Section 7. Junaid Malek, M.D.

Size: px
Start display at page:

Download "Section 7. Junaid Malek, M.D."

Transcription

1 Section 7 Junaid Malek, M.D.

2 RNA Processing and Nomenclature For the purposes of this class, please do not refer to anything as mrna that has not been completely processed (spliced, capped, tailed) RNAs that will become mrnas should either be called pre-mrnas, primary transcripts, or RNAs

3 5 Capping What you need to know: Essential for nuclear transport Probably enhances mrna stability

4 5 Capping Don t need to know mechanism Note that two of the three phosphate groups in the RNA cap come from the RNA chain, while only one comes from the capping nucleotide H 2 N N HN O OH OH H H H H O O O O O P O P O P O - N O - O - O - N CH 3 - O NH 2 N N O O O N N P O P O P O O NH 2 O - O - O - H H H H N OH O N O O P O O O - H H O H H OH NH O N O O P O O O - H H H H OH H 2 N N HN O OH OH H H H H O O N N CH 3 O P O - O O O N O P O P O P O O O - O - O - H H H H OH O O P O O - N NH 2 N N NH 2 N O H H H H OH O O P O O - N O O N O H H H H OH NH O O O P O O - O O P O O -

5 3 Poly-adenylation Specifics won t be tested Know that poly-adenylation is performed by a protein that recognizes a specific sequence on the RNA transcript When it binds, it then starts adding A s onto the 3 end A common polya signal: 5 -AAUAAA-3

6 Q: You isolate a mrna from a eukaryotic cell and hybridize it to genomic DNA and see the following: Red=RNA Blue=DNA Explain the regions of hybridization

7 RNA Features Splicing 5 exon/intron splice junction 3 exon/intron splice junction branchpoint sequence Other necessary molecules small nuclear Ribonucleoprotein Particles (snrnps) Branchpoint Binding Protein (BBP)

8 Splicing Branchpoint 2 -OH on adenosine attacks 5 exon to form lariat 3 -OH of the 5 exon attacks the phosphate of the guanosine at the 3 exon to fuse the two and liberate the lariat

9 Q: There are an estimated 30,000 genes in the human genome, but over 100,000 different transcripts have been identified. How can this be? A: Alternative splicing of a gene with multiple exons can generate many different transcripts

10 REV, RRE and Nuclear Export Q: How can HIV make so many different gene products with a compact (9kb) genome? A: By using REV to export different forms of the HIV transcript into the cytoplasm to be transcribed

11 Rev and RRE The HIV mrnas are produced from a primary transcript by three different splicings: unspliced, singly spliced and doubly splice Although unspliced and singly sliced mrnas are made before doubly spliced mrnas, the protein products of the doubly spliced mrnas are the first synthesized in the cytoplasm because they are smaller and exported faster Expression of unspliced and singly sliced mrnas would be negligible without the Rev protein, which is a product of doubly spliced mrna

12

13 Rev and RRE REV is an RNA binding protein that binds to a specific RNA sequence referred to as the REV response element (RRE) RRE is normally in an intron and should be spliced out prior to nuclear export of the RNA REV can bind to the RRE on other HIV transcripts that have not yet been spliced or completely spliced and then recruit other proteins (Xpo and Ran) to export the unspliced or incompletely spliced transcript out of the nucleus

14 Why is any of this important? The presences of these two other transcripts in the cytoplasm allows for the translation of different genes This also allows for the expression of different genes at different times as it takes time for REV to be transcribed and translated

15 It s all about timing... Early: 2 kb transcript (completely spliced) encodes Rev and Tat key for enhancing transcription (Tat) and inducing expression of later genes (Rev) Later: 4 kb and 9 kb transcripts (incompletely spliced and unspliced) encodes later genes needed for the manufacture of additional viral particles: gag, env, pol (protease/integrase/rt)

16 Translation RNA-directed synthesis of proteins Three classes of RNA are required to synthesize proteins mrna= informational template trna= molecular adaptors that match AA to mrna code rrna=help form ribosomes with proteins

17 The Genetic Code 4 different nucleotides encode for 20 amino acids nucleotide triplet in mrna=codon codons read on mrna from 5 to 3 reading frame established by start position of first codon mrna code can be translated in one of three reading frames Proteins are translated in a specific reading frame

18 NOTE: You are not responsible for memorizing the genetic code for the exam (it will be provided for you) However, it is useful to be able to recognize the start codon (AUG for Met) and the stop codons (UAA, UAG, UGA)

19 trna 2 key domains anticodon= nucleotide triplet that basepairs with mrna codon 3 end= attachment site for aa

20 Q: Can trnas recognize more than one codon? A: Yes, mismatch at 3 position occurs Q: Can aa have more than one trna? A: Yes

21 Aminoacyl-tRNA Synthetase protein enzyme that couples trna with correct AA Each aminoacyl-trna synthetase recognizes one AA and all of its matching trnas

22 Aminoacyl-tRNA Synthetase 2 pockets on synthetase help ensure correct coupling Synthesis site excludes amino acids that are too large Editing site excludes correct amino acid, but accepts and removes incorrect amino acids that are similar in size

23 The Ribosome Large complex of protein (1/3) and RNA (2/3) In eukaryotic cells, ribosomal subunits are assembled at the nucleolus, by the association of newly transcribed and modified rrnas with ribosomal proteins, which have been transported into the nucleus after their synthesis in the cytoplasm. The two ribosomal subunits are then exported to the cytoplasm, where they perform protein synthesis. 2 subunits called large and small. The two subunits come together on an mrna usually near its 3 end to begin synthesis of protein.

24 The Ribosome 3 sites in ribosome bind to trna A-site: binds aminoacyl-trna (A=acceptor) P-site: binds peptidyltrna E-site: binds exiting trna (E=exit)

25 Protein Translation Cycle Step 1: Incoming amino acid + trna is selected based on anticodon to codon base pairing at the A-site Step 2: The bond between the end of the amino acid chain and the trna at the P-site is broken. The free end of the amino acid chain is then bonded to the amino acid of the trna in the A-site. Ribosome shifts down the mrna by three nucleotides, placing the trnas in the E- and P-sites Step 3: The spent trna is ejected and the ribosome is reset to bind another amino acid + trna at the A-site

26 Q: In an experiment performed in 1962, a cysteine already attached to its trna was chemically modified to an alanine. If you used this hybrid trna in a cell free translation system where the normal cysteine-trnas were removed, what would you predict would happen? A: At the mrna codons for cysteine, alanine would be added to the polypeptide chain instead of cysteine NOTE: The ribosome itself has no proofreading function. Translational accuracy relies on the aminoacyl-trna synthetase attaching the correct amino acid to the corresponding trnas and the binding between the trna anticodon and the mrna codon. This accuracy of this step is aided by elongation factors.

27 EF-Tu The aminoacyl-trna is bound to EF-Tu-GTP when it enters the A site of the ribosome As long as EF-Tu-GTP is present a peptide bond cannot form between the amino acid on the incoming trna and the growing polypeptide chain GTP must first hydrolyze to GDP for peptide bond formation to be allowed (1st delay)

28 EF-Tu trnas with an codon that correctly base pairs with the mrna codon will remain bound long enough for hydrolysis of GTP to GDP to occur and for the amino acid to add onto the growing polypeptide chain trnas with an anticodon that does not correctly base pair with the mrna codon will have time to dissociate The rate of GTP hydrolysis by EF-Tu is actually faster for a correct codon-anticodon pair than for an incorrect pair; this provides an even longer window of opportunity for incorrectly bound trna molecule to dissociate from the ribosome

29 EF-Tu Once EF-Tu-GTP is hydrolyzed into EF-Tu- GDP, it dissociates from the aminoacyl-trna allowing the trna to be fully accommodated into the A-site (2nd delay)

30 EF-G EF-G-GTP binds near the A-site EF-G accelerates the movement of the two bound trnas into the A/P and P/E hybrid states Contact with the ribosome stimulates the GTPase activity of EF-G, causing a dramatic conformational change in EF-G as it switches from the GTP to the GDP-bound form

31 EF-G This change moves the trna bound to the A/P hybrid state to the P-site and advances the cycle of translation forward by one codon

32 Elongation Factors During each cycle of translation elongation, the trnas molecules move through the ribosome in an elaborate series of gyrations during which they transiently occupy several hybrid binding states In one, the trna is simultaneously bound to the A site of the small subunit and the P site of the large subunit; in another, the trna is bound to the P site of the small subunit and the E site of the large subunit

33 Elongation Factors In a single cycle, a trna molecule is considered to occupy six different sites, the initial binding site (called the A/T hybrid state), the A/A site, the A/P hybrid state, the P/P site, the P/E hybrid state, and the E-site. Each trna is thought to ratchet through these positions, undergoing rotations along its long axis at each change in location

34 Elongation Factors EF-Tu and EF-G are the designations used for the bacterial elongation factors In eukaryotes, they are called EF-1 and EF-2, respectively Changes in the three-dimensional structure of EF-Tu are caused by GTP hydrolysis For each peptide bond formed, a molecule of EF-Tu and EF-G are each released in their inactive, GDP-bound forms

35 Elongation Factors To be used again, these proteins must have their GDP exchanged for GTP In the case of EF-Tu, this exchange is performed by a specific member of a large class of proteins known as GTP exchange factors

36 Alberts MBOC Figure 6-66

37 Initiation of Translation 1) Special initiator-trna (coupled to AA Met) binds to small ribosomal subunit 2) Small ribosomal subunit binds 5 end of mrna molecule. mrna is recognized by its 5 cap and bound initation factors (IF). 3) Small ribosomal subunit moves 5 to 3 on mrna until it finds an AUG codon. This movement is facilitated by additional IFs that use ATP. 4) Once it finds the AUG some IFs dissociate and the large ribosomal subunit binds such that the initiator trna is bound to the P-site and the A-site is vacant. 1) The translation cycle now begins

38 What about Initiation in Bacteria? The mechanism for selecting a start codon in bacteria is different. Bacterial mrnas have no 5 caps to tell the ribosome where to begin searching for the start of translation. Instead, each bacterial mrna contains a specific ribosome-binding site (called the Shine-Dalgarno sequence, named after its discoverers) that is located a few nucleotides upstream of the AUG at which translation is to begin. This nucleotide sequence, with the consensus 5 -AGGAGGU-3, forms base pairs with the 16S rrna of the small ribosomal subunit to position the initiating AUG codon in the ribosome. A set of translation initiation factors orchestrates this interaction, as well as the subsequent assembly of the large ribosomal subunit to complete the ribosome. Unlike a eucaryotic ribosome, a bacterial ribosome can therefore readily assemble directly on a start codon that lies in the interior of an mrna molecule, so long as a ribosome-binding site precedes it by several nucleotides. As a result, bacterial mrnas are often polycistronic that is, they encode several different proteins, each of which is translated from the same mrna molecule. In contrast, a eucaryotic mrna generally encodes only a single protein. -Alberts MBOC

39 Translation Termination Translation termination uses release factors, which are an example of molecular mimicry The three-dimensional structure of release factors (made entirely of protein) bears an uncanny resemblance to the shape and charge distribution of a trna molecule This shape and charge mimicry allows the release factor to enter the A-site on the ribosome and cause translation termination

40 Translation Termination: Overview 1) Stop codon (UAA, UAG, UGA) in mrna is a signal for translation termination 2) The stop codon in the A-site is bound by a release factor 3) Binding of release factor forces the peptidyl transferase in the ribosome to catalyze the addition of a water molecule instead of an amino acid to the peptidyl-trna. This releases the amino acid chain from the ribosome. 4) The ribosome complex dissassembles

Chapter

Chapter Chapter 17 17.4-17.6 Molecular Components of Translation A cell interprets a genetic message and builds a polypeptide The message is a series of codons on mrna The interpreter is called transfer (trna)

More information

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus:

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: m Eukaryotic mrna processing Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: Cap structure a modified guanine base is added to the 5 end. Poly-A tail

More information

GENETICS - CLUTCH CH.11 TRANSLATION.

GENETICS - CLUTCH CH.11 TRANSLATION. !! www.clutchprep.com CONCEPT: GENETIC CODE Nucleotides and amino acids are translated in a 1 to 1 method The triplet code states that three nucleotides codes for one amino acid - A codon is a term for

More information

Molecular Biology (9)

Molecular Biology (9) Molecular Biology (9) Translation Mamoun Ahram, PhD Second semester, 2017-2018 1 Resources This lecture Cooper, Ch. 8 (297-319) 2 General information Protein synthesis involves interactions between three

More information

9 The Process of Translation

9 The Process of Translation 9 The Process of Translation 9.1 Stages of Translation Process We are familiar with the genetic code, we can begin to study the mechanism by which amino acids are assembled into proteins. Because more

More information

L I F E S C I E N C E S

L I F E S C I E N C E S 1a L I F E S C I E N C E S 5 -UUA AUA UUC GAA AGC UGC AUC GAA AAC UGU GAA UCA-3 5 -TTA ATA TTC GAA AGC TGC ATC GAA AAC TGT GAA TCA-3 3 -AAT TAT AAG CTT TCG ACG TAG CTT TTG ACA CTT AGT-5 NOVEMBER 7, 2006

More information

Gene Expression: Translation. transmission of information from mrna to proteins Chapter 5 slide 1

Gene Expression: Translation. transmission of information from mrna to proteins Chapter 5 slide 1 Gene Expression: Translation transmission of information from mrna to proteins 601 20000 Chapter 5 slide 1 Fig. 6.1 General structural formula for an amino acid Peter J. Russell, igenetics: Copyright Pearson

More information

Translation. Genetic code

Translation. Genetic code Translation Genetic code If genes are segments of DNA and if DNA is just a string of nucleotide pairs, then how does the sequence of nucleotide pairs dictate the sequence of amino acids in proteins? Simple

More information

CHAPTER4 Translation

CHAPTER4 Translation CHAPTER4 Translation 4.1 Outline of Translation 4.2 Genetic Code 4.3 trna and Anticodon 4.4 Ribosome 4.5 Protein Synthesis 4.6 Posttranslational Events 4.1 Outline of Translation From mrna to protein

More information

BCH 4054 Spring 2001 Chapter 33 Lecture Notes

BCH 4054 Spring 2001 Chapter 33 Lecture Notes BCH 4054 Spring 2001 Chapter 33 Lecture Notes Slide 1 The chapter covers degradation of proteins as well. We will not have time to get into that subject. Chapter 33 Protein Synthesis Slide 2 Prokaryotic

More information

GCD3033:Cell Biology. Transcription

GCD3033:Cell Biology. Transcription Transcription Transcription: DNA to RNA A) production of complementary strand of DNA B) RNA types C) transcription start/stop signals D) Initiation of eukaryotic gene expression E) transcription factors

More information

-14. -Abdulrahman Al-Hanbali. -Shahd Alqudah. -Dr Ma mon Ahram. 1 P a g e

-14. -Abdulrahman Al-Hanbali. -Shahd Alqudah. -Dr Ma mon Ahram. 1 P a g e -14 -Abdulrahman Al-Hanbali -Shahd Alqudah -Dr Ma mon Ahram 1 P a g e In this lecture we will talk about the last stage in the synthesis of proteins from DNA which is translation. Translation is the process

More information

From gene to protein. Premedical biology

From gene to protein. Premedical biology From gene to protein Premedical biology Central dogma of Biology, Molecular Biology, Genetics transcription replication reverse transcription translation DNA RNA Protein RNA chemically similar to DNA,

More information

Molecular Biology - Translation of RNA to make Protein *

Molecular Biology - Translation of RNA to make Protein * OpenStax-CNX module: m49485 1 Molecular Biology - Translation of RNA to make Protein * Jerey Mahr Based on Translation by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative

More information

ومن أحياها Translation 2. Translation 2. DONE BY :Nisreen Obeidat

ومن أحياها Translation 2. Translation 2. DONE BY :Nisreen Obeidat Translation 2 DONE BY :Nisreen Obeidat Page 0 Prokaryotes - Shine-Dalgarno Sequence (2:18) What we're seeing here are different portions of sequences of mrna of different promoters from different bacterial

More information

1. In most cases, genes code for and it is that

1. In most cases, genes code for and it is that Name Chapter 10 Reading Guide From DNA to Protein: Gene Expression Concept 10.1 Genetics Shows That Genes Code for Proteins 1. In most cases, genes code for and it is that determine. 2. Describe what Garrod

More information

Molecular Biology of the Cell

Molecular Biology of the Cell Alberts Johnson Lewis Morgan Raff Roberts Walter Molecular Biology of the Cell Sixth Edition Chapter 6 (pp. 333-368) How Cells Read the Genome: From DNA to Protein Copyright Garland Science 2015 Genetic

More information

Chapter 17. From Gene to Protein. Biology Kevin Dees

Chapter 17. From Gene to Protein. Biology Kevin Dees Chapter 17 From Gene to Protein DNA The information molecule Sequences of bases is a code DNA organized in to chromosomes Chromosomes are organized into genes What do the genes actually say??? Reflecting

More information

RNA & PROTEIN SYNTHESIS. Making Proteins Using Directions From DNA

RNA & PROTEIN SYNTHESIS. Making Proteins Using Directions From DNA RNA & PROTEIN SYNTHESIS Making Proteins Using Directions From DNA RNA & Protein Synthesis v Nitrogenous bases in DNA contain information that directs protein synthesis v DNA remains in nucleus v in order

More information

From Gene to Protein

From Gene to Protein From Gene to Protein Gene Expression Process by which DNA directs the synthesis of a protein 2 stages transcription translation All organisms One gene one protein 1. Transcription of DNA Gene Composed

More information

Protein synthesis II Biochemistry 302. Bob Kelm February 25, 2004

Protein synthesis II Biochemistry 302. Bob Kelm February 25, 2004 Protein synthesis II Biochemistry 302 Bob Kelm February 25, 2004 Two idealized views of the 70S ribosomal complex during translation 70S cavity Fig. 27.25 50S tunnel View with 30S subunit in front, 50S

More information

Laith AL-Mustafa. Protein synthesis. Nabil Bashir 10\28\ First

Laith AL-Mustafa. Protein synthesis. Nabil Bashir 10\28\ First Laith AL-Mustafa Protein synthesis Nabil Bashir 10\28\2015 http://1drv.ms/1gigdnv 01 First 0 Protein synthesis In previous lectures we started talking about DNA Replication (DNA synthesis) and we covered

More information

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

Types of RNA. 1. Messenger RNA(mRNA): 1. Represents only 5% of the total RNA in the cell.

Types of RNA. 1. Messenger RNA(mRNA): 1. Represents only 5% of the total RNA in the cell. RNAs L.Os. Know the different types of RNA & their relative concentration Know the structure of each RNA Understand their functions Know their locations in the cell Understand the differences between prokaryotic

More information

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation.

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Protein Synthesis Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Types of RNA Messenger RNA (mrna) makes a copy of DNA, carries instructions for making proteins,

More information

Translation Part 2 of Protein Synthesis

Translation Part 2 of Protein Synthesis Translation Part 2 of Protein Synthesis IN: How is transcription like making a jello mold? (be specific) What process does this diagram represent? A. Mutation B. Replication C.Transcription D.Translation

More information

Information Content in Genetics:

Information Content in Genetics: Information Content in Genetics: DNA, RNA and protein mrna translation into protein (protein synthesis) Francis Crick, 1958 [Crick, F. H. C. in Symp. Soc. Exp. Biol., The Biological Replication of Macromolecules,

More information

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation.

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Protein Synthesis Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Protein Synthesis: Protein synthesis uses the information in genes to make proteins. 2 Steps

More information

Lecture 25: Protein Synthesis Key learning goals: Be able to explain the main stuctural features of ribosomes, and know (roughly) how many DNA and

Lecture 25: Protein Synthesis Key learning goals: Be able to explain the main stuctural features of ribosomes, and know (roughly) how many DNA and Lecture 25: Protein Synthesis Key learning goals: Be able to explain the main stuctural features of ribosomes, and know (roughly) how many DNA and protein subunits they contain. Understand the main functions

More information

Videos. Bozeman, transcription and translation: https://youtu.be/h3b9arupxzg Crashcourse: Transcription and Translation - https://youtu.

Videos. Bozeman, transcription and translