Genetic Interactions Between Cultured and Wild Fish Stocks

Size: px
Start display at page:

Download "Genetic Interactions Between Cultured and Wild Fish Stocks"

Transcription

1 Genetic Interactions Between Cultured and Wild Fish Stocks Considerations for the Genetic Management of Offshore Aquaculture Michael D. Tringali, Ph.D. Research Scientist Florida Fish and Wildlife Conservation Commission

2 FWC Mission : Managing fish and wildlife resources for their longterm well-being and the benefit of people. FWC Policy for the Release of *Cultured Finfishes : all activities involving the release of organisms shall be undertaken with full consideration of their impact on natural biological diversity and in ways that do not threaten the state s natural biological heritage *Cultured = has spent some phase of its life cycle in captivity or has been transported > 25 km from its site of capture.

3 Genetic Concerns exogenous (inter-stock) gene transfer altered selection/drift dynamic maladapted alleles or traits genetically modified organisms (GMOs) inbreeding depression mutational meltdown diversity loss introgressive hybridization family size variance domestication founder effects outbreeding depression artificial selection genetic swamping allelic replacement reduced effective size (N e ) hybrid swarms disrupted genomic coadaptation

4 Grouping the Genetic Concerns Impacts from Translocations of Non-Indigenous Genes Impacts from Propagation-related Genetic Changes in the Cultured Organisms Impacts from Excessive Genetic Input into Natural Stocks allows for the development of management practices

5 Impacts from Translocations of Non-Indigenous Genes Introduction of non-native genes into native stocks Disruption of co-adapted gene complexes Introgression of maladapted alleles Change in genetic composition Loss of population fitness (e.g., outbreeding depression) Altered natural within- and among-population diversity

6 Hybrids Who Cares?

7 Gulf of Mexico Pompano Puerto Rican Pompano

8 4 3 2 Genotypic Heterogeneity Tampa Bay Pompano Puerto Rico Pompano 40 Population Assignment 50 Tampa Bay Puerto Rico Axis log(l(tb)) Axis log(l(pr))

9 Axis 3 Multi-species Genotypic Heterogeneity 2 Pompano - Tampa Bay Pompano - Puerto Rico Palometa - Puerto Rico Permit - Puerto Rico Axis 1 Axis

10 Impacts from Propagation-related genetic changes Intentional (traitspecific) selection or genetic modification Domestication (unintentional selection) Inbred or related progeny (high inbreeding coefficient, f, or coancestry coefficient, F) Natural selection compromised by influx of cultured organisms (dependent on selective effects, magnitude, & duration of influx) Increased relatedness and reduced N e in admixed population (dependent on progeny f, F, magnitude, & duration) Loss of population fitness via outbreeding depression Loss of population fitness via inbreeding depression

11 Impacts from Excessive Genetic Input into Natural Stocks Allelic replacement (dependent on magnitude & duration) Reduced N e of stocked population (dependent on N e of cultured organisms) Reduced level of genetic variance Deleterious mutation accumulation Reduced heterozygosity Reduced long-term adaptive potential Loss of population fitness via increased genetic load Loss of population fitness via inbreeding depression

12 Genetic Risk Assessment Case by case Natural stock boundaries Develop a plan for genetic management Policy Standards Prevent translocation of non-indigenous genomes Minimize impacts from propagation-related genetic changes Manage cultured proportion in cultured + wild admixtures Monitor potentially impacted wild populations

13 no Are the parental species indigenous to the region of Florida where the activity will occur? Start Transgenic? no Is reproductive contact with wild conspecifics possible? no or negligible no or undefined Natural genetic stock boundaries validated and/or broodstock source and release location appropriate? Is natural stock abundance estimated? Release numbers and expected survival specified? Other activities considered? Activity likely to cause total cultured proportion* to exceed 5% of admixed stock (*including all release activities occurring within stock)? no no High risk; Disallow. no Do spawning and rearing procedures avoid production of inbred or selectively altered organisms? no no Forecasted long-term genetic effects favorable? uncertain Is the sole purpose eligible scientific research? Genetic Monitoring and Evaluation Plan Moderate risk; Monitor. Low risk; Allow.

14 Restoration/Enhancement/Mariculture activities have a potential to impact wild marine populations. Risk of genetic impact can be greatly reduced or negated by adopting management practices that adhere to standards set in Florida s policy. Minimizing the risk depends on: 1. the participation of scientists who study population biology and population genetics of the species, 2. user-group awareness and sensitivity to the importance of preserving the genetic integrity and diversity of stocks, 3. and the ability of fishery managers to establish rules and practices that ensure the preservation of genetic resources.

