- mutations can occur at different levels from single nucleotide positions in DNA to entire genomes.

Size: px
Start display at page:

Download "- mutations can occur at different levels from single nucleotide positions in DNA to entire genomes."

Transcription

1 February 8, 2005 Bio 107/207 Winter 2005 Lecture 11 Mutation and transposable elements - the term mutation has an interesting history. - as far back as the 17th century, it was used to describe any drastic change in an organism s form, such as that found in the fossil record. - in the early part of the 20th century, the term mutation was used by Hugo devries to refer to the origin of new species. - devries Mutation Theory, in which species were formed by large jumps (saltations), was more popular than Darwin s theory of evolution for a period of time. - when devries theory fell into disrepute, the term mutation was rescued from a sure death by Thomas Hunt Morgan (one of the founders of the science of genetics). - Morgan used it to refer to newly arisen aberrations in phenotype (such as the appearance of white-eyed Drosophila) that obeyed Mendelian patterns of inheritance. - this nomenclature has been maintained up to the present day. - mutations can occur at different levels from single nucleotide positions in DNA to entire genomes. Point mutations - the simplest types of mutations occur at single base positions of DNA. - four categories of point mutations are recognized: 1. transitions: A to G, C to T 2. tranversions: T to A, C to G 3. insertions 4. deletions - within coding regions point mutations can involve silent (or synonymous) or replacement changes (or nonsynonymous). - insertions/deletions occurring within coding regions of DNA give rise to frameshift mutations whereby the correct reading frame is disrupted. - when we monitor mutational changes within genes over evolutionary time, transitions greatly outnumber transversions (because they are easier mistakes to make) and silent changes greatly outnumber replacement changes (typically). 2. Copy-number mutations - these mutations change the numbers of genetic elements. - included in this category are gene duplication events where a single gene is duplicated. - this duplication process typically results in the new gene copy being close to the progenitor copy.

2 - over time, this process may lead to the development of gene families where a number of copies are physically clustered in chromosomes. - good examples are the alpha and beta globin gene families (on chromosomes 16 and 11 in humans, respectively). - the mechanism believed responsible is unequal crossing over. - once a couple of copies of a gene are closely placed, it may be relatively easy to generate more. - another major source of mutations that can have important effects at the phenotypic level involves transposable elements (TE s). - TE s are also called jumping genes because they can move about the genome, copying themselves and inserting into different places (a process called replicative transposition). - three major classes of TE s are recognized. 1. insertion sequences ( bp) 2. transposons ( bp) 3. retroelements - TE s have a multitude of effects including altering gene expression, increasing mutation rates, and causing chromosomal rearrangements. 3. Chromosomal mutations - the two major types of chromosomal mutations are inversions and translocations. - inversions occur when a piece of a chromosomal flips around and becomes integrated in the opposite direction. - inversions are particularly common in insects for reasons that are not well understood. - they form an important type of polymorphism in many insect species, notably Drosophila, where they have been studied intensively. - inversions accomplish something important: they lock up the block of genes as a whole unit and suppress recombination among the block. - (this occurs because when recombination occurs in an inversion heterozygote, the crossover products contain duplications and deletions.) - as a result of this suppression of recombination, the genes locked within an inversion can coevolve to function optimally as a concerted group giving rise to what are called coadapted gene complexes. - translocations occur when a piece of chromosomes breaks off and moves to a new region. - these may have important effects by modifying the level of transcription of genes present in the translocated segment, especially near the breakpoint. - some translocations in humans have been linked to certain cancers and other diseases. - finally mutations affecting the karyotype of a species can occur. - Robertsonian fusions and fissions are fairly common and can have major effects on speciation. 4. Genome mutations - the highest level that mutations can occur are those affecting the entire genome. - such mutations are called polyploidization events.

3 - for example, diploid (2N) species can give rise to tetraploid (4N) species. - tetraploids can produce octoploids, etc. - as with less dramatic changes in chromosome number polyploidization events can have important effects in creating new species. - polyploidy has played a major role in the evolution of plants. - about half of angiosperms (flowering plants) are polyploids and an even higher number of grasses are too. Distribution of fitness effects of new mutations - what is the distribution of fitness effects of new mutations? - the vast majority of mutations are harmful or deleterious. - a substantial number have effects on fitness that are close to zero - these are called neutral or nearly neutral mutations. - a small proportion are advantageous. - how small this portion is remains unclear but they are responsible for driving all adaptation. Mutation as a random process - mutation is a random process. - it is important to understand what this statement means and what it doesn t mean. - it does not mean that all conceivable mutations are likely to occur. - developmental constraints might exist that prevent a large class of mutations from ever being realized at the phenotypic level. - what we mean when we say mutation is random is that the probability that a certain mutation will occur is not influenced by whether an organism is in an environment in which that mutation would be advantageous. - that is the environment does not induce adaptive mutations. - the idea that mutations are somehow directed towards benefiting their carriers is an old one. - this would indeed introduce a Lamarckian element to evolution for organisms could then acquire adaptive hereditary characteristics in direct response to their environments. - there is a small group of evolutionary biologists who still argue that in some instances adaptive mutations can be affected by the environment. - this is not widely accepted and it is difficult to conceive of a mechanism by which this can occur. - how could the environment ever direct the mutation process by dictating just base pair change be made? The fate of new mutations - the fate of the vast majority of new mutations is that they will be lost in first or subsequent generations following their appearance. - consider a neutral mutation. - if the mutation is unique, it will occur in a single heterozygote in the population at a frequency of 1/2N.

