professor Donald McFarlane Characteristics Section 4 Professor Donald McFarlane Lecture 11 Animals: Origins and Bauplans Multicellular heterotroph Cells lack cell walls Most have nerves, muscles, capacity to move at some point in

More information

Introduction to Animal Diversity Lecture 7 Winter 2014

Introduction to Animal Diversity Lecture 7 Winter 2014 Introduction to Animal Diversity Lecture 7 Winter 2014 Evolution of Animals 1 Prokaryotes Eukaryotes Prokaryotes No nucleus Nucleoid region Simple No membrane bound organelles Smaller (1-5 nm) Evolutionarily

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

23.1 Animal Characteristics EQ Although diverse, what common characteristics do all animal share?

23.1 Animal Characteristics EQ Although diverse, what common characteristics do all animal share? 23.1 Animal Characteristics EQ Although diverse, what common characteristics do all animal share? Sea Slug 23.1 Animal Characteristics Animals are the most physically diverse kingdom of organisms and all

More information

BIOLOGY. Chapter 27 Introduction to Animal Diversity

BIOLOGY. Chapter 27 Introduction to Animal Diversity BIOLOGY Chapter 27 Introduction to Animal Diversity Fig. 32-1 An Overview of Animal Diversity Multicellular Nutrition mode: Heterotrophic (ingestion) Cell structure & specialization Tissues develop from

More information

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved.

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved. Chapter Presentation Visual Concepts Transparencies Standardized Test Prep Introduction to Animals Table of Contents Section 2 Animal Body Systems Objectives Identify the features that animals have in

More information

Invertebrate Diversity

Invertebrate Diversity CHAPTER 23 Invertebrate Diversity Summary of Key Concepts Concept 23.1 Diverse animals share several key characteristics. (pp. 494 496) More than a million living species of animals are organized into

More information

Unit 2. The pellicle acts as a membrane It maintains the shape of the protozoan but remains flexible Ectoplasm

Unit 2. The pellicle acts as a membrane It maintains the shape of the protozoan but remains flexible Ectoplasm Kingdom Protista A polyphyletic group containing: Unit 2 Polyphyletic- The Protozoans (Unicellular - can be very complex) Individuals may group together to form colonies Colony Specialized organelles Pellicle

More information

Chapter 8-9 Intro to Animals. Image from:

Chapter 8-9 Intro to Animals. Image from: Chapter 8-9 Intro to Animals Image from: http://animaldiversity.ummz.umich.edu/index.html Zoology Definition: the scientific study of the behavior, structure, physiology, classification, and distribution

More information

Chapter 32 Introduction to Animal Diversity

Chapter 32 Introduction to Animal Diversity Chapter 32 Introduction to Animal Diversity Review: Biology 101 There are 3 domains: They are Archaea Bacteria Protista! Eukarya Endosymbiosis (proposed by Lynn Margulis) is a relationship between two

More information

Kingdom Animalia. Special Features: Advanced nervous systems means cephalization (faces), brains, and efficient mobility (walk/run/swim/grab)

Kingdom Animalia. Special Features: Advanced nervous systems means cephalization (faces), brains, and efficient mobility (walk/run/swim/grab) Kingdom Animalia Kingdom Animalia Cell Number: Multicellular with extensive specialization Cell Type: Eukaryotic Animal Cells (no cell wall) Food: Heterotrophic Carnivore (meat), Herbivore (plants), Omnivore

More information

A mind is a fire to be kindled, not a vessel to be filled.

