An introduction to SYSTEMS BIOLOGY

Size: px
Start display at page:

Download "An introduction to SYSTEMS BIOLOGY"

Transcription

1 An introduction to SYSTEMS BIOLOGY Paolo Tieri CNR Consiglio Nazionale delle Ricerche, Rome, Italy 10 February 2015 Universidade Federal de Minas Gerais, Belo Horizonte, Brasil

2 Course outline Day 1: intro on systems biology and network biology D2: overvew of tools and resources for network biology D3: simple case study with Cytoscape and other resources D4: some successful network approach cases from literature

3 Seminar outline What is Systems Biology Introduction to Network Biology

4 CNR its duty is to carry out, promote, spread, transfer and improve research activities in the main sectors of knowledge growth and of its applications for the scientific, technological, economic and social development of the Country Largest interdisciplinary research body in Italy 7 broad Departments 100 Institutes 8000 workers

5 What is Systems Biology Systems biology is the study of *how molecules interact and join together to *give rise to subcellular structures and machinery that *form the functional units *capable of operations that are needed for cell, tissue/organ level physiological functions

6 Systems Biology Recent field: biology-based interdisciplinary study field that focuses on complex interactions in biological systems Rapidly making progress (proliferation of dedicated institutes, teams, works, literature) Aims to system-level comprehension Possible only today, thanks to knowledge advancements, high throughput technologies, affordable computing power

7 The basis of SB Rooted in enzyme kinetics modeling ( ) Explosion from studies of genome (1990) It also fostered advancements in molecular biology and relative technologies Needs a deep understanding of organisms at molecular level as a basis for understanding at system level Ambition of systems biology is the modeling and discovery of emergent properties

8

9 Why systems matter A system is a group of parts that come together, interacting and interdependent, to form a more complex whole The whole is greater than the sum of the parts

10 Alphabet, words, sentences, books, literature Take six letters: E, I, L, N, S, T LISTEN, or SILENT Evangelist à Evil's Agent!!! words are objects that emerge from the composition, position and interactions of letters, following given grammatical protocols

11 Up to the next level words The of a compose not is the single in that sense it sentence The sense of a sentence is not in the single words that compose it Sentences emerge from words composed following specific syntax rules, and are the result of interacting words

12 In summary Individual parts from simpler/lower level can combine in unexpected ways into a "system The interaction of the parts in this system creates important *properties or functions we would *not expect from looking at the individual parts, each on their own

13 Emergent properties We call these properties and functions that arise from the interacting parts in a system "emergent properties : they are central to the study of systems Emergent entities (properties or substances) arise out of more fundamental entities and yet are novel or irreducible with respect to them

14 Complex systems Emergence is typical in complex systems A system is complex if its emergent properties are not easily predictable à no linear output The output of a nonlinear system is not directly proportional to the input (that is another way to say that the whole is not simply the sum of the parts )

15 Complex systems Four basis ACGT humankind s genetic makeup (approximately genes, latest estimation) 20 amino acids ~50000 proteins produced from these genes à the extraordinary functions of human beings (emergent properties), and the corresponding complexity of a human being as a system

16 From molecule to system system level : molecular biology focuses on biomolecules, systems biology focuses on the whole ensemble of molecular components, scaling up to the whole organism a system is composed by its components, but its essence its being a system - intimately relies on the connection and the dynamics of its components It is not possible to fully describe a system simply listing its components without describing their relationships

17 Global view (parts+system) At the same time one cannot neglect the nature of components, since their global dynamics depends also on their intrinsic characteristics To know the structure alone of a system without knowing the features of its parts is little informative Both structure of the system and components play an indispensable role forming symbiotic state of the system as a whole (Kitano)

18 Holism vs Reductionism Systems biology is holistic à the parts of something are intimately interconnected and explicable only by reference to the whole, in contrast to classical biology that has been (and is) reductionist à analysing and describing a complex phenomenon in terms of its simple or fundamental constituents

19 Not a war! Reductionism has been fundamental to understand the nature of biological constituents But today we have the chance to move on and try to reconstruct the single parts into the whole

20 SB is an integrated approach that aims to... 1) Comprehension of the structure of the system, both real and virtual (neuronal networks, physical bounds; metabolic & signalling networks, genetic regulation networks)

21 2) Comprehension of the dynamics of the system, by means of qualitative and quantitative analysis (kinetics), and relative modeling

22 3) Comprehension of system control and regulation procedures: the principles that drive the dynamics

23 4) Finally, comprehension of the original design of the system, principles of self-organization (the instruction manual that you need to put the parts together)

24 In summary We need to reconstruct together: Components Structure Dynamics Controls Architecture

25

26 SB is a broad discipline Given these premises, systems biology is a broad concept that can be considered under diverse aspects

27 SB is a field of study In the most common meaning, SB is the field that studies the complex interactions among biological systems components

28

29

30 SB is a paradigm Paradigm antithetic to reductionism (i.e.: reduce a complex object to its constituents and analyse them) Reductionism can be overtaken/supported by SB s holistic approach SB deals with reassembling instead of disassembling, reconstructing instead of dismantling, integrating instead of reducing, observe the whole instead of the single parts