4 - if we assume a Poisson distribution of family size, it is possible to predict the probability that the mutation will be lost in one generation to be in the second generation, the probability of its loss is by five generations, the probability increases to what about a selected allele? - surprisingly, the fate of new advantageous mutations is not that much better than neutral alleles! - if the selection coefficient is 0.01, then after one generation probability of the selected allele s loss is improved to only after two generations, its probability of loss is improved to only and after 5 generations to only 0.725! - in fact, the overall probability of fixation of a selected allele is only twice the selection coefficient which in this case is this shows that stochastic processes dominate the overall fate of even selected alleles and that natural populations lose the vast majority of beneficial mutations and thus never realize their benefits! Allele frequency change caused by mutation - let us assume there are two alleles at a locus, A 1 and A 2. - let p be the frequency of A 1 and q be the frequency of A 2. - let the A 1 allele be the normal wild-type and A 2 be a detrimental allele. - let the forward mutation rate from A 1 to A 2 be u and the reverse mutation rate from A 2 to A 1 be v. v A 1 X A 2 u - it is generally assumed that forward mutation rates occur more frequently because it is easier to impair the function of a gene by randomly changing any given site than to restore the normal function. - the change in the frequency of A 2 due to mutation is q = up vq = u q(u + v) - if no other forces at acting at the locus, there will be an equilibrium frequency established that depends on the rates of u and v: q e = u/(u + v)

5 - because mutation rates are generally very small, the rate of allele frequency change caused by mutation is very slow. - let us assume that v is small relative to u (so it can be ignored). - the change in the frequency of A1 after one generation of mutation is: p 1 = p 0 up 0 = (1 u)p 0 - after t generations this relationship can be generalized to p t = (1 u) t p 0 - if u = 10-5 and p 0 = 0.50, then this equation predicts that it would take 69,314 generations for the A 1 allele to reach we can assess the effect of back mutation by including it in this equation: - this can be generalized to p 1 = (1 u)p 0 + v(1 p 0 ) p t = v/(u + v) + [p 0 v/(u + v)] (1 u v) t - if we begin again with p 0 = 0.50 and let u = 10-5 and v = 10-6, then after 69,314 generations the frequency of A 1 is reduced to this shows that a small rate of back mutation has a minor effect. - however, the important point is that mutation is an extremely weak evolutionary force. Mutation-selection balance - let us now incorporate the effect of selection acting on deleterious alleles. - assume first that the deleterious mutation is completely recessive. - the change in allele frequency caused by selection is: q s = sq 2 p/(1 sq 2 ) - although selection is acting to reduce the frequency there is an increase every generation caused by mutation: q mu = up - if we assume the rate of back mutation is low, we can ignore its effect. - because the effects of selection and mutation are in opposite directions, there is some point where they balance out: q s + q mu = 0

6 up = sq 2 p/(1 sq 2 ) - if q 2 is small, this equation becomes up = sq 2 p q 2 = u/s q e = (u/s) 1/2 - this point is referred to as mutation-selection balance. - if there is inbreeding in the population, then this has an effect on the equilibrium: q e = u/fs - this equation shows that the equilibrium frequency is greatly decreased compared to that in an outbreeding population. - this occurs because inbreeding exposes deleterious alleles in homozygous state thus allowing selection to remove them from the population. - note that inbreeding is not causing allele frequencies to change. - rather, it is the action of purifying selection. The effect of dominance - if there is some dominance, then the equilibrium is greatly influenced. - the degree of dominance at a locus is represented by the coefficient, h. Genotype A 1 A 1 A 1 A 2 A 2 A 2 Fitness 1 1 hs 1 s - different values of h can give rise to numerous outcomes. - if h =1, then the A 2 allele is completely dominant. - if h = 0, then A 2 is completely recessive. - if h = 0. 5 then the alleles behave in additive fashion. - if h is negative, there is overdominance! - if h is between 0.5 and 1, there is some degree of dominance. - if h is close to 1 and q e is small, then the equilibrium allele frequency is: q e = u/hs - this shows what our intuition predicts that dominance of a deleterious allele results in a substantially lower equilibrium frequency.

7 Mutational load - the persistence of deleterious alleles at mutation-selection balance imposes a genetic load on a population. - the mean population fitness would be greater if these deleterious alleles were not present. - however, for outbreeding species, it is impossible to purge these alleles. - and, if they are removed, they are continuously re-introduced by recurrent mutation. - for a recessive mutation, the load, L is L = sq 2 - since u = sq 2 this means that the load is roughly equal to the mutation rate: L u - in the case of complete dominance, there are very few A2A2 homozygotes, thus the load becomes: L = 2pqhs - using the equation 7.5d in the textbook, the load then becomes L 2u - therefore, the mutational load of a population is between the mutation rate (u) and twice the mutation (2u) depending on the degree of dominance. - note that the mutation load is independent of the intensity of selection! Estimation of mutation rates - the estimation of mutation rates are difficult because mutations are rare events. - mutation rates can be estimated directly from examining the progeny produced from known parental genotypes. - the textbook describes some examples of studies using this direct count method. - if the genotypes of the parents are not known, then an indirect method can be used. - these indirect methods are most tractable for dominant mutations but the approach can also work for recessives. - for most protein coding genes, mutation rates are typically in the range of 10-5 to 10-6 (per gamete per individual). - for some highly variable markers like microsatellites, mutation rates are much higher usually in the range of 10-2 to many studies have confirmed that the mutation rate in males is much greater than females. - this observation is consistent with the much larger number of cell divisions that occur during spermatogenesis over the lifetime of a male.

8 - when mutation rates are compared among species, there is commonly a large difference in the mutation rate per sexual generation. - if one corrects for the differences in genome size and differences in the number of cell replications per sexual generation there is little variation among fruit flies, C. elegans, or humans! - mutation rates may, however, differ between closely-related species indicating that it is a trait that may evolve. - one might predict that is variable or unpredictable environments, there might be an advantage to a higher mutation rate. Transposable elements - a transposable element (TE) is a DNA sequence that can change its location in the genome. - transposable elements can give rise to chromosomal rearrangements, inactivate genes (if they insert within a transcribed gene), or modify the expression of a gene via their effects on gene regulation. - the process of transposition requires an enzyme called transposase which is usually encoded in the DNA sequence of the TE. - several models of the population dynamics of transposable elements have been constructed. - they typically incorporate the following features: 1. A rate of infection where genomes lacking the TE become infected (u). 2. A rate of transposition in which copy number increases in a genome (T). 3. Natural selection acts to remove TEs from the genome because they come at a cost to an organism s fitness (cost S). - these models have been found to result in some equilibrium distribution of elements. - here is one example of IS30 elements in 71 natural isolates of E. coli from a study by Sawyer et al. (1987). No. of IS30 Expected No. Observed No. Elements of strains of strains

Lecture 7 Mutation and genetic variation

Lecture 7 Mutation and genetic variation Lecture 7 Mutation and genetic variation Thymidine dimer Natural selection at a single locus 2. Purifying selection a form of selection acting to eliminate harmful (deleterious) alleles from natural populations.

More information

Molecular Evolution & the Origin of Variation

Molecular Evolution & the Origin of Variation Molecular Evolution & the Origin of Variation What Is Molecular Evolution? Molecular evolution differs from phenotypic evolution in that mutations and genetic drift are much more important determinants

More information

Molecular Evolution & the Origin of Variation

Molecular Evolution & the Origin of Variation Molecular Evolution & the Origin of Variation What Is Molecular Evolution? Molecular evolution differs from phenotypic evolution in that mutations and genetic drift are much more important determinants

More information

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section C: Genetic Variation, the Substrate for Natural Selection

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section C: Genetic Variation, the Substrate for Natural Selection CHAPTER 23 THE EVOLUTIONS OF POPULATIONS Section C: Genetic Variation, the Substrate for Natural Selection 1. Genetic variation occurs within and between populations 2. Mutation and sexual recombination

More information

Febuary 1 st, 2010 Bioe 109 Winter 2010 Lecture 11 Molecular evolution. Classical vs. balanced views of genome structure

Febuary 1 st, 2010 Bioe 109 Winter 2010 Lecture 11 Molecular evolution. Classical vs. balanced views of genome structure Febuary 1 st, 2010 Bioe 109 Winter 2010 Lecture 11 Molecular evolution Classical vs. balanced views of genome structure - the proposal of the neutral theory by Kimura in 1968 led to the so-called neutralist-selectionist

More information

Lecture Notes: BIOL2007 Molecular Evolution

Lecture Notes: BIOL2007 Molecular Evolution Lecture Notes: BIOL2007 Molecular Evolution Kanchon Dasmahapatra (k.dasmahapatra@ucl.ac.uk) Introduction By now we all are familiar and understand, or think we understand, how evolution works on traits

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Forces of Evolution Concept 15.4 Selection Can Be Stabilizing, Directional, or Disruptive Natural selection can act on quantitative traits in three ways: Stabilizing selection

More information

Natural Selection results in increase in one (or more) genotypes relative to other genotypes.

Natural Selection results in increase in one (or more) genotypes relative to other genotypes. Natural Selection results in increase in one (or more) genotypes relative to other genotypes. Fitness - The fitness of a genotype is the average per capita lifetime contribution of individuals of that

More information

Solutions to Problem Set 4

Solutions to Problem Set 4 Question 1 Solutions to 7.014 Problem Set 4 Because you have not read much scientific literature, you decide to study the genetics of garden peas. You have two pure breeding pea strains. One that is tall

More information

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution 15.2 Intro In biology, evolution refers specifically to changes in the genetic makeup of populations over time.

More information

WHERE DOES THE VARIATION COME FROM IN THE FIRST PLACE?

WHERE DOES THE VARIATION COME FROM IN THE FIRST PLACE? What factors contribute to phenotypic variation? The world s tallest man, Sultan Kosen (8 feet 1 inch) towers over the world s smallest, He Ping (2 feet 5 inches). WHERE DOES THE VARIATION COME FROM IN

More information

- point mutations in most non-coding DNA sites likely are likely neutral in their phenotypic effects.

- point mutations in most non-coding DNA sites likely are likely neutral in their phenotypic effects. January 29 th, 2010 Bioe 109 Winter 2010 Lecture 10 Microevolution 3 - random genetic drift - one of the most important shifts in evolutionary thinking over the past 30 years has been an appreciation of

More information

1. The diagram below shows two processes (A and B) involved in sexual reproduction in plants and animals.

1. The diagram below shows two processes (A and B) involved in sexual reproduction in plants and animals. 1. The diagram below shows two processes (A and B) involved in sexual reproduction in plants and animals. Which statement best explains how these processes often produce offspring that have traits not

More information

Chapter 13 Meiosis and Sexual Reproduction

Chapter 13 Meiosis and Sexual Reproduction Biology 110 Sec. 11 J. Greg Doheny Chapter 13 Meiosis and Sexual Reproduction Quiz Questions: 1. What word do you use to describe a chromosome or gene allele that we inherit from our Mother? From our Father?

More information

(Write your name on every page. One point will be deducted for every page without your name!)

(Write your name on every page. One point will be deducted for every page without your name!) POPULATION GENETICS AND MICROEVOLUTIONARY THEORY FINAL EXAMINATION (Write your name on every page. One point will be deducted for every page without your name!) 1. Briefly define (5 points each): a) Average

More information

UNIT 8 BIOLOGY: Meiosis and Heredity Page 148

UNIT 8 BIOLOGY: Meiosis and Heredity Page 148 UNIT 8 BIOLOGY: Meiosis and Heredity Page 148 CP: CHAPTER 6, Sections 1-6; CHAPTER 7, Sections 1-4; HN: CHAPTER 11, Section 1-5 Standard B-4: The student will demonstrate an understanding of the molecular

More information

Name Period. 2. Name the 3 parts of interphase AND briefly explain what happens in each:

Name Period. 2. Name the 3 parts of interphase AND briefly explain what happens in each: Name Period GENERAL BIOLOGY Second Semester Study Guide Chapters 3, 4, 5, 6, 11, 10, 13, 14, 15, 16, and 17. SEXUAL REPRODUCTION AND MEIOSIS 1. The cell cycle consists of a growth stage and a division

More information

Name Period. 3. How many rounds of DNA replication and cell division occur during meiosis?

Name Period. 3. How many rounds of DNA replication and cell division occur during meiosis? Name Period GENERAL BIOLOGY Second Semester Study Guide Chapters 3, 4, 5, 6, 11, 14, 16, 17, 18 and 19. SEXUAL REPRODUCTION AND MEIOSIS 1. What is the purpose of meiosis? 2. Distinguish between diploid

More information

THE WORK OF GREGOR MENDEL

THE WORK OF GREGOR MENDEL GENETICS NOTES THE WORK OF GREGOR MENDEL Genetics-. - Austrian monk- the father of genetics- carried out his work on. Pea flowers are naturally, which means that sperm cells fertilize the egg cells in

More information

Name: Period: EOC Review Part F Outline

Name: Period: EOC Review Part F Outline Name: Period: EOC Review Part F Outline Mitosis and Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences

More information

Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM

Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM Life Cycles, Meiosis and Genetic Variability iclicker: 1. A chromosome just before mitosis contains two double stranded DNA molecules. 2. This replicated chromosome contains DNA from only one of your parents

More information

Genetics 275 Notes Week 7

Genetics 275 Notes Week 7 Cytoplasmic Inheritance Genetics 275 Notes Week 7 Criteriafor recognition of cytoplasmic inheritance: 1. Reciprocal crosses give different results -mainly due to the fact that the female parent contributes

More information

F1 Parent Cell R R. Name Period. Concept 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes

F1 Parent Cell R R. Name Period. Concept 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes Name Period Concept 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes 1. What is the chromosome theory of inheritance? 2. Explain the law of segregation. Use two different

More information

Name Class Date. Pearson Education, Inc., publishing as Pearson Prentice Hall. 33

Name Class Date. Pearson Education, Inc., publishing as Pearson Prentice Hall. 33 Chapter 11 Introduction to Genetics Chapter Vocabulary Review Matching On the lines provided, write the letter of the definition of each term. 1. genetics a. likelihood that something will happen 2. trait

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Chapter 15 Processes of Evolution Key Concepts 15.1 Evolution Is Both Factual and the Basis of Broader Theory 15.2 Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom

More information

Speciation. Mechanisms of Speciation. Title goes here. Some Key Tenets of the Modern Synthesis

Speciation. Mechanisms of Speciation. Title goes here. Some Key Tenets of the Modern Synthesis Carol Eunmi Lee 11/9/17 Speciation Increasing genetic distance Fitness Mating between different species Mating between relatives Inbreeding Depression Hybrid Vigor Outbreeding Depression 2 Darwin s Origin

More information

The Genetics of Natural Selection

The Genetics of Natural Selection The Genetics of Natural Selection Introduction So far in this course, we ve focused on describing the pattern of variation within and among populations. We ve talked about inbreeding, which causes genotype

More information

Objective 3.01 (DNA, RNA and Protein Synthesis)

Objective 3.01 (DNA, RNA and Protein Synthesis) Objective 3.01 (DNA, RNA and Protein Synthesis) DNA Structure o Discovered by Watson and Crick o Double-stranded o Shape is a double helix (twisted ladder) o Made of chains of nucleotides: o Has four types

More information

BIO GENETICS CHROMOSOME MUTATIONS

BIO GENETICS CHROMOSOME MUTATIONS BIO 390 - GENETICS CHROMOSOME MUTATIONS OVERVIEW - Multiples of complete sets of chromosomes are called polyploidy. Even numbers are usually fertile. Odd numbers are usually sterile. - Aneuploidy refers

More information

Linking levels of selection with genetic modifiers

Linking levels of selection with genetic modifiers Linking levels of selection with genetic modifiers Sally Otto Department of Zoology & Biodiversity Research Centre University of British Columbia @sarperotto @sse_evolution @sse.evolution Sally Otto Department

More information

Outline of lectures 3-6

Outline of lectures 3-6 GENOME 453 J. Felsenstein Evolutionary Genetics Autumn, 007 Population genetics Outline of lectures 3-6 1. We want to know what theory says about the reproduction of genotypes in a population. This results

More information

STUDY UNIT 1 MITOSIS AND MEIOSIS. Klug, Cummings & Spencer Chapter 2. Morphology of eukaryotic metaphase chromosomes. Chromatids