A mind is a fire to be kindled, not a vessel to be filled. A mind is a fire to be kindled, not a vessel to be filled. - Mestrius Plutarchus, or Plutarch, a leading thinker in the Golden Age of the Roman Empire (lived ~45 125 A.D.) Lecture 2 Distinction between

More information

Animal Origins and Evolution

Animal Origins and Evolution Animal Origins and Evolution Common Features of Animals multicellular heterotrophic motile Sexual reproduction, embryo Evolution of Animals All animals are multicellular and heterotrophic, which means

More information

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University The Evolution of Animal Diversity Dr. Stephen J. Salek Biology 130 Fayetteville State University Create your own animal? Start with a basic plant. Make the plant into a simple animal such as a worm. Consider:

More information

Eukaryote Phylogeny. Glycogen. Kingdom Animalia. Amoebozoa Animalia. Plantae. Chromalveolata Rhizaria. Fungi. Excavata

Eukaryote Phylogeny. Glycogen. Kingdom Animalia. Amoebozoa Animalia. Plantae. Chromalveolata Rhizaria. Fungi. Excavata Eukaryote Phylogeny most protozoans, brown algae, & water molds Excavata Chromalveolata Rhizaria Plantae Amoebozoa Animalia Fungi cpsts. w/ 2 memb. chitin, hyphae glycogen eukaryotic cells (nucleus, etc.)

More information

Dearolf BIOL 220. Freshwater Brackish water Marine Terrestrial Parasitic

Dearolf BIOL 220. Freshwater Brackish water Marine Terrestrial Parasitic CLADE METAZOA Phylum Porifera Hickman Chapter 12 The Origins of Multicellularity Phylum Porifera: Sponges Characteristics of Phylum Porifera (page 248) Figure 12.2 (page 248) Form and Function Figure 12.5

More information

Biology 11. The Kingdom Animalia

Biology 11. The Kingdom Animalia Biology 11 The Kingdom Animalia Objectives By the end of the lesson you should be able to: Describe the 5 ways we classify animals Symmetry Germ layers Body plan Segmentation Animal Evolution Hank Video

More information

BIO 221 Invertebrate Zoology I Spring Correction: Porifera. Lower Metazoan Clades: Choanoflagellata Porifera Placozoa Cnidaria Ctenophora

BIO 221 Invertebrate Zoology I Spring Correction: Porifera. Lower Metazoan Clades: Choanoflagellata Porifera Placozoa Cnidaria Ctenophora BIO 221 Invertebrate Zoology I Spring 2010 Stephen M. Shuster Northern Arizona University http://www4.nau.edu/isopod Lecture 6 Correction: Porifera a. Are distinct from the Placozoa by: 1. Have collar

More information

Chapter 24 Introduction to Animals

Chapter 24 Introduction to Animals 1 Chapter 24 Introduction to Animals I. Animal characteristics A. General Animal Features Multicellular B. Feeding and Digestion a. acquire nutrients from various sources obtaining nutrients unique to

More information

C. Body is platelike, no symmetry, organs, muscular or nervous systems present. D. 2-3 mm E. marine F. glide over food and secrete digestive enzyme an

C. Body is platelike, no symmetry, organs, muscular or nervous systems present. D. 2-3 mm E. marine F. glide over food and secrete digestive enzyme an Chapter 9 (multicellularity) I. Similarities A. cells are grouped B. groups of cells are specialized for various functions C. All cells in an organism is interdependent. II. Multicelled life appeared ~

More information

BIOLOGY. An Introduction to Animal Diversity CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Animal Diversity CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 32 An Introduction to Animal Diversity Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick A Kingdom of Consumers

More information

Choanoflagellates. Porifera (sponges) Ctenophora (comb jellies) Cnidaria (jellyfish, corals, sea anemones) Acoela (acoels)

Choanoflagellates. Porifera (sponges) Ctenophora (comb jellies) Cnidaria (jellyfish, corals, sea anemones) Acoela (acoels) Choanoflagellates Fungi Choanoflagellates ANIMALIA Porifera (sponges) ANIMALIA Multicellularity Ctenophora (comb jellies) Diploblasty Cnidaria (jellyfish, corals, sea anemones) Acoela (acoels) Triploblasty

More information

INVERTEBRATE DIVERSITY

INVERTEBRATE DIVERSITY INVERTEBRATE DIVERSITY 1 INVERTEBRATES Animals that lack a backbone Invertebrates 2 1 ANIMAL DEVELOPMENT Meiosis Egg Sperm Zygote Adult Blastula hollow ball of cells in a developing animal Gastrula Stage

More information

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals Introduction to Animals Table of Contents Objectives Identify four important characteristics of animals. List two kinds of tissues found only in animals. Explain how the first animals may have evolved

More information

The most widely used biological classification system has six kingdoms within three domains.