King crab genetics: considerations for experimental releases

King crab genetics: considerations for experimental releases King crab genetics: considerations for experimental releases David Tallmon david.tallmon@uas.alaska.edu Why study genetics or DNA? Changes in DNA lead to variation in life forms and contribute to adaptation.

More information

Inbreeding depression due to stabilizing selection on a quantitative character. Emmanuelle Porcher & Russell Lande

Inbreeding depression due to stabilizing selection on a quantitative character. Emmanuelle Porcher & Russell Lande Inbreeding depression due to stabilizing selection on a quantitative character Emmanuelle Porcher & Russell Lande Inbreeding depression Reduction in fitness of inbred vs. outbred individuals Outcrossed

More information

IUCN Red List Process. Cormack Gates Keith Aune

IUCN Red List Process. Cormack Gates Keith Aune IUCN Red List Process Cormack Gates Keith Aune The IUCN Red List Categories and Criteria have several specific aims to provide a system that can be applied consistently by different people; to improve

More information

Existing modelling studies on shellfish

Existing modelling studies on shellfish Existing modelling studies on shellfish Laboratoire Ressources Halieutiques IFREMER Port-en-Bessin, France Worldwide production of cultured shellfish GENIMPACT February 2007 Main species and producers

More information

Adaption Under Captive Breeding, and How to Avoid It. Motivation for this talk

Adaption Under Captive Breeding, and How to Avoid It. Motivation for this talk Adaption Under Captive Breeding, and How to Avoid It November 2015 Bruce Walsh Professor, Ecology and Evolutionary Biology Professor, Public Health Professor, BIO5 Institute Professor, Plant Sciences Adjunct

More information

19. Genetic Drift. The biological context. There are four basic consequences of genetic drift:

19. Genetic Drift. The biological context. There are four basic consequences of genetic drift: 9. Genetic Drift Genetic drift is the alteration of gene frequencies due to sampling variation from one generation to the next. It operates to some degree in all finite populations, but can be significant

More information

WHAT IS BIOLOGICAL DIVERSITY?

WHAT IS BIOLOGICAL DIVERSITY? WHAT IS BIOLOGICAL DIVERSITY? Biological diversity or biodiversity is the variety of life - the wealth of life forms found on earth. 9 WHAT IS BIOLOGICAL DIVERSITY? Wilcox s (1984) definition: Biological

More information

Genetic adaptation to captivity in species conservation programs

Genetic adaptation to captivity in species conservation programs Genetic adaptation to captivity in species conservation programs R. Frankham Macquarie University & Australian Museum, Sydney, Australia Why captive breed? 4-6K species of terrestrial vertebrates cannot

More information

Genetic erosion and persistence of biodiversity

Genetic erosion and persistence of biodiversity Genetic erosion and persistence of biodiversity Kuke Bijlsma Population & Conservation Genetics Evolutionary Genetics Wageningen 21-11-2006 Biodiversity crisis: human impact Habitat deterioration, habitat

More information

Chapter 5 Evolution of Biodiversity

Chapter 5 Evolution of Biodiversity Chapter 5 Evolution of Biodiversity Earth is home to a tremendous diversity of species diversity- the variety of ecosystems within a given region. diversity- the variety of species in a given ecosystem.

More information

Chapter 5 Evolution of Biodiversity. Sunday, October 1, 17

Chapter 5 Evolution of Biodiversity. Sunday, October 1, 17 Chapter 5 Evolution of Biodiversity CHAPTER INTRO: The Dung of the Devil Read and Answer Questions Provided Module 14 The Biodiversity of Earth After reading this module you should be able to understand

More information

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution 15.2 Intro In biology, evolution refers specifically to changes in the genetic makeup of populations over time.

More information

Breeding Values and Inbreeding. Breeding Values and Inbreeding

Breeding Values and Inbreeding. Breeding Values and Inbreeding Breeding Values and Inbreeding Genotypic Values For the bi-allelic single locus case, we previously defined the mean genotypic (or equivalently the mean phenotypic values) to be a if genotype is A 2 A

More information

STABILIZING SELECTION ON HUMAN BIRTH WEIGHT

STABILIZING SELECTION ON HUMAN BIRTH WEIGHT STABILIZING SELECTION ON HUMAN BIRTH WEIGHT See Box 8.2 Mapping the Fitness Landscape in Z&E FROM: Cavalli-Sforza & Bodmer 1971 STABILIZING SELECTION ON THE GALL FLY, Eurosta solidaginis GALL DIAMETER

More information

Lecture 14 Chapter 11 Biology 5865 Conservation Biology. Problems of Small Populations Population Viability Analysis

Lecture 14 Chapter 11 Biology 5865 Conservation Biology. Problems of Small Populations Population Viability Analysis Lecture 14 Chapter 11 Biology 5865 Conservation Biology Problems of Small Populations Population Viability Analysis Minimum Viable Population (MVP) Schaffer (1981) MVP- A minimum viable population for