STUDY UNIT 1 MITOSIS AND MEIOSIS. Klug, Cummings & Spencer Chapter 2. Morphology of eukaryotic metaphase chromosomes. Chromatids STUDY UNIT 1 MITOSIS AND MEIOSIS Klug, Cummings & Spencer Chapter 2 Life depends on cell division and reproduction of organisms. Process involves transfer of genetic material. New somatic (body) cells

More information

Genetical theory of natural selection

Genetical theory of natural selection Reminders Genetical theory of natural selection Chapter 12 Natural selection evolution Natural selection evolution by natural selection Natural selection can have no effect unless phenotypes differ in

More information

Lesson Overview Meiosis

Lesson Overview Meiosis 11.4 As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located. They expected genes to be carried on structures inside the cell, but which structures? What cellular

More information

Darwinian Selection. Chapter 7 Selection I 12/5/14. v evolution vs. natural selection? v evolution. v natural selection

Darwinian Selection. Chapter 7 Selection I 12/5/14. v evolution vs. natural selection? v evolution. v natural selection Chapter 7 Selection I Selection in Haploids Selection in Diploids Mutation-Selection Balance Darwinian Selection v evolution vs. natural selection? v evolution ² descent with modification ² change in allele

More information

Patterns of inheritance

Patterns of inheritance Patterns of inheritance Learning goals By the end of this material you would have learnt about: How traits and characteristics are passed on from one generation to another The different patterns of inheritance

More information

Ch 11.Introduction to Genetics.Biology.Landis

Ch 11.Introduction to Genetics.Biology.Landis Nom Section 11 1 The Work of Gregor Mendel (pages 263 266) This section describes how Gregor Mendel studied the inheritance of traits in garden peas and what his conclusions were. Introduction (page 263)

More information

THINK ABOUT IT. Lesson Overview. Meiosis. As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located.

THINK ABOUT IT. Lesson Overview. Meiosis. As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located. Notes THINK ABOUT IT As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located. They expected genes to be carried on structures inside the cell, but which structures?

More information

Cover Requirements: Name of Unit Colored picture representing something in the unit

Cover Requirements: Name of Unit Colored picture representing something in the unit Name: Period: Cover Requirements: Name of Unit Colored picture representing something in the unit Biology B1 1 Target # Biology Unit B1 (Genetics & Meiosis) Learning Targets Genetics & Meiosis I can explain

More information

Reproduction and Evolution Practice Exam

Reproduction and Evolution Practice Exam Reproduction and Evolution Practice Exam Topics: Genetic concepts from the lecture notes including; o Mitosis and Meiosis, Homologous Chromosomes, Haploid vs Diploid cells Reproductive Strategies Heaviest

More information

Study of similarities and differences in body plans of major groups Puzzling patterns:

Study of similarities and differences in body plans of major groups Puzzling patterns: Processes of Evolution Evolutionary Theories Widely used to interpret the past and present, and even to predict the future Reveal connections between the geological record, fossil record, and organismal

More information

Parents can produce many types of offspring. Families will have resemblances, but no two are exactly alike. Why is that?

Parents can produce many types of offspring. Families will have resemblances, but no two are exactly alike. Why is that? Parents can produce many types of offspring Families will have resemblances, but no two are exactly alike. Why is that? Meiosis and Genetic Linkage Objectives Recognize the significance of meiosis to sexual

More information

DNA Structure and Function

DNA Structure and Function DNA Structure and Function Nucleotide Structure 1. 5-C sugar RNA ribose DNA deoxyribose 2. Nitrogenous Base N attaches to 1 C of sugar Double or single ring Four Bases Adenine, Guanine, Thymine, Cytosine

More information

Constructing a Pedigree

Constructing a Pedigree Constructing a Pedigree Use the appropriate symbols: Unaffected Male Unaffected Female Affected Male Affected Female Male carrier of trait Mating of Offspring 2. Label each generation down the left hand

More information

Outline of lectures 3-6

Outline of lectures 3-6 GENOME 453 J. Felsenstein Evolutionary Genetics Autumn, 009 Population genetics Outline of lectures 3-6 1. We want to know what theory says about the reproduction of genotypes in a population. This results

More information

Roadmap. Sexual Selection. Evolution of Multi-Gene Families Gene Duplication Divergence Concerted Evolution Survey of Gene Families

Roadmap. Sexual Selection. Evolution of Multi-Gene Families Gene Duplication Divergence Concerted Evolution Survey of Gene Families 1 Roadmap Sexual Selection Evolution of Multi-Gene Families Gene Duplication Divergence Concerted Evolution Survey of Gene Families 2 One minute responses Q: How do aphids start producing males in the

More information

Essential Questions. Meiosis. Copyright McGraw-Hill Education

Essential Questions. Meiosis. Copyright McGraw-Hill Education Essential Questions How does the reduction in chromosome number occur during meiosis? What are the stages of meiosis? What is the importance of meiosis in providing genetic variation? Meiosis Vocabulary

More information

Section 11 1 The Work of Gregor Mendel

Section 11 1 The Work of Gregor Mendel Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) What is the principle of dominance? What happens during segregation? Gregor Mendel s Peas (pages 263 264) 1. The

More information

Bypass and interaction suppressors; pathway analysis

Bypass and interaction suppressors; pathway analysis Bypass and interaction suppressors; pathway analysis The isolation of extragenic suppressors is a powerful tool for identifying genes that encode proteins that function in the same process as a gene of

More information

Science Unit Learning Summary

Science Unit Learning Summary Learning Summary Inheritance, variation and evolution Content Sexual and asexual reproduction. Meiosis leads to non-identical cells being formed while mitosis leads to identical cells being formed. In

More information

The phenotype of this worm is wild type. When both genes are mutant: The phenotype of this worm is double mutant Dpy and Unc phenotype.