31 Multiscale integration: Physical & temporal Hunter & Borg, Integration from proteins to organs: the Physiome Project, Nat. Rev. Mol. Cell. Biol. 2003

32 Operating research protocol, i.e. recursive sequence of steps that includes: SB is a protocol A) established knowledge & theory B) hypothesis generation & computational modeling C) experimental validation D) acquiring quantitative description A ) enhanced/new knowledge & tuning up of the theory B ) improved hypothesis & computational model C )

33 SB is a scientific phenomenon socio-scientific phenomenon that regards the strategy devoted to pursue the integration of massive, heterogeneous data coming from different experimental sources, different methodologies & instrumentation, and people from disparate scientific background

34 file://localhost/.file/ id=

35 SB techniques & approaches trascriptomics: gene expression (microarrays) proteomics: protein & expression profiling (i.e. mass spectrometry) metabolomics: metabolite identification & measurement in a cell or tissue Interactomics / network biology: identification of dynamics & topology of interaction among proteins, genes, cells functional genomics: genes function & interaction

36 Focus on integration... Different data (multi-omic) Different techniques Different methodologies Data from different sources Different competencies: biology, medicine, maths, physics, informatics, statistics, engineering

37 and modeling Development of mechanistic models reconstruction of dynamic systems from the quantitative properties of their elementary building blocks e.g., cellular networks and pathway cascades are often reconstructed, modeled and simulated to infer predictions DE models, agent-based simulators

38 Computing & mathematics are essential tools for: System kinetics, dynamics Integrative modeling Handling high dimension data (multifactorial dependencies, statistical approaches) Simulation (computing power)

39

40 Usually, systems complexity is inversely proportional to models complexity

41

42

43 Universal principles Efficacy of the SB approach also relies in the study of universal organizing principles, architecture and large-scale organization of living matter (but not limited to the biological fields, since these principles often apply to the technological/ social fields too, among others)

44 Life s complexity pyramid Integration of different data layers, at structural and regulatory level The comprehension of cell organizational logic is obtained by means of the observation of the cell as a complex network of functionally linked components

45 Modules nested in a hierarchical architecture In turn they represent the bio-bricks of functional modules (functionally distinct & autonomous sets) Genes, RNA, proteins and metabolites selforganize into regulatory motifs and metabolic pathways Genome, transcriptome, proteome and metabolome Oltvai & Barabasi, Life s complexity pyramid, Science 2002

46 Nevertheless individual components are specific for each single organism, topological properties of cellular networks share many similarities with networks of different nature, such as social, technological or ecological networks This evidence suggests the existence of organizing principles that applies to every kind of network, from the cell to the Internet

47 Complex systems: key concepts in pictures From And

48

49

50 Source: D. Noble; Wolframalpha

Introduction to Systems Biology

Introduction to Systems Biology Introduction to Systems Biology References: Watson s Molecular Biology of the Gene, Chapter 22 Alberts Molecular Biology of the Cell, Chapter 7 Yousof Gheisari ygheisari@med.mui.ac.ir Why is this picture

More information

Unravelling the biochemical reaction kinetics from time-series data

Unravelling the biochemical reaction kinetics from time-series data Unravelling the biochemical reaction kinetics from time-series data Santiago Schnell Indiana University School of Informatics and Biocomplexity Institute Email: schnell@indiana.edu WWW: http://www.informatics.indiana.edu/schnell

More information

Proteomics. 2 nd semester, Department of Biotechnology and Bioinformatics Laboratory of Nano-Biotechnology and Artificial Bioengineering

Proteomics. 2 nd semester, Department of Biotechnology and Bioinformatics Laboratory of Nano-Biotechnology and Artificial Bioengineering Proteomics 2 nd semester, 2013 1 Text book Principles of Proteomics by R. M. Twyman, BIOS Scientific Publications Other Reference books 1) Proteomics by C. David O Connor and B. David Hames, Scion Publishing

More information

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180 Course plan 201-201 Academic Year Qualification MSc on Bioinformatics for Health Sciences 1. Description of the subject Subject name: Code: 30180 Total credits: 5 Workload: 125 hours Year: 1st Term: 3

More information

Biological Concepts and Information Technology (Systems Biology)

Biological Concepts and Information Technology (Systems Biology) Biological Concepts and Information Technology (Systems Biology) Janaina de Andréa Dernowsek Postdoctoral at Center for Information Technology Renato Archer Janaina.dernowsek@cti.gov.br Division of 3D

More information

Proteomics Systems Biology

Proteomics Systems Biology Dr. Sanjeeva Srivastava IIT Bombay Proteomics Systems Biology IIT Bombay 2 1 DNA Genomics RNA Transcriptomics Global Cellular Protein Proteomics Global Cellular Metabolite Metabolomics Global Cellular

More information

86 Part 4 SUMMARY INTRODUCTION

86 Part 4 SUMMARY INTRODUCTION 86 Part 4 Chapter # AN INTEGRATION OF THE DESCRIPTIONS OF GENE NETWORKS AND THEIR MODELS PRESENTED IN SIGMOID (CELLERATOR) AND GENENET Podkolodny N.L. *1, 2, Podkolodnaya N.N. 1, Miginsky D.S. 1, Poplavsky

More information

Computational Systems Biology

Computational Systems Biology Computational Systems Biology Vasant Honavar Artificial Intelligence Research Laboratory Bioinformatics and Computational Biology Graduate Program Center for Computational Intelligence, Learning, & Discovery

More information

Bioinformatics. Dept. of Computational Biology & Bioinformatics

Bioinformatics. Dept. of Computational Biology & Bioinformatics Bioinformatics Dept. of Computational Biology & Bioinformatics 3 Bioinformatics - play with sequences & structures Dept. of Computational Biology & Bioinformatics 4 ORGANIZATION OF LIFE ROLE OF BIOINFORMATICS

More information

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai Network Biology: Understanding the cell s functional organization Albert-László Barabási Zoltán N. Oltvai Outline: Evolutionary origin of scale-free networks Motifs, modules and hierarchical networks Network

More information

What is Systems Biology

What is Systems Biology What is Systems Biology 2 CBS, Department of Systems Biology 3 CBS, Department of Systems Biology Data integration In the Big Data era Combine different types of data, describing different things or the

More information

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes 1/ 223 SPA for quantitative analysis: Lecture 6 Modelling Biological Processes Jane Hillston LFCS, School of Informatics The University of Edinburgh Scotland 7th March 2013 Outline 2/ 223 1 Introduction

More information

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics GENOME Bioinformatics 2 Proteomics protein-gene PROTEOME protein-protein METABOLISM Slide from http://www.nd.edu/~networks/ Citrate Cycle Bio-chemical reactions What is it? Proteomics Reveal protein Protein

More information

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it?

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it? Proteomics What is it? Reveal protein interactions Protein profiling in a sample Yeast two hybrid screening High throughput 2D PAGE Automatic analysis of 2D Page Yeast two hybrid Use two mating strains

More information

BIOLOGY 111. CHAPTER 1: An Introduction to the Science of Life

BIOLOGY 111. CHAPTER 1: An Introduction to the Science of Life BIOLOGY 111 CHAPTER 1: An Introduction to the Science of Life An Introduction to the Science of Life: Chapter Learning Outcomes 1.1) Describe the properties of life common to all living things. (Module

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

October 08-11, Co-Organizer Dr. S D Samantaray Professor & Head,

October 08-11, Co-Organizer Dr. S D Samantaray Professor & Head, A Journey towards Systems system Biology biology :: Biocomputing of of Hi-throughput Omics omics Data data October 08-11, 2018 Coordinator Dr. Anil Kumar Gaur Professor & Head Department of Molecular Biology

More information

Analysis of Complex Systems

Analysis of Complex Systems Analysis of Complex Systems Lecture 1: Introduction Marcus Kaiser m.kaiser@ncl.ac.uk www.dynamic-connectome.org Preliminaries - 1 Lecturers Dr Marcus Kaiser, m.kaiser@ncl.ac.uk Practicals Frances Hutchings

More information

SCOTCAT Credits: 20 SCQF Level 7 Semester 1 Academic year: 2018/ am, Practical classes one per week pm Mon, Tue, or Wed

SCOTCAT Credits: 20 SCQF Level 7 Semester 1 Academic year: 2018/ am, Practical classes one per week pm Mon, Tue, or Wed Biology (BL) modules BL1101 Biology 1 SCOTCAT Credits: 20 SCQF Level 7 Semester 1 10.00 am; Practical classes one per week 2.00-5.00 pm Mon, Tue, or Wed This module is an introduction to molecular and

More information

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

Map of AP-Aligned Bio-Rad Kits with Learning Objectives Map of AP-Aligned Bio-Rad Kits with Learning Objectives Cover more than one AP Biology Big Idea with these AP-aligned Bio-Rad kits. Big Idea 1 Big Idea 2 Big Idea 3 Big Idea 4 ThINQ! pglo Transformation

More information

What is Systems Biology?

What is Systems Biology? What is Systems Biology? 1 ICBS 2008 - More than 1000 participants!! 2 Outline 1. What is Systems Biology? 2. Why a need for Systems Biology (motivation)? 3. Biological data suitable for conducting Systems

More information

Correlation Networks

Correlation Networks QuickTime decompressor and a are needed to see this picture. Correlation Networks Analysis of Biological Networks April 24, 2010 Correlation Networks - Analysis of Biological Networks 1 Review We have

More information

Reductionist Paradox Are the laws of chemistry and physics sufficient for the discovery of new drugs?

Reductionist Paradox Are the laws of chemistry and physics sufficient for the discovery of new drugs? Quantitative Biology Colloquium, University of Arizona, March 1, 2011 Reductionist Paradox Are the laws of chemistry and physics sufficient for the discovery of new drugs? Gerry Maggiora, Ph.D. Adjunct

More information

The Role of Network Science in Biology and Medicine. Tiffany J. Callahan Computational Bioscience Program Hunter/Kahn Labs

The Role of Network Science in Biology and Medicine. Tiffany J. Callahan Computational Bioscience Program Hunter/Kahn Labs The Role of Network Science in Biology and Medicine Tiffany J. Callahan Computational Bioscience Program Hunter/Kahn Labs Network Analysis Working Group 09.28.2017 Network-Enabled Wisdom (NEW) empirically

More information

Cell biology traditionally identifies proteins based on their individual actions as catalysts, signaling

Cell biology traditionally identifies proteins based on their individual actions as catalysts, signaling Lethality and centrality in protein networks Cell biology traditionally identifies proteins based on their individual actions as catalysts, signaling molecules, or building blocks of cells and microorganisms.

More information

Field Trips. Field Trips. Field Trips. Creek) Old Zoo Pond

Field Trips. Field Trips. Field Trips. Creek) Old Zoo Pond Biology 1 SLO 1: Distinguish questions that can be addressed scientifically from those that cannot, and identify basic components of the scientific method as it pertains to biological systems ranging form

More information

Goal 1: Develop knowledge and understanding of core content in biology

Goal 1: Develop knowledge and understanding of core content in biology Indiana State University» College of Arts & Sciences» Biology BA/BS in Biology Standing Requirements s Library Goal 1: Develop knowledge and understanding of core content in biology 1: Illustrate and examine

More information

SYSTEMS BIOLOGY 1: NETWORKS

SYSTEMS BIOLOGY 1: NETWORKS SYSTEMS BIOLOGY 1: NETWORKS SYSTEMS BIOLOGY Starting around 2000 a number of biologists started adopting the term systems biology for an approach to biology that emphasized the systems-character of biology:

More information

Essential knowledge 1.A.2: Natural selection

Essential knowledge 1.A.2: Natural selection Appendix C AP Biology Concepts at a Glance Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring understanding 1.A: Change in the genetic makeup of a population over time

More information

Self Similar (Scale Free, Power Law) Networks (I)

Self Similar (Scale Free, Power Law) Networks (I) Self Similar (Scale Free, Power Law) Networks (I) E6083: lecture 4 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA {predrag}@ee.columbia.edu February 7, 2007

More information

Field 045: Science Life Science Assessment Blueprint

Field 045: Science Life Science Assessment Blueprint Field 045: Science Life Science Assessment Blueprint Domain I Foundations of Science 0001 The Nature and Processes of Science (Standard 1) 0002 Central Concepts and Connections in Science (Standard 2)

More information

Section 2. TEACHING MATERIALS SAMPLES. Introduction to the History and Methodology of Global Studies 1

Section 2. TEACHING MATERIALS SAMPLES. Introduction to the History and Methodology of Global Studies 1 Section 2. TEACHING MATERIALS SAMPLES Introduction to the History and Methodology of Global Studies 1 Igor I. Abylgaziev, Ilya.V. Ilyin, and Ruslan R. Gabdullin In this lecture we will focus our attention

More information

Introduction Biology before Systems Biology: Reductionism Reduce the study from the whole organism to inner most details like protein or the DNA.

Introduction Biology before Systems Biology: Reductionism Reduce the study from the whole organism to inner most details like protein or the DNA. Systems Biology-Models and Approaches Introduction Biology before Systems Biology: Reductionism Reduce the study from the whole organism to inner most details like protein or the DNA. Taxonomy Study external

More information

Grade Level: AP Biology may be taken in grades 11 or 12.

Grade Level: AP Biology may be taken in grades 11 or 12. ADVANCEMENT PLACEMENT BIOLOGY COURSE SYLLABUS MRS. ANGELA FARRONATO Grade Level: AP Biology may be taken in grades 11 or 12. Course Overview: This course is designed to cover all of the material included

More information

Dynamical Modeling in Biology: a semiotic perspective. Junior Barrera BIOINFO-USP

Dynamical Modeling in Biology: a semiotic perspective. Junior Barrera BIOINFO-USP Dynamical Modeling in Biology: a semiotic perspective Junior Barrera BIOINFO-USP Layout Introduction Dynamical Systems System Families System Identification Genetic networks design Cell Cycle Modeling

More information

Valley Central School District 944 State Route 17K Montgomery, NY Telephone Number: (845) ext Fax Number: (845)

Valley Central School District 944 State Route 17K Montgomery, NY Telephone Number: (845) ext Fax Number: (845) Valley Central School District 944 State Route 17K Montgomery, NY 12549 Telephone Number: (845)457-2400 ext. 18121 Fax Number: (845)457-4254 Advance Placement Biology Presented to the Board of Education

More information

Network motifs in the transcriptional regulation network (of Escherichia coli):

Network motifs in the transcriptional regulation network (of Escherichia coli): Network motifs in the transcriptional regulation network (of Escherichia coli): Janne.Ravantti@Helsinki.Fi (disclaimer: IANASB) Contents: Transcription Networks (aka. The Very Boring Biology Part ) Network

More information

Biological Networks. Gavin Conant 163B ASRC

Biological Networks. Gavin Conant 163B ASRC Biological Networks Gavin Conant 163B ASRC conantg@missouri.edu 882-2931 Types of Network Regulatory Protein-interaction Metabolic Signaling Co-expressing General principle Relationship between genes Gene/protein/enzyme