More information

Chapter 17: Population Genetics and Speciation

Chapter 17: Population Genetics and Speciation Chapter 17: Population Genetics and Speciation Section 1: Genetic Variation Population Genetics: Normal Distribution: a line graph showing the general trends in a set of data of which most values are near

More information

Big Idea #1: The process of evolution drives the diversity and unity of life

Big Idea #1: The process of evolution drives the diversity and unity of life BIG IDEA! Big Idea #1: The process of evolution drives the diversity and unity of life Key Terms for this section: emigration phenotype adaptation evolution phylogenetic tree adaptive radiation fertility

More information

- point mutations in most non-coding DNA sites likely are likely neutral in their phenotypic effects.

- point mutations in most non-coding DNA sites likely are likely neutral in their phenotypic effects. January 29 th, 2010 Bioe 109 Winter 2010 Lecture 10 Microevolution 3 - random genetic drift - one of the most important shifts in evolutionary thinking over the past 30 years has been an appreciation of

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Forces of Evolution Concept 15.4 Selection Can Be Stabilizing, Directional, or Disruptive Natural selection can act on quantitative traits in three ways: Stabilizing selection

More information

Chapter 16. Table of Contents. Section 1 Genetic Equilibrium. Section 2 Disruption of Genetic Equilibrium. Section 3 Formation of Species

Chapter 16. Table of Contents. Section 1 Genetic Equilibrium. Section 2 Disruption of Genetic Equilibrium. Section 3 Formation of Species Population Genetics and Speciation Table of Contents Section 1 Genetic Equilibrium Section 2 Disruption of Genetic Equilibrium Section 3 Formation of Species Section 1 Genetic Equilibrium Objectives Identify

More information

Conservation Genetics. Outline

Conservation Genetics. Outline Conservation Genetics The basis for an evolutionary conservation Outline Introduction to conservation genetics Genetic diversity and measurement Genetic consequences of small population size and extinction.

More information

8. Genetic Diversity

8. Genetic Diversity 8. Genetic Diversity Many ways to measure the diversity of a population: For any measure of diversity, we expect an estimate to be: when only one kind of object is present; low when >1 kind of objects

More information

There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page.

There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page. EVOLUTIONARY BIOLOGY EXAM #1 Fall 2017 There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page. Part I. True (T) or False (F) (2 points each). Circle

More information

Population Genetics & Evolution

Population Genetics & Evolution The Theory of Evolution Mechanisms of Evolution Notes Pt. 4 Population Genetics & Evolution IMPORTANT TO REMEMBER: Populations, not individuals, evolve. Population = a group of individuals of the same

More information

Module Contact: Dr Doug Yu, BIO Copyright of the University of East Anglia Version 1

Module Contact: Dr Doug Yu, BIO Copyright of the University of East Anglia Version 1 UNIVERSITY OF EAST ANGLIA School of Biological Sciences Main Series UG Examination 2014-2015 EVOLUTIONARY BIOLOGY & CONSERVATION GENETICS BIO-3C24 Time allowed: 3 hours Answer ALL questions in Section

More information

Name: Period Study Guide 17-1 and 17-2

Name: Period Study Guide 17-1 and 17-2 Name: Period Study Guide 17-1 and 17-2 17-1 The Fossil Record (pgs. 417-422) 1. What is the fossil record? 2. What evidence does the fossil record provide? 1. 2. 3. List the 2 techniques paleontologists

More information

Chapter 5 Evolution of Biodiversity

Chapter 5 Evolution of Biodiversity Chapter 5 Evolution of Biodiversity Biodiversity What is biodiversity? How does evolution occur? What is an ecological niche? Earth is Home to a Tremendous Diversity of Species Ecosystem diversity the

More information

CONSERVATION AND THE GENETICS OF POPULATIONS

CONSERVATION AND THE GENETICS OF POPULATIONS CONSERVATION AND THE GENETICS OF POPULATIONS FredW.Allendorf University of Montana and Victoria University of Wellington and Gordon Luikart Universite Joseph Fourier, CNRS and University of Montana With

More information

OCR (A) Biology A-level

OCR (A) Biology A-level OCR (A) Biology A-level Topic 4.2: Biodiversity Notes Biodiversity is the variety of living organisms, over time the variety of life on Earth has become more extensive but now it is being threatened by

More information

Managing segregating populations

Managing segregating populations Managing segregating populations Aim of the module At the end of the module, we should be able to: Apply the general principles of managing segregating populations generated from parental crossing; Describe

More information

13-1 Changing the Living World Slide 1 of 18

13-1 Changing the Living World Slide 1 of 18 1 of 18 Selective Breeding Selective Breeding Selective breeding allows only those organisms with desired characteristics to produce the next generation. Nearly all domestic animals and most crop plants

More information

Evolution by Natural Selection

Evolution by Natural Selection Evolution by Natural Selection What is evolution? What is evolution? The change in the genetic makeup of a population over time (narrowly defined) Evolution accounts for the diversity of life on Earth

More information

Assessing the impacts of endocrine disrupting compounds (EDCs) on fish population dynamics: a case study of smallmouth bass in Chesapeake Bay

Assessing the impacts of endocrine disrupting compounds (EDCs) on fish population dynamics: a case study of smallmouth bass in Chesapeake Bay Assessing the impacts of endocrine disrupting compounds (EDCs) on fish population dynamics: a case study of smallmouth bass in Chesapeake Bay Yan Li 1, Tyler Wagner 2 1 Pennsylvania Cooperative Fish and

More information

Monitoring Endangered Species Populations: Gene Dispersal Can Have Pronounced Effects on the Relationship between Census Size and Genetic Diversity

Monitoring Endangered Species Populations: Gene Dispersal Can Have Pronounced Effects on the Relationship between Census Size and Genetic Diversity American Journal of Plant Sciences, 2013, 4, 1932-1937 http://dx.doi.org/10.4236/ajps.2013.410238 Published Online October 2013 (http://www.scirp.org/journal/ajps) Monitoring Endangered Species Populations:

More information

What is conservation genetics? Conservation Genetics. Are genetics important in conservation? Inbreeding and loss of genetic diversity

What is conservation genetics? Conservation Genetics. Are genetics important in conservation? Inbreeding and loss of genetic diversity What is conservation genetics? B242 Evolutionary Genetics Conservation Genetics Kanchon Dasmahapatra Conservation genetics is the application of genetics to preserve species as dynamic entities capable

More information

The Mechanisms of Evolution

The Mechanisms of Evolution The Mechanisms of Evolution Figure.1 Darwin and the Voyage of the Beagle (Part 1) 2/8/2006 Dr. Michod Intro Biology 182 (PP 3) 4 The Mechanisms of Evolution Charles Darwin s Theory of Evolution Genetic

More information

Microsatellites as genetic tools for monitoring escapes and introgression

Microsatellites as genetic tools for monitoring escapes and introgression Microsatellites as genetic tools for monitoring escapes and introgression Alexander TRIANTAFYLLIDIS & Paulo A. PRODÖHL What are microsatellites? Microsatellites (SSR Simple Sequence Repeats) The repeat

More information

EVOLUTIONARY BIOLOGY FALL 2017

EVOLUTIONARY BIOLOGY FALL 2017 EVOLUTIONARY BIOLOGY FALL 2017 WHEN: MWF 11:30 12:20 WHERE: 283 Galvin Life Science Center INSTRUCTOR: Mike Pfrender Course webpage: http://www3.nd.edu/~mpfrende/evolutionary_biology/homepage.htm Nothing

More information

Darwin spent 20 years conducting research, after his voyage, in attempt to understand HOW evolution occurs.

Darwin spent 20 years conducting research, after his voyage, in attempt to understand HOW evolution occurs. Darwin spent 20 years conducting research, after his voyage, in attempt to understand HOW evolution occurs. One of his biggest influences was the work of farmers and breeders. He noticed that domesticated

More information

Practical Genetics for Aquaculture

Practical Genetics for Aquaculture BOOK REVIEW Practical Genetics for Aquaculture C.G. Lutz Fishing News Books, London. Distributed in the United States by Iowa State University Press, Ames, IA. (2001) xi+ 235 pp. ISBN 0-85238-285-5. $US

More information

The theory of evolution continues to be refined as scientists learn new information.

The theory of evolution continues to be refined as scientists learn new information. Section 3: The theory of evolution continues to be refined as scientists learn new information. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the conditions of the

More information

Evolution Test Review

Evolution Test Review Name Evolution Test Review Period 1) A group of interbreeding organisms (a species) living in a given area is called population 2) Give an example of a species. Ex. One wolf Give an example of a population.

More information

The phenotype of this worm is wild type. When both genes are mutant: The phenotype of this worm is double mutant Dpy and Unc phenotype.

The phenotype of this worm is wild type. When both genes are mutant: The phenotype of this worm is double mutant Dpy and Unc phenotype. Series 2: Cross Diagrams - Complementation There are two alleles for each trait in a diploid organism In C. elegans gene symbols are ALWAYS italicized. To represent two different genes on the same chromosome:

More information

- mutations can occur at different levels from single nucleotide positions in DNA to entire genomes.

- mutations can occur at different levels from single nucleotide positions in DNA to entire genomes. February 8, 2005 Bio 107/207 Winter 2005 Lecture 11 Mutation and transposable elements - the term mutation has an interesting history. - as far back as the 17th century, it was used to describe any drastic

More information

Evolution (Chapters 15 & 16)

Evolution (Chapters 15 & 16) Evolution (Chapters 15 & 16) Before You Read... Use the What I Know column to list the things you know about evolution. Then list the questions you have about evolution in the What I Want to Find Out column.

More information

Linking levels of selection with genetic modifiers

Linking levels of selection with genetic modifiers Linking levels of selection with genetic modifiers Sally Otto Department of Zoology & Biodiversity Research Centre University of British Columbia @sarperotto @sse_evolution @sse.evolution Sally Otto Department

More information

Section 1: What Is Biodiversity?

Section 1: What Is Biodiversity? Section 1: What Is Biodiversity? Preview Classroom Catalyst Objectives A World Rich in Biodiversity Unknown Diversity Levels of Diversity Benefits of Biodiversity Species Are Connected to Ecosystems Section

More information

Lecture 19. Long Term Selection: Topics Selection limits. Avoidance of inbreeding New Mutations

Lecture 19. Long Term Selection: Topics Selection limits. Avoidance of inbreeding New Mutations Lecture 19 Long Term Selection: Topics Selection limits Avoidance of inbreeding New Mutations 1 Roberson (1960) Limits of Selection For a single gene selective advantage s, the chance of fixation is a

More information

Natural Selection results in increase in one (or more) genotypes relative to other genotypes.

Natural Selection results in increase in one (or more) genotypes relative to other genotypes. Natural Selection results in increase in one (or more) genotypes relative to other genotypes. Fitness - The fitness of a genotype is the average per capita lifetime contribution of individuals of that

More information

Chapter 5. Evolution of Biodiversity

Chapter 5. Evolution of Biodiversity Chapter 5. Evolution of Biodiversity I. Earth s tremendous diversity A. life comes in many forms B. Recall 1. we can think of biodiversity in three ways a) genetic diversity b) species diversity c) ecosystem

More information

Sporic life cycles involve 2 types of multicellular bodies:

Sporic life cycles involve 2 types of multicellular bodies: Chapter 3- Human Manipulation of Plants Sporic life cycles involve 2 types of multicellular bodies: -a diploid, spore-producing sporophyte -a haploid, gamete-producing gametophyte Sexual Reproduction in

More information

LECTURE # How does one test whether a population is in the HW equilibrium? (i) try the following example: Genotype Observed AA 50 Aa 0 aa 50

LECTURE # How does one test whether a population is in the HW equilibrium? (i) try the following example: Genotype Observed AA 50 Aa 0 aa 50 LECTURE #10 A. The Hardy-Weinberg Equilibrium 1. From the definitions of p and q, and of p 2, 2pq, and q 2, an equilibrium is indicated (p + q) 2 = p 2 + 2pq + q 2 : if p and q remain constant, and if

More information

Chapter 8: Evolution and Natural Selection

Chapter 8: Evolution and Natural Selection Darwin s dangerous idea: evolution by natural selection Lectures by Mark Manteuffel, St. Louis Community College Chapter 8: Evolution and Natural Selection Use new chapter opening photo here Do Now: Scientific

More information

TASK 6.3 Modelling and data analysis support

TASK 6.3 Modelling and data analysis support Wheat and barley Legacy for Breeding Improvement TASK 6.3 Modelling and data analysis support FP7 European Project Task 6.3: How can statistical models contribute to pre-breeding? Daniela Bustos-Korts

More information

FW662 Lecture 12 Genetics 1

FW662 Lecture 12 Genetics 1 FW662 Lecture 12 Genetics 1 Lecture 12. Natural Selection and Population Regulation. Reading: Shields, W. M. Chapter 8. Optimal inbreeding and the evolution of philopatry. Pages 132-159 in I. R. Swingland

More information

Biology II. Evolution

Biology II. Evolution Biology II Evolution Observation-Something we know to be true based on one or more of our five senses. Inference- A conclusion which is based on observations Hypothesis- a testable inference usually stated

More information

Reproduction and Evolution Practice Exam

Reproduction and Evolution Practice Exam Reproduction and Evolution Practice Exam Topics: Genetic concepts from the lecture notes including; o Mitosis and Meiosis, Homologous Chromosomes, Haploid vs Diploid cells Reproductive Strategies Heaviest

More information

Selection 10: Theory of Natural Selection

Selection 10: Theory of Natural Selection Selection 10: Theory of Natural Selection Darwin began his voyage thinking that species could not change His experience during the five-year journey altered his thinking Variation of similar species among

More information

ZSL SCIENCE AND CONSERVATION EVENT. The Meeting Rooms, Zoological Society of London, Regent s Park, London NW1 4RY AGENDA

ZSL SCIENCE AND CONSERVATION EVENT. The Meeting Rooms, Zoological Society of London, Regent s Park, London NW1 4RY AGENDA TUESDAY 14 MARCH 2017 ZSL SCIENCE AND CONSERVATION EVENT The Meeting Rooms, Zoological Society of London, Regent s Park, London NW1 4RY AGENDA Immigrants to the rescue! How can immigration help save threatened

More information

Q1) Explain how background selection and genetic hitchhiking could explain the positive correlation between genetic diversity and recombination rate.

Q1) Explain how background selection and genetic hitchhiking could explain the positive correlation between genetic diversity and recombination rate. OEB 242 Exam Practice Problems Answer Key Q1) Explain how background selection and genetic hitchhiking could explain the positive correlation between genetic diversity and recombination rate. First, recall

More information

THE USE OF DOUBLED-HAPLOIDS IN CASSAVA BREEDING

THE USE OF DOUBLED-HAPLOIDS IN CASSAVA BREEDING 150 THE USE OF DOUBLED-HAPLOIDS IN CASSAVA BREEDING Hernan Ceballos 1, J.C. Pérez 1, C. Iglesias 2, M. Fregene 1, F. Calle 1, G. Jaramillo 1, N. Morante 1 and J. López 1 ABSTRACT Cassava breeding is difficult

More information

7.2: Natural Selection and Artificial Selection pg

7.2: Natural Selection and Artificial Selection pg 7.2: Natural Selection and Artificial Selection pg. 305-311 Key Terms: natural selection, selective pressure, fitness, artificial selection, biotechnology, and monoculture. Natural Selection is the process

More information

Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM

Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM Life Cycles, Meiosis and Genetic Variability iclicker: 1. A chromosome just before mitosis contains two double stranded DNA molecules. 2. This replicated chromosome contains DNA from only one of your parents

More information

Two Views of Adaptation

Two Views of Adaptation Mar 22: Adaptation--definitions Two Views of Adaptation Adaptation as a process The process by which an organism becomes better fitted to its environment, and stays that way Reflects role of natural selection

More information

Risk of extinction and bottleneck effect in Penna model

Risk of extinction and bottleneck effect in Penna model Risk of extinction and bottleneck effect in Penna model K. Malarz Faculty of Physics & Applied Computer Science AGH University of Science & Technology Kraków, Poland ZIS, 2007/06/18 1 Introduction A species

More information

Mechanisms of Evolution Microevolution. Key Concepts. Population Genetics

Mechanisms of Evolution Microevolution. Key Concepts. Population Genetics Mechanisms of Evolution Microevolution Population Genetics Key Concepts 23.1: Population genetics provides a foundation for studying evolution 23.2: Mutation and sexual recombination produce the variation

More information

Evidence for Genetic Adaptation to Captivity and a Potential Mechanism to Account for Domestication in Hatchery- Reared Steelhead

Evidence for Genetic Adaptation to Captivity and a Potential Mechanism to Account for Domestication in Hatchery- Reared Steelhead Evidence for Genetic Adaptation to Captivity and a Potential Mechanism to Account for Domestication in Hatchery- Reared Steelhead Neil Thompson neil.thompson@noaa.gov 1. F1 vs. natural-origin RRS Christie

More information

Science 9 - Unit A Review Sheet

Science 9 - Unit A Review Sheet Science 9 - Unit A Review Sheet Learning Outcomes Can you? describe the relative abundance of species on Earth and in different environments describe examples of variation among species and within species

More information

D. Incorrect! That is what a phylogenetic tree intends to depict.

D. Incorrect! That is what a phylogenetic tree intends to depict. Genetics - Problem Drill 24: Evolutionary Genetics No. 1 of 10 1. A phylogenetic tree gives all of the following information except for. (A) DNA sequence homology among species. (B) Protein sequence similarity

More information

2. The area of science that studies life and its processes is called A. biology B. astronomy C. geology D. archeology E.

2. The area of science that studies life and its processes is called A. biology B. astronomy C. geology D. archeology E. 1. A hypothesis can be tested with A. an observation B. an experiment C. inductive reasoning D. deductive reasoning E. a question 2. The area of science that studies life and its processes is called A.

More information

Science Unit Learning Summary

Science Unit Learning Summary Learning Summary Inheritance, variation and evolution Content Sexual and asexual reproduction. Meiosis leads to non-identical cells being formed while mitosis leads to identical cells being formed. In

More information

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics.

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics. Evolutionary Genetics (for Encyclopedia of Biodiversity) Sergey Gavrilets Departments of Ecology and Evolutionary Biology and Mathematics, University of Tennessee, Knoxville, TN 37996-6 USA Evolutionary

More information

Genetics and Natural Selection

Genetics and Natural Selection Genetics and Natural Selection Darwin did not have an understanding of the mechanisms of inheritance and thus did not understand how natural selection would alter the patterns of inheritance in a population.

More information

Evolutionary change. Evolution and Diversity. Two British naturalists, one revolutionary idea. Darwin observed organisms in many environments

Evolutionary change. Evolution and Diversity. Two British naturalists, one revolutionary idea. Darwin observed organisms in many environments Evolutionary change Evolution and Diversity Ch 13 How populations evolve Organisms change over time In baby steps Species (including humans) are descended from other species Two British naturalists, one

More information

IV. Comparative Anatomy

IV. Comparative Anatomy Whale Evolution: Fossil Record of Evolution Modern toothed whales Rodhocetus kasrani reduced hind limbs could not walk; swam with up-down motion like modern whales Pakicetus attocki lived on land; skull

More information

Evolution and Natural Selection (16-18)

Evolution and Natural Selection (16-18) Evolution and Natural Selection (16-18) 3 Key Observations of Life: 1) Shared Characteristics of Life (Unity) 2) Rich Diversity of Life 3) Organisms are Adapted to their Environment These observations

More information

(Write your name on every page. One point will be deducted for every page without your name!)

(Write your name on every page. One point will be deducted for every page without your name!) POPULATION GENETICS AND MICROEVOLUTIONARY THEORY FINAL EXAMINATION (Write your name on every page. One point will be deducted for every page without your name!) 1. Briefly define (5 points each): a) Average

More information

Form for publishing your article on BiotechArticles.com this document to

Form for publishing your article on BiotechArticles.com  this document to PRODUCTION OF SYNTHETIC VARIETIES Madhu Choudhary*, Kana Ram Kumawat, Ravi Kumawat and Mamta Bajya Department of Plant Breeding and Genetics, S.K.N. Agriculture University, Jobner-303329, Jaipur (Rajasthan),

More information

Contents PART 1. 1 Speciation, Adaptive Radiation, and Evolution 3. 2 Daphne Finches: A Question of Size Heritable Variation 41

Contents PART 1. 1 Speciation, Adaptive Radiation, and Evolution 3. 2 Daphne Finches: A Question of Size Heritable Variation 41 Contents List of Illustrations List of Tables List of Boxes Preface xvii xxiii xxv xxvii PART 1 ear ly problems, ea r ly solutions 1 1 Speciation, Adaptive Radiation, and Evolution 3 Introduction 3 Adaptive

More information

EVOLUTION UNIT. 3. Unlike his predecessors, Darwin proposed a mechanism by which evolution could occur called.

EVOLUTION UNIT. 3. Unlike his predecessors, Darwin proposed a mechanism by which evolution could occur called. EVOLUTION UNIT Name Read Chapters 1.3, 20, 21, 22, 24.1 and 35.9 and complete the following. Chapter 1.3 Review from The Science of Biology 1. Discuss the influences, experiences and observations that

More information

1.A- Natural Selection

1.A- Natural Selection 1.A- Natural Selection Big Idea 1: The process of evolution drives the diversity and unity of life. EU 1.A- Evolution is change in the genetic makeup of a population over time. EU 1.B- Organisms are linked

More information

Environmental Influences on Adaptation

Environmental Influences on Adaptation Have you ever noticed how the way you feel sometimes mirrors the emotions of the people with whom you spend a lot of time? For example, when you re around happy people, do you tend to become happy? Since

More information

Natural Resource Condition Assessments. Everglades National Park and Big Cypress National Preserve 2015

Natural Resource Condition Assessments. Everglades National Park and Big Cypress National Preserve 2015 Natural Resource Condition Assessments Everglades National Park and Big Cypress National Preserve 2015 Greater Everglades Ecosystem Restoration Conference- 4/23/2015 The Information Pyramid. Data and information

More information

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population The Evolution of Populations What is Evolution? A change over time in the genetic composition of a population Human evolution The gene pool Is the total aggregate of genes for a particular trait in a population

More information

Computer Simulations on Evolution BiologyLabs On-line. Laboratory 1 for Section B. Laboratory 2 for Section A

Computer Simulations on Evolution BiologyLabs On-line. Laboratory 1 for Section B. Laboratory 2 for Section A Computer Simulations on Evolution BiologyLabs On-line Laboratory 1 for Section B Laboratory 2 for Section A The following was taken from http://www.biologylabsonline.com/protected/evolutionlab/ Introduction

More information

Nucleic acid hybridization assays, detecting genotypes C12Q 1/68. Attention is drawn to the following places, which may be of interest for search:

Nucleic acid hybridization assays, detecting genotypes C12Q 1/68. Attention is drawn to the following places, which may be of interest for search: A01H NEW PLANTS OR PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES New non-transgenic plants (including multicellular algae, multicellular fungi and lichens), plant varieties,

More information

Evolutionary Forces. What changes populations (Ch. 17)

Evolutionary Forces. What changes populations (Ch. 17) Evolutionary Forces What changes populations (Ch. 17) Forces of evolutionary change Natural selection traits that improve survival or reproduction accumulate in the population ADAPTIVE change Genetic drift

More information

There are 3 parts to this exam. Take your time and be sure to put your name on the top of each page.

There are 3 parts to this exam. Take your time and be sure to put your name on the top of each page. EVOLUTIONARY BIOLOGY BIOS 30305 EXAM #2 FALL 2011 There are 3 parts to this exam. Take your time and be sure to put your name on the top of each page. Part I. True (T) or False (F) (2 points each). 1)

More information

Study of similarities and differences in body plans of major groups Puzzling patterns:

Study of similarities and differences in body plans of major groups Puzzling patterns: Processes of Evolution Evolutionary Theories Widely used to interpret the past and present, and even to predict the future Reveal connections between the geological record, fossil record, and organismal

More information

overproduction variation adaptation Natural Selection speciation adaptation Natural Selection speciation

overproduction variation adaptation Natural Selection speciation adaptation Natural Selection speciation Evolution Evolution Chapters 22-25 Changes in populations, species, or groups of species. Variances of the frequency of heritable traits that appear from one generation to the next. 2 Areas of Evolutionary

More information

THE THEORY OF EVOLUTION

THE THEORY OF EVOLUTION THE THEORY OF EVOLUTION Why evolution matters Theory: A well-substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation

More information

Enduring Understanding: Change in the genetic makeup of a population over time is evolution Pearson Education, Inc.

Enduring Understanding: Change in the genetic makeup of a population over time is evolution Pearson Education, Inc. Enduring Understanding: Change in the genetic makeup of a population over time is evolution. Objective: You will be able to identify the key concepts of evolution theory Do Now: Read the enduring understanding

More information

The medium2term growth and development of hybrid bet ween Chinese and Japanese populations of Chlamys farreri

The medium2term growth and development of hybrid bet ween Chinese and Japanese populations of Chlamys farreri 27 3 2003 6 JOURNAL OF FISHERIES OF CHINA Vol. 27, No. 3 J une, 2003 :1000-0615 (2003) 03-0193 - 07 1,3, 2, 1, 2, 1 1, (1., 266071; 2., 116023; 3., 712100) : (C) (J ) 9 (11 13 16 18 ), ; 4 4 5 % 50 %,

More information

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section C: Genetic Variation, the Substrate for Natural Selection

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section C: Genetic Variation, the Substrate for Natural Selection CHAPTER 23 THE EVOLUTIONS OF POPULATIONS Section C: Genetic Variation, the Substrate for Natural Selection 1. Genetic variation occurs within and between populations 2. Mutation and sexual recombination

More information

chatper 17 Multiple Choice Identify the choice that best completes the statement or answers the question.

chatper 17 Multiple Choice Identify the choice that best completes the statement or answers the question. chatper 17 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If a mutation introduces a new skin color in a lizard population, which factor might determine

More information

Germplasm. Introduction to Plant Breeding. Germplasm 2/12/2013. Master Gardener Training. Start with a seed

Germplasm. Introduction to Plant Breeding. Germplasm 2/12/2013. Master Gardener Training. Start with a seed Introduction to Plant Breeding Master Gardener Training Start with a seed Germplasm Germplasm The greatest service which can be rendered to any country is to add a useful plant to its culture -Thomas Jefferson

More information

Introduction to Plant Breeding. Master Gardener Training

Introduction to Plant Breeding. Master Gardener Training Introduction to Plant Breeding Master Gardener Training Start with a seed Germplasm Germplasm The greatest service which can be rendered to any country is to add a useful plant to its culture -Thomas Jefferson

More information

THE EVOLVING WORLD CHAPTERS 4 & 5. Preethy Subramanian & Adam Booth

THE EVOLVING WORLD CHAPTERS 4 & 5. Preethy Subramanian & Adam Booth THE EVOLVING WORLD CHAPTERS 4 & 5 Preethy Subramanian & Adam Booth Chapter 4 Evolution and Conservation Mindell s Main Idea Our understanding of evolutionary history allows us to better focus our resources

More information

Biological Evolution

Biological Evolution Biological Evolution What is Evolution Evolution is descent with modification Microevolution = changes in gene (allele) frequency in a population from one generation to the next Macroevolution = descent

More information

Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature )

Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature ) Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature ) Chapter 2 Section 2: how traits are passed from the parents

More information