The most widely used biological classification system has six kingdoms within three domains. Section 3: The most widely used biological classification system has six kingdoms within three domains. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the major characteristics

More information

Name. Total. Hydrozoa Cubozoa Anthozoa Scyphozoa 1 2 5

Name. Total. Hydrozoa Cubozoa Anthozoa Scyphozoa 1 2 5 Name 1. 2. 3. 4. 5. 6. 7. 8. 9. Total 1. Coral reefs are the most diverse marine habitat, providing critical habitat for 25% of marine species. Nevertheless reef communities are currently threatened by:

More information

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia What Is an Animal? What characteristics do all animals have? Animals come in many shapes, forms, and sizes. Scientists estimate that there are between 1 and 2 million species of animals! Some, like whales

More information

Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1)

Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1) Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1) A) They are multicellular eukaryotes. B) They are heterotrophs. C) Their cells are supported

More information

Features of the Animal

Features of the Animal Features of the Animal Kingdom Bởi: OpenStaxCollege Even though members of the animal kingdom are incredibly diverse, animals share common features that distinguish them from organisms in other kingdoms.

More information

Porifera, Coelenterata, Ctenophora

Porifera, Coelenterata, Ctenophora Porifera, Coelenterata, Ctenophora Contents Animal Classification - Flow Chart... 3 Phylum Porifera... 4 Phylum Cnidaria... 10 Phylum Ctenophora... 16 www.topperlearning.com 2 Animal Classification - Flow

More information

Sponges and Cnidarians *

Sponges and Cnidarians * OpenStax-CNX module: m48094 1 Sponges and Cnidarians * Miranda Dudzik Based on Sponges and Cnidarians by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges.

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges. College Biology - Problem Drill 15: The Evolution of Animal Diversity Question No. 1 of 10 1. Which is not a feature of the phyla porifera- sponges? Question #01 (A) Most are marine animals. (B) They have

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Moving Forward Quizlet Each section we cover, 1 group will go to our class on Quizlet and create 20 flash cards on the topic (/5mks) If I warn you about talking while I m talking,

More information

Embryonic Development. Chapters 32-34: Animal Diversity AP Biology Fig Zygote Cleavage Blastocoel. Cleavage.

Embryonic Development. Chapters 32-34: Animal Diversity AP Biology Fig Zygote Cleavage Blastocoel. Cleavage. Chapters 32-34: Animal Diversity AP Biology 2012 1 Animal Characteristics Heterotrophs Multicellular Eukaryotes Cells lack cell walls Bodies held together by structural proteins like collagen Contain nervous

More information

KINGDOM ANIMALIA CHARACTERISTICS

KINGDOM ANIMALIA CHARACTERISTICS KINGDOM ANIMALIA CHARACTERISTICS EUKARYOTIC MULTICELLULAR HETEROTROPHIC (by ingestion) MOVE AT SOME POINT IN LIFE (not all - sponges are sessile) DIGEST FOOD TO GET NUTRIENTS LACK CELL WALLS CHARACTERISTICS

More information

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen What Is an Animal? Section 25.1 Typical Animal Characteristics Biology II Mrs. Michaelsen I. Characteristics of Animals A. All animals are eukaryotic, multicellular, have ways of moving to reproduce, obtain

More information

BIOLOGY. An Overview of Animal Diversity CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Overview of Animal Diversity CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 32 An Overview of Animal Diversity Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 32.1: Animals are

More information

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya Classification The three-domains Bacteria Archaea Eukarya The six-kingdom system Bacteria Archaea Protista Plantae Fungi Animalia The traditional five-kingdom system Monera Protista Plantae Fungi Animalia

More information

31.1 What Evidence Indicates the Animals Are Monophyletic?

31.1 What Evidence Indicates the Animals Are Monophyletic? 31.1 What Evidence Indicates the Animals Are Monophyletic? What traits distinguish the animals from the other groups of organisms? In contrast to the Bacteria, Archaea, and most microbial eukaryotes, all

More information

Chps : Animals. Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs

Chps : Animals. Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs Chps 23-26: Animals Chps. 23-27: Animals Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs Animal Characteristics Forms of symmetry: Radial Bilateral

More information

Natural Sciences 360 Legacy of Life Lecture 07 Dr. Stuart S. Sumida ANIMALIA. (More Similar to Fungi than Plants)

Natural Sciences 360 Legacy of Life Lecture 07 Dr. Stuart S. Sumida ANIMALIA. (More Similar to Fungi than Plants) Natural Sciences 360 Legacy of Life Lecture 07 Dr. Stuart S. Sumida ANIMALIA (More Similar to Fungi than Plants) ANIMAL SIMILARITIES PLANTS FUNGI Cell Walls - Immobile - Often need - substrate - Heterotrophs

More information

Classification. Grouping & Identifying Living Things

Classification. Grouping & Identifying Living Things Classification Grouping & Identifying Living Things Classifying Living Things We put livings things into three Domains Eukarya Bacteria Archaea Which are divided into 6 Kingdoms Plant Animal Fungi Protist

More information

Introduction to Animal Kingdom. Invertebrates and Vertebrates

Introduction to Animal Kingdom. Invertebrates and Vertebrates Introduction to Animal Kingdom Invertebrates and Vertebrates Introduction To Animals Vertebrate animal with a backbone. Invertebrate animal without a backbone; includes more than 95% of all animal species

More information

ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS

ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS GENERAL FEATURES OF ANIMALS Heterotrophy - obtain energy and organic molecules by ingesting other organisms Multicellularity - Many have complex bodies

More information

Classification. One Big Mess!

Classification. One Big Mess! Classification One Big Mess! Three domains, 5 (or 6) Kingdoms Let s make a big chart. Cell type? Chromosomes? Ribosomes? Cell wall or not? Made of what? Unicellular or multicellular? Autotroph or heterotroph?

More information

Characteristics of Living Things Card Sort

Characteristics of Living Things Card Sort Characteristics of Living Things Card Sort All of these terms are characteristics of organisms that allow scientists to classify (organize) them into groups. Chapter 9 in your text covers the characteristics

More information

Unit 14.1: Introduction to Protists

Unit 14.1: Introduction to Protists Unit 14.1: Introduction to Protists This organism consists of a single cell with several flagella. Is it a prokaryote, such as a bacterium? Actually, it s larger than a prokaryotic cell, and it also has

More information

Zoology. Classification

Zoology. Classification Zoology Zoology involves studying all aspects of organisms belonging to the animal kingdom taxonomy, animal physiology, comparative anatomy, and ecology. Our study of Zoology will be focused on the different

More information

SG 9.2 notes Ideas about targets and terms: 9.2 In the past, all living things were classified in either the kingdom of animals or plants

SG 9.2 notes Ideas about targets and terms: 9.2 In the past, all living things were classified in either the kingdom of animals or plants Ideas about targets and terms: 9.2 In the past, all living things were classified in either the kingdom of animals or plants Euglena are singled celled organisms in pond water They are green, so contain,

More information

Phylum Cnidaria (a stinging thread)

Phylum Cnidaria (a stinging thread) Phylum Cnidaria (a stinging thread) Also known as Phylum Coelenterata (-hollow gut) This phylum contains about 10,000 species worldwide. They are mostly marine with a few freshwater species. Cnidarians

More information

Kingdom Animalia: Phyla Porifera and Cnidaria

Kingdom Animalia: Phyla Porifera and Cnidaria Kingdom Animalia: Phyla Porifera and Cnidaria Essential Question(s): What are key characteristics to the animal kingdom? Objectives: 1. Students will be able to distinguish essential characteristics in

More information

Importance of Protists

Importance of Protists Protists Protists The kingdom Protista is a very diverse kingdom. Eukaryotes that are not classified as fungi, plants, or animals are classified as protists. However, even though they are officially in

More information

Multiple Choice Write the letter on the line provided that best answers the question or completes the statement.

Multiple Choice Write the letter on the line provided that best answers the question or completes the statement. Chapter 18 Classification Chapter Test A Multiple Choice Write the letter on the line provided that best answers the question or completes the statement. 1. Scientists assign each kind of organism a universally

More information

Revision Based on Chapter 25 Grade 11

Revision Based on Chapter 25 Grade 11 Revision Based on Chapter 25 Grade 11 Biology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A cell that contains a nucleus and membrane-bound organelles

More information

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda Animal Body Plans Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod Sponges Cnidaria, Ctenophora, Platyhelminthes Acoelomate -Eucoelomate Annelid Mollusca Arthropoda Size Constraints

More information

OpenStax-CNX module: m Animal Phylogeny * OpenStax. Abstract. 1 Constructing an Animal Phylogenetic Tree

OpenStax-CNX module: m Animal Phylogeny * OpenStax. Abstract. 1 Constructing an Animal Phylogenetic Tree OpenStax-CNX module: m44658 1 Animal Phylogeny * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will be able

More information

BIOS1101 Lab Notes. Contents ANIMALS. Lab 1: Animal Diversity invertebrates. Lab 2: Animal Diversity 2 vertebrates

BIOS1101 Lab Notes. Contents ANIMALS. Lab 1: Animal Diversity invertebrates. Lab 2: Animal Diversity 2 vertebrates Contents ANIMALS Lab 1: Animal Diversity invertebrates Lab 2: Animal Diversity 2 vertebrates Lab 3: Animal Structure 1 Gross morphology Lab 4: Animal Structure 2 Histology Lab 5: The Nervous System & Sensory

More information

Figure 1. Cladogram of the Major Animal Phyla based upon SSU-rRNA

Figure 1. Cladogram of the Major Animal Phyla based upon SSU-rRNA Biology 4B Laboratory Invertebrates I: Porifera, Cnidaria and Platyhelminthes Objectives To understand the basic differences among the invertebrate animal phyla To investigate and learn the obvious external

More information

Animals contain specialized cells

Animals contain specialized cells What is an Animal? Kingdom Animalia Main Characteristics Members of the Animal Kingdom are: Eukaryotic Multicellular Heterotrophic Have cells with membranes BUT NO cell wall Animals contain specialized

More information

introduction to the Animal Kingdom (pages $55-560) Formulating a Definition: Building Vocabulary Skills

introduction to the Animal Kingdom (pages $55-560) Formulating a Definition: Building Vocabulary Skills STUDY GUIDE CHAPTER Sponges, Cnidarians, and Unsegmented Worms Section 26-1 introduction to the Animal Kingdom (pages $55-560) SECTION REVIEW With this section you began your study of the animal kingdom.

More information

Period: Date: Marine Science Midyear Exam Study Guide & Review This packet will be collected on the day of the exam for 2 HOMEWORK GRADES.

Period: Date: Marine Science Midyear Exam Study Guide & Review This packet will be collected on the day of the exam for 2 HOMEWORK GRADES. Marine Science Midyear Exam Study Guide & Review This packet will be collected on the day of the exam for 2 HOMEWORK GRADES. Topics: Intro: the water planet; scientific method Properties of Water Tides,

More information

Chapter 33: Invertebrates

Chapter 33: Invertebrates Name Period Chapters 31, 32, and 33 should be considered as a single unit, and you should try to put all of them together in a single conceptual framework. Due to the scope of our course, you are likely

More information

3) What are the names of the SIX kingdoms? Next to each one, write whether it is prokaryotic or Eukaryotic

3) What are the names of the SIX kingdoms? Next to each one, write whether it is prokaryotic or Eukaryotic Topic #1: Taxonomy 1) What is taxonomy? system of naming and classifying organisms 2) Name the eight levels of taxonomic categories, starting with the most general and ending with the most specific. Domain,

More information