More information

Written Exam 15 December Course name: Introduction to Systems Biology Course no

Written Exam 15 December Course name: Introduction to Systems Biology Course no Technical University of Denmark Written Exam 15 December 2008 Course name: Introduction to Systems Biology Course no. 27041 Aids allowed: Open book exam Provide your answers and calculations on separate

More information

BMD645. Integration of Omics

BMD645. Integration of Omics BMD645 Integration of Omics Shu-Jen Chen, Chang Gung University Dec. 11, 2009 1 Traditional Biology vs. Systems Biology Traditional biology : Single genes or proteins Systems biology: Simultaneously study

More information

Molecular Biology Of The Cell 6th Edition Alberts

Molecular Biology Of The Cell 6th Edition Alberts We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with molecular biology of

More information

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution. The AP Biology course is designed to enable you to develop advanced inquiry and reasoning skills, such as designing a plan for collecting data, analyzing data, applying mathematical routines, and connecting

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

AP Curriculum Framework with Learning Objectives

AP Curriculum Framework with Learning Objectives Big Ideas Big Idea 1: The process of evolution drives the diversity and unity of life. AP Curriculum Framework with Learning Objectives Understanding 1.A: Change in the genetic makeup of a population over

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Systems biology Introduction to Bioinformatics Systems biology: modeling biological p Study of whole biological systems p Wholeness : Organization of dynamic interactions Different behaviour of the individual

More information

BioControl - Week 6, Lecture 1

BioControl - Week 6, Lecture 1 BioControl - Week 6, Lecture 1 Goals of this lecture Large metabolic networks organization Design principles for small genetic modules - Rules based on gene demand - Rules based on error minimization Suggested

More information

ADVANCED PLACEMENT BIOLOGY

ADVANCED PLACEMENT BIOLOGY ADVANCED PLACEMENT BIOLOGY Description Advanced Placement Biology is designed to be the equivalent of a two-semester college introductory course for Biology majors. The course meets seven periods per week

More information

Mole_Oce Lecture # 24: Introduction to genomics

Mole_Oce Lecture # 24: Introduction to genomics Mole_Oce Lecture # 24: Introduction to genomics DEFINITION: Genomics: the study of genomes or he study of genes and their function. Genomics (1980s):The systematic generation of information about genes

More information

ANALYSIS OF BIOLOGICAL NETWORKS USING HYBRID SYSTEMS THEORY. Nael H. El-Farra, Adiwinata Gani & Panagiotis D. Christofides

ANALYSIS OF BIOLOGICAL NETWORKS USING HYBRID SYSTEMS THEORY. Nael H. El-Farra, Adiwinata Gani & Panagiotis D. Christofides ANALYSIS OF BIOLOGICAL NETWORKS USING HYBRID SYSTEMS THEORY Nael H El-Farra, Adiwinata Gani & Panagiotis D Christofides Department of Chemical Engineering University of California, Los Angeles 2003 AIChE

More information

Introduction to Bioinformatics. Shifra Ben-Dor Irit Orr

Introduction to Bioinformatics. Shifra Ben-Dor Irit Orr Introduction to Bioinformatics Shifra Ben-Dor Irit Orr Lecture Outline: Technical Course Items Introduction to Bioinformatics Introduction to Databases This week and next week What is bioinformatics? A

More information

A A A A B B1

A A A A B B1 LEARNING OBJECTIVES FOR EACH BIG IDEA WITH ASSOCIATED SCIENCE PRACTICES AND ESSENTIAL KNOWLEDGE Learning Objectives will be the target for AP Biology exam questions Learning Objectives Sci Prac Es Knowl

More information

September 16, 2004 The NEURON Book: Chapter 2

September 16, 2004 The NEURON Book: Chapter 2 Chapter 2 The ing perspective This and the following chapter deal with concepts that are not NEURON-specific but instead pertain equally well to any tools used for neural ing. Why? In order to achieve

More information

Identify stages of plant life cycle Botany Oral/written pres, exams

Identify stages of plant life cycle Botany Oral/written pres, exams DPI Standards Biology Education (for students) 1. Characteristics of organisms Know Properties of living organisms, including: Acquire and use energy and materials Sense and respond to stimuli Reproduce

More information

Erzsébet Ravasz Advisor: Albert-László Barabási

Erzsébet Ravasz Advisor: Albert-László Barabási Hierarchical Networks Erzsébet Ravasz Advisor: Albert-László Barabási Introduction to networks How to model complex networks? Clustering and hierarchy Hierarchical organization of cellular metabolism The

More information

AP Biology Essential Knowledge Cards BIG IDEA 1

AP Biology Essential Knowledge Cards BIG IDEA 1 AP Biology Essential Knowledge Cards BIG IDEA 1 Essential knowledge 1.A.1: Natural selection is a major mechanism of evolution. Essential knowledge 1.A.4: Biological evolution is supported by scientific

More information

Gene Network Science Diagrammatic Cell Language and Visual Cell

Gene Network Science Diagrammatic Cell Language and Visual Cell Gene Network Science Diagrammatic Cell Language and Visual Cell Mr. Tan Chee Meng Scientific Programmer, System Biology Group, Bioinformatics Institute Overview Introduction Why? Challenges Diagrammatic

More information

STAAR Biology Assessment

STAAR Biology Assessment STAAR Biology Assessment Reporting Category 1: Cell Structure and Function The student will demonstrate an understanding of biomolecules as building blocks of cells, and that cells are the basic unit of

More information

Thematic review series: Systems Biology Approaches to Metabolic and Cardiovascular Disorders

Thematic review series: Systems Biology Approaches to Metabolic and Cardiovascular Disorders thematic review Thematic review series: Systems Biology Approaches to Metabolic and Cardiovascular Disorders Reverse engineering gene networks to identify key drivers of complex disease phenotypes Eric

More information

PREREQUISITE CHECKLIST

PREREQUISITE CHECKLIST PREREQUISITE CHECKLIST UNIVERSITY OF CALIFORNIA, BERKELEY SCHOOL OF OPTOMETRY ADMISSIONS AND STUDENT AFFAIRS OFFICE Name: Date: Email: Status (complete, in progress, or planned) Prerequisite Course Requirements

More information

BEFORE TAKING THIS MODULE YOU MUST ( TAKE BIO-4013Y OR TAKE BIO-

BEFORE TAKING THIS MODULE YOU MUST ( TAKE BIO-4013Y OR TAKE BIO- 2018/9 - BIO-4001A BIODIVERSITY Autumn Semester, Level 4 module (Maximum 150 Students) Organiser: Dr Harriet Jones Timetable Slot:DD This module explores life on Earth. You will be introduced to the major

More information

A.P. Biology Lecture Notes Unit 1A - Themes of Life

A.P. Biology Lecture Notes Unit 1A - Themes of Life A.P. Biology Lecture Notes Unit 1A - Themes of Life I. Why study biology? A. Life is attractive, diverse, and interesting. B. The study of biology is enormous in scope C. Organisms span size scales from

More information

TEST SUMMARY AND FRAMEWORK TEST SUMMARY

TEST SUMMARY AND FRAMEWORK TEST SUMMARY Washington Educator Skills Tests Endorsements (WEST E) TEST SUMMARY AND FRAMEWORK TEST SUMMARY BIOLOGY Copyright 2014 by the Washington Professional Educator Standards Board 1 Washington Educator Skills

More information

Lecture 1 Modeling in Biology: an introduction

Lecture 1 Modeling in Biology: an introduction Lecture 1 in Biology: an introduction Luca Bortolussi 1 Alberto Policriti 2 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste Via Valerio 12/a, 34100 Trieste. luca@dmi.units.it

More information

FRAUNHOFER IME SCREENINGPORT

FRAUNHOFER IME SCREENINGPORT FRAUNHOFER IME SCREENINGPORT Design of screening projects General remarks Introduction Screening is done to identify new chemical substances against molecular mechanisms of a disease It is a question of

More information

Biology Assessment. Eligible Texas Essential Knowledge and Skills

Biology Assessment. Eligible Texas Essential Knowledge and Skills Biology Assessment Eligible Texas Essential Knowledge and Skills STAAR Biology Assessment Reporting Category 1: Cell Structure and Function The student will demonstrate an understanding of biomolecules

More information

1 of 13 8/11/2014 10:32 AM Units: Teacher: APBiology, CORE Course: APBiology Year: 2012-13 Chemistry of Life Chapters 1-4 Big Idea 1, 2 & 4 Change in the genetic population over time is feedback mechanisms

More information

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007 Understanding Science Through the Lens of Computation Richard M. Karp Nov. 3, 2007 The Computational Lens Exposes the computational nature of natural processes and provides a language for their description.

More information

11/24/13. Science, then, and now. Computational Structural Bioinformatics. Learning curve. ECS129 Instructor: Patrice Koehl

11/24/13. Science, then, and now. Computational Structural Bioinformatics. Learning curve. ECS129 Instructor: Patrice Koehl Computational Structural Bioinformatics ECS129 Instructor: Patrice Koehl http://www.cs.ucdavis.edu/~koehl/teaching/ecs129/index.html koehl@cs.ucdavis.edu Learning curve Math / CS Biology/ Chemistry Pre-requisite

More information

Campbell Biology AP Edition 11 th Edition, 2018

Campbell Biology AP Edition 11 th Edition, 2018 A Correlation and Narrative Summary of Campbell Biology AP Edition 11 th Edition, 2018 To the AP Biology Curriculum Framework AP is a trademark registered and/or owned by the College Board, which was not

More information

FINAL VERSION_ Secondary Preservice Teacher Standards -- Life Science AFK12SE/NGSS Strand Disciplinary Core Idea

FINAL VERSION_ Secondary Preservice Teacher Standards -- Life Science AFK12SE/NGSS Strand Disciplinary Core Idea Secondary Preservice Teacher Standards -- Life Science AFK12SE/NGSS Strand Disciplinary Core Idea LS1: From Molecules to Organisms: Structures and Processes LS1.A: Structure and Function How do the structures

More information

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes.

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. A. Chemistry of Life B. Cells 1. Water How do the unique chemical

More information

Is Molecular Genetics Becoming Less Reductionistic?