The phenotype of this worm is wild type. When both genes are mutant: The phenotype of this worm is double mutant Dpy and Unc phenotype. Series 2: Cross Diagrams - Complementation There are two alleles for each trait in a diploid organism In C. elegans gene symbols are ALWAYS italicized. To represent two different genes on the same chromosome:

More information

Which of these best predicts the outcome of the changes illustrated in the diagrams?

Which of these best predicts the outcome of the changes illustrated in the diagrams? 1. The diagrams below show two different scenarios for a pair of homologous chromosomes, known as a tetrad, undergoing a change where segments of DNA switch on parts of the chromosomes. In each scenario,

More information

Evolution of Populations. Chapter 17

Evolution of Populations. Chapter 17 Evolution of Populations Chapter 17 17.1 Genes and Variation i. Introduction: Remember from previous units. Genes- Units of Heredity Variation- Genetic differences among individuals in a population. New

More information

There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page.

There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page. EVOLUTIONARY BIOLOGY EXAM #1 Fall 2017 There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page. Part I. True (T) or False (F) (2 points each). Circle

More information

1 Errors in mitosis and meiosis can result in chromosomal abnormalities.

1 Errors in mitosis and meiosis can result in chromosomal abnormalities. Slide 1 / 21 1 Errors in mitosis and meiosis can result in chromosomal abnormalities. a. Identify and describe a common chromosomal mutation. Slide 2 / 21 Errors in mitosis and meiosis can result in chromosomal

More information

overproduction variation adaptation Natural Selection speciation adaptation Natural Selection speciation

overproduction variation adaptation Natural Selection speciation adaptation Natural Selection speciation Evolution Evolution Chapters 22-25 Changes in populations, species, or groups of species. Variances of the frequency of heritable traits that appear from one generation to the next. 2 Areas of Evolutionary

More information

Lesson Overview 11.4 Meiosis

Lesson Overview 11.4 Meiosis Lesson Overview 11.4 Meiosis THINK ABOUT IT As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located. They expected genes to be carried on structures inside the

More information

Ch. 10 Sexual Reproduction and Genetics. p

Ch. 10 Sexual Reproduction and Genetics. p Ch. 10 Sexual Reproduction and Genetics p. 270 - 10.1 Meiosis p. 270-276 Essential Question Main Idea! Meiosis produces haploid gametes Where are the instructions for each trait located in a cell?! On

More information

D. Incorrect! That is what a phylogenetic tree intends to depict.

D. Incorrect! That is what a phylogenetic tree intends to depict. Genetics - Problem Drill 24: Evolutionary Genetics No. 1 of 10 1. A phylogenetic tree gives all of the following information except for. (A) DNA sequence homology among species. (B) Protein sequence similarity

More information

Exam 1 PBG430/

Exam 1 PBG430/ 1 Exam 1 PBG430/530 2014 1. You read that the genome size of maize is 2,300 Mb and that in this species 2n = 20. This means that there are 2,300 Mb of DNA in a cell that is a. n (e.g. gamete) b. 2n (e.g.

More information

Evolution - Unifying Theme of Biology Microevolution Chapters 13 &14

Evolution - Unifying Theme of Biology Microevolution Chapters 13 &14 Evolution - Unifying Theme of Biology Microevolution Chapters 13 &14 New Synthesis Natural Selection Unequal Reproductive Success Examples and Selective Forces Types of Natural Selection Speciation http://www.biology-online.org/2/11_natural_selection.htm

More information

Designer Genes C Test

Designer Genes C Test Northern Regional: January 19 th, 2019 Designer Genes C Test Name(s): Team Name: School Name: Team Number: Rank: Score: Directions: You will have 50 minutes to complete the test. You may not write on the

More information

Introduction to Genetics

Introduction to Genetics Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) This section describes how Gregor Mendel studied the inheritance of traits in garden peas and what his conclusions

More information

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells.

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells. Mitosis & Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences for genetic variation. 1. Students will describe

More information

Chromosome duplication and distribution during cell division

Chromosome duplication and distribution during cell division CELL DIVISION AND HEREDITY Student Packet SUMMARY IN EUKARYOTES, HERITABLE INFORMATION IS PASSED TO THE NEXT GENERATION VIA PROCESSES THAT INCLUDE THE CELL CYCLE, MITOSIS /MEIOSIS AND FERTILIZATION Mitosis

More information

Chapter 10 Sexual Reproduction and Genetics

Chapter 10 Sexual Reproduction and Genetics Sexual Reproduction and Genetics Section 1: Meiosis Section 2: Mendelian Genetics Section 3: Gene Linkage and Polyploidy Click on a lesson name to select. Chromosomes and Chromosome Number! Human body

More information

Review sheet for Mendelian genetics through human evolution. What organism did Mendel study? What characteristics of this organism did he examine?

Review sheet for Mendelian genetics through human evolution. What organism did Mendel study? What characteristics of this organism did he examine? Review sheet for Mendelian genetics through human evolution WARNING: I have tried to be complete, but I may have missed something. You are responsible for all the material discussed in class. This is only

More information

CHROMOSOMAL BASIS OF INHERITANCE

CHROMOSOMAL BASIS OF INHERITANCE CHROMOSOMAL BASIS OF INHERITANCE The fruit fly (Drosophila melanogaster) has been widely used for the study of eukaryote genetics because of several features: short generation time (two weeks) prolific

More information

7.014 Problem Set 6 Solutions

7.014 Problem Set 6 Solutions 7.014 Problem Set 6 Solutions Question 1 a) Define the following terms: Dominant In genetics, the ability of one allelic form of a gene to determine the phenotype of a heterozygous individual, in which

More information

9 Genetic diversity and adaptation Support. AQA Biology. Genetic diversity and adaptation. Specification reference. Learning objectives.

9 Genetic diversity and adaptation Support. AQA Biology. Genetic diversity and adaptation. Specification reference. Learning objectives. Genetic diversity and adaptation Specification reference 3.4.3 3.4.4 Learning objectives After completing this worksheet you should be able to: understand how meiosis produces haploid gametes know how

More information

1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine.

1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine. Protein Synthesis & Mutations RNA 1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine. RNA Contains: 1. Adenine 2.

More information

Meiosis and Mendel. Chapter 6

Meiosis and Mendel. Chapter 6 Meiosis and Mendel Chapter 6 6.1 CHROMOSOMES AND MEIOSIS Key Concept Gametes have half the number of chromosomes that body cells have. Body Cells vs. Gametes You have body cells and gametes body cells

More information

mrna Codon Table Mutant Dinosaur Name: Period:

mrna Codon Table Mutant Dinosaur Name: Period: Mutant Dinosaur Name: Period: Intro Your dinosaur is born with a new genetic mutation. Your job is to map out the genes that are influenced by the mutation and to discover how the new dinosaurs interact

More information

5/31/2012. Speciation and macroevolution - Chapter

5/31/2012. Speciation and macroevolution - Chapter Speciation and macroevolution - Chapter Objectives: - Review meiosis -Species -Repro. Isolating mechanisms - Speciation -Is evolution always slow -Extinction How Are Populations, Genes, And Evolution Related?

More information

Jeopardy. Evolution Q $100 Q $100 Q $100 Q $100 Q $100 Q $200 Q $200 Q $200 Q $200 Q $200 Q $300 Q $300 Q $300 Q $300 Q $300

Jeopardy. Evolution Q $100 Q $100 Q $100 Q $100 Q $100 Q $200 Q $200 Q $200 Q $200 Q $200 Q $300 Q $300 Q $300 Q $300 Q $300 Jeopardy Mutations Crosses & Punnett Sqs. Meiosis & Variability Evolution Photo, Cell Resp, Energy, Matter Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $100 Q $100 Q $100 Q $200 Q $200 Q $200 Q $200 Q $300

More information

Processes of Evolution

Processes of Evolution Processes of Evolution Microevolution Processes of Microevolution How Species Arise Macroevolution Microevolution Population: localized group of individuals belonging to the same species with the potential

More information

A. Correct! Genetically a female is XX, and has 22 pairs of autosomes.

A. Correct! Genetically a female is XX, and has 22 pairs of autosomes. MCAT Biology - Problem Drill 08: Meiosis and Genetic Variability Question No. 1 of 10 1. A human female has pairs of autosomes and her sex chromosomes are. Question #01 (A) 22, XX. (B) 23, X. (C) 23, XX.

More information

NOTES CH 17 Evolution of. Populations

NOTES CH 17 Evolution of. Populations NOTES CH 17 Evolution of Vocabulary Fitness Genetic Drift Punctuated Equilibrium Gene flow Adaptive radiation Divergent evolution Convergent evolution Gradualism Populations 17.1 Genes & Variation Darwin

More information

Objectives. Announcements. Comparison of mitosis and meiosis

Objectives. Announcements. Comparison of mitosis and meiosis Announcements Colloquium sessions for which you can get credit posted on web site: Feb 20, 27 Mar 6, 13, 20 Apr 17, 24 May 15. Review study CD that came with text for lab this week (especially mitosis

More information

Classical Selection, Balancing Selection, and Neutral Mutations

Classical Selection, Balancing Selection, and Neutral Mutations Classical Selection, Balancing Selection, and Neutral Mutations Classical Selection Perspective of the Fate of Mutations All mutations are EITHER beneficial or deleterious o Beneficial mutations are selected

More information

GENETICS - CLUTCH CH.1 INTRODUCTION TO GENETICS.

GENETICS - CLUTCH CH.1 INTRODUCTION TO GENETICS. !! www.clutchprep.com CONCEPT: HISTORY OF GENETICS The earliest use of genetics was through of plants and animals (8000-1000 B.C.) Selective breeding (artificial selection) is the process of breeding organisms

More information

CHAPTERS 24-25: Evidence for Evolution and Phylogeny

CHAPTERS 24-25: Evidence for Evolution and Phylogeny CHAPTERS 24-25: Evidence for Evolution and Phylogeny 1. For each of the following, indicate how it is used as evidence of evolution by natural selection or shown as an evolutionary trend: a. Paleontology

More information

Chapter 17: Population Genetics and Speciation

Chapter 17: Population Genetics and Speciation Chapter 17: Population Genetics and Speciation Section 1: Genetic Variation Population Genetics: Normal Distribution: a line graph showing the general trends in a set of data of which most values are near

More information

AP Biology Unit 6 Practice Test 1. A group of cells is assayed for DNA content immediately following mitosis and is found to have an average of 8

AP Biology Unit 6 Practice Test 1. A group of cells is assayed for DNA content immediately following mitosis and is found to have an average of 8 AP Biology Unit 6 Practice Test Name: 1. A group of cells is assayed for DNA content immediately following mitosis and is found to have an average of 8 picograms of DNA per nucleus. How many picograms

More information

Understanding relationship between homologous sequences

Understanding relationship between homologous sequences Molecular Evolution Molecular Evolution How and when were genes and proteins created? How old is a gene? How can we calculate the age of a gene? How did the gene evolve to the present form? What selective

More information

Principles of Genetics

Principles of Genetics Principles of Genetics Snustad, D ISBN-13: 9780470903599 Table of Contents C H A P T E R 1 The Science of Genetics 1 An Invitation 2 Three Great Milestones in Genetics 2 DNA as the Genetic Material 6 Genetics

More information

Reinforcement Unit 3 Resource Book. Meiosis and Mendel KEY CONCEPT Gametes have half the number of chromosomes that body cells have.

Reinforcement Unit 3 Resource Book. Meiosis and Mendel KEY CONCEPT Gametes have half the number of chromosomes that body cells have. 6.1 CHROMOSOMES AND MEIOSIS KEY CONCEPT Gametes have half the number of chromosomes that body cells have. Your body is made of two basic cell types. One basic type are somatic cells, also called body cells,

More information

A complementation test would be done by crossing the haploid strains and scoring the phenotype in the diploids.

A complementation test would be done by crossing the haploid strains and scoring the phenotype in the diploids. Problem set H answers 1. To study DNA repair mechanisms, geneticists isolated yeast mutants that were sensitive to various types of radiation; for example, mutants that were more sensitive to UV light.

More information

Biology I Level - 2nd Semester Final Review

Biology I Level - 2nd Semester Final Review Biology I Level - 2nd Semester Final Review The 2 nd Semester Final encompasses all material that was discussed during second semester. It s important that you review ALL notes and worksheets from the

More information

Outline. Genome Evolution. Genome. Genome Architecture. Constraints on Genome Evolution. New Evolutionary Synthesis 11/8/16

Outline. Genome Evolution. Genome. Genome Architecture. Constraints on Genome Evolution. New Evolutionary Synthesis 11/8/16 Genome Evolution Outline 1. What: Patterns of Genome Evolution Carol Eunmi Lee Evolution 410 University of Wisconsin 2. Why? Evolution of Genome Complexity and the interaction between Natural Selection

More information

Guided Notes Unit 6: Classical Genetics

Guided Notes Unit 6: Classical Genetics Name: Date: Block: Chapter 6: Meiosis and Mendel I. Concept 6.1: Chromosomes and Meiosis Guided Notes Unit 6: Classical Genetics a. Meiosis: i. (In animals, meiosis occurs in the sex organs the testes

More information

Chapter 2: Extensions to Mendel: Complexities in Relating Genotype to Phenotype.

Chapter 2: Extensions to Mendel: Complexities in Relating Genotype to Phenotype. Chapter 2: Extensions to Mendel: Complexities in Relating Genotype to Phenotype. please read pages 38-47; 49-55;57-63. Slide 1 of Chapter 2 1 Extension sot Mendelian Behavior of Genes Single gene inheritance

More information

Full file at CHAPTER 2 Genetics

Full file at   CHAPTER 2 Genetics CHAPTER 2 Genetics MULTIPLE CHOICE 1. Chromosomes are a. small linear bodies. b. contained in cells. c. replicated during cell division. 2. A cross between true-breeding plants bearing yellow seeds produces

More information

Lecture 14 Chapter 11 Biology 5865 Conservation Biology. Problems of Small Populations Population Viability Analysis

Lecture 14 Chapter 11 Biology 5865 Conservation Biology. Problems of Small Populations Population Viability Analysis Lecture 14 Chapter 11 Biology 5865 Conservation Biology Problems of Small Populations Population Viability Analysis Minimum Viable Population (MVP) Schaffer (1981) MVP- A minimum viable population for

More information

Chromosome Chr Duplica Duplic t a ion Pixley

Chromosome Chr Duplica Duplic t a ion Pixley Chromosome Duplication Pixley Figure 4-6 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-72 Molecular Biology of the Cell ( Garland Science 2008) Interphase During mitosis (cell division),

More information

2. What is meiosis? The process of forming gametes (sperm and egg) 4. Where does meiosis take place? Ovaries- eggs and testicles- sperm

2. What is meiosis? The process of forming gametes (sperm and egg) 4. Where does meiosis take place? Ovaries- eggs and testicles- sperm Name KEY Period Biology Review Standard 3 Main Idea Explain the significance of meiosis and fertilization in genetic variation. How I can demonstrate what a smart. Person I am 1. What is fertilization?

More information

Sex Linked Inheritance, Chromosome Mapping & Mutations

Sex Linked Inheritance, Chromosome Mapping & Mutations Sex Linked Inheritance, Chromosome Mapping & Mutations By Surinder Kaur DIET Ropar Surinder-1998@ yahoo.in Mob No 9988530775 S E X Discovery T.H. Morgan L I N K E D I N H E R I T A N C E Genes Control

More information

Problems for 3505 (2011)

Problems for 3505 (2011) Problems for 505 (2011) 1. In the simplex of genotype distributions x + y + z = 1, for two alleles, the Hardy- Weinberg distributions x = p 2, y = 2pq, z = q 2 (p + q = 1) are characterized by y 2 = 4xz.

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles Lecture Outline Overview: Variations on a Theme Living organisms are distinguished by their ability to reproduce their own kind. Offspring resemble their parents

More information

The history of Life on Earth reflects an unbroken chain of genetic continuity and transmission of genetic information:

The history of Life on Earth reflects an unbroken chain of genetic continuity and transmission of genetic information: 9/26/05 Biology 321 Answers to optional challenge probability questions posed in 9/23/05lecture notes are included at the end of these lecture notes The history of Life on Earth reflects an unbroken chain

More information