Is Molecular Genetics Becoming Less Reductionistic? Is Molecular Genetics Becoming Less Reductionistic? Notes from recent case studies on mapping C. elegans and the discovery of microrna Richard M. Burian Virginia Tech rmburian@vt.edu Outline Introduction

More information

AP Biology Curriculum Framework

AP Biology Curriculum Framework AP Biology Curriculum Framework This chart correlates the College Board s Advanced Placement Biology Curriculum Framework to the corresponding chapters and Key Concept numbers in Campbell BIOLOGY IN FOCUS,

More information

BIO 181 GENERAL BIOLOGY I (MAJORS) with Lab (Title change ONLY Oct. 2013) Course Package

BIO 181 GENERAL BIOLOGY I (MAJORS) with Lab (Title change ONLY Oct. 2013) Course Package GENERAL BIOLOGY I (MAJORS) with Lab (Title change ONLY Oct. 2013) Course Package COURSE INFORMATION Is this a new course or a proposed modification to an existing course? Please check the appropriate box.

More information

EASTERN OREGON UNIVERSITY Chemistry-Biochemistry

EASTERN OREGON UNIVERSITY Chemistry-Biochemistry EASTERN OREGON UNIVERSITY Chemistry-Biochemistry PROGRAM OBJECTIVES The chemistry-biochemistry degree offered by the Department of Chemistry-Biochemistry prepares chemistry majors for graduate work in

More information

School of Biology. Biology (BL) modules. Biology & 2000 Level /8 - August BL1101 Biology 1

School of Biology. Biology (BL) modules. Biology & 2000 Level /8 - August BL1101 Biology 1 School of Biology Biology (BL) modules BL1101 Biology 1 SCOTCAT Credits: 20 SCQF Level 7 Semester: 1 10.00 am; Practical classes one per week 2.00-5.00 pm Mon, Tue, or Wed This module is an introduction

More information

Chemistry. Faculty Kent Davis, chair; Pablo Hilario, Denise Lee-Haye, Marie Pak, Robert Wilson Departmental Office: 355 Chan Shun Hall; (707)

Chemistry. Faculty Kent Davis, chair; Pablo Hilario, Denise Lee-Haye, Marie Pak, Robert Wilson Departmental Office: 355 Chan Shun Hall; (707) Faculty Kent Davis, chair; Pablo Hilario, Denise Lee-Haye, Marie Pak, Robert Wilson Departmental Office: 355 Chan Shun Hall; (707) 965-7597 Degrees and Programs Chemistry, B.S....77 Chemistry, B.A....78

More information

networks in molecular biology Wolfgang Huber

networks in molecular biology Wolfgang Huber networks in molecular biology Wolfgang Huber networks in molecular biology Regulatory networks: components = gene products interactions = regulation of transcription, translation, phosphorylation... Metabolic

More information

Computational methods for predicting protein-protein interactions

Computational methods for predicting protein-protein interactions Computational methods for predicting protein-protein interactions Tomi Peltola T-61.6070 Special course in bioinformatics I 3.4.2008 Outline Biological background Protein-protein interactions Computational

More information

Introduction to Systems Biology. James Gomes KSBS, IITD

Introduction to Systems Biology. James Gomes KSBS, IITD Introduction to Systems Biology James Gomes KSBS, IITD Inner Life of a Cell Cells Exhibit a High Degree of Complexity What are the different types of cells? Is Life an emergent property? What is Systems

More information

Systems biology and biological networks

Systems biology and biological networks Systems Biology Workshop Systems biology and biological networks Center for Biological Sequence Analysis Networks in electronics Radio kindly provided by Lazebnik, Cancer Cell, 2002 Systems Biology Workshop,

More information

Course Descriptions Biology

Course Descriptions Biology Course Descriptions Biology BIOL 1010 (F/S) Human Anatomy and Physiology I. An introductory study of the structure and function of the human organ systems including the nervous, sensory, muscular, skeletal,

More information

The architecture of complexity: the structure and dynamics of complex networks.

The architecture of complexity: the structure and dynamics of complex networks. SMR.1656-36 School and Workshop on Structure and Function of Complex Networks 16-28 May 2005 ------------------------------------------------------------------------------------------------------------------------

More information

of a landscape to support biodiversity and ecosystem processes and provide ecosystem services in face of various disturbances.

of a landscape to support biodiversity and ecosystem processes and provide ecosystem services in face of various disturbances. L LANDSCAPE ECOLOGY JIANGUO WU Arizona State University Spatial heterogeneity is ubiquitous in all ecological systems, underlining the significance of the pattern process relationship and the scale of

More information

UNIVERSITY OF THE PHILIPPINES LOS BAÑOS INSTITUTE OF STATISTICS BS Statistics - Course Description

UNIVERSITY OF THE PHILIPPINES LOS BAÑOS INSTITUTE OF STATISTICS BS Statistics - Course Description UNIVERSITY OF THE PHILIPPINES LOS BAÑOS INSTITUTE OF STATISTICS BS Statistics - Course Description COURSE COURSE TITLE UNITS NO. OF HOURS PREREQUISITES DESCRIPTION Elementary Statistics STATISTICS 3 1,2,s

More information

About OMICS Group Conferences

About OMICS Group Conferences About OMICS Group OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 27 with the sole aim of making

More information

Cellular Biophysics SS Prof. Manfred Radmacher

Cellular Biophysics SS Prof. Manfred Radmacher SS 20007 Manfred Radmacher Ch. 12 Systems Biology Let's recall chemotaxis in Dictiostelium synthesis of camp excretion of camp external camp gradient detection cell polarity cell migration 2 Single cells

More information

Why EvoSysBio? Combine the rigor from two powerful quantitative modeling traditions: Molecular Systems Biology. Evolutionary Biology

Why EvoSysBio? Combine the rigor from two powerful quantitative modeling traditions: Molecular Systems Biology. Evolutionary Biology Why EvoSysBio? Combine the rigor from two powerful quantitative modeling traditions: Molecular Systems Biology rigorous models of molecules... in organisms Modeling Evolutionary Biology rigorous models

More information

AP Bio Module 16: Bacterial Genetics and Operons, Student Learning Guide

AP Bio Module 16: Bacterial Genetics and Operons, Student Learning Guide Name: Period: Date: AP Bio Module 6: Bacterial Genetics and Operons, Student Learning Guide Getting started. Work in pairs (share a computer). Make sure that you log in for the first quiz so that you get

More information

Science Scope and Sequence Louisburg USD #416. Earth Science 9 Biology 10 TEST 10 Chemistry App. Chemistry Human Biology Physics App.

Science Scope and Sequence Louisburg USD #416. Earth Science 9 Biology 10 TEST 10 Chemistry App. Chemistry Human Biology Physics App. Standard 1: Science as Inquiry Benchmark 1 Techniques Math and technology Lab procedures Designs investigations, including developing questions, gathering and analyzing data, and designing and conducting

More information

biologically-inspired computing lecture 5 Informatics luis rocha 2015 biologically Inspired computing INDIANA UNIVERSITY

biologically-inspired computing lecture 5 Informatics luis rocha 2015 biologically Inspired computing INDIANA UNIVERSITY lecture 5 -inspired Sections I485/H400 course outlook Assignments: 35% Students will complete 4/5 assignments based on algorithms presented in class Lab meets in I1 (West) 109 on Lab Wednesdays Lab 0 :

More information

Systems biology and complexity research

Systems biology and complexity research Systems biology and complexity research Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Interdisciplinary Challenges for

More information

Evidence for dynamically organized modularity in the yeast protein-protein interaction network

Evidence for dynamically organized modularity in the yeast protein-protein interaction network Evidence for dynamically organized modularity in the yeast protein-protein interaction network Sari Bombino Helsinki 27.3.2007 UNIVERSITY OF HELSINKI Department of Computer Science Seminar on Computational

More information

A Correlation of. to the. Michigan K-12 Standards for Science High School - Life Science and Engineering Design

A Correlation of. to the. Michigan K-12 Standards for Science High School - Life Science and Engineering Design A Correlation of 2014 to the High School - Life Science and Engineering Design Introduction The following document demonstrates how 2014 supports the Michigan K- 12 Standards for High School Life Science

More information

Introduction to the UIL Science Contest. Dr. Jennifer Fritz & Dr. James Friedrichsen UIL Capitol Conference July 12, 2013

Introduction to the UIL Science Contest. Dr. Jennifer Fritz & Dr. James Friedrichsen UIL Capitol Conference July 12, 2013 Introduction to the UIL Science Contest Dr. Jennifer Fritz & Dr. James Friedrichsen UIL Capitol Conference July 12, 2013 U Dr. Jennifer Fritz *Biology Dr. Paul McCord *Chemistry Dr. James Friedrichsen,

More information

Towards a framework for multi-level modelling in Computational Biology

Towards a framework for multi-level modelling in Computational Biology Towards a framework for multi-level modelling in Computational Biology Sara Montagna sara.montagna@unibo.it Alma Mater Studiorum Università di Bologna PhD in Electronics, Computer Science and Telecommunications

More information

Cross-fertilization between Proteomics and Computational Synthesis

Cross-fertilization between Proteomics and Computational Synthesis From: AAAI Technical Report SS-03-02. Compilation copyright 2003, AAAI (www.aaai.org). All rights reserved. Cross-fertilization between Proteomics and Computational Synthesis Ivan I. Garibay and Annie

More information

Prokaryotic Gene Expression (Learning Objectives)

Prokaryotic Gene Expression (Learning Objectives) Prokaryotic Gene Expression (Learning Objectives) 1. Learn how bacteria respond to changes of metabolites in their environment: short-term and longer-term. 2. Compare and contrast transcriptional control

More information

Preface. Contributors

Preface. Contributors CONTENTS Foreword Preface Contributors PART I INTRODUCTION 1 1 Networks in Biology 3 Björn H. Junker 1.1 Introduction 3 1.2 Biology 101 4 1.2.1 Biochemistry and Molecular Biology 4 1.2.2 Cell Biology 6

More information

Integration of functional genomics data

Integration of functional genomics data Integration of functional genomics data Laboratoire Bordelais de Recherche en Informatique (UMR) Centre de Bioinformatique de Bordeaux (Plateforme) Rennes Oct. 2006 1 Observations and motivations Genomics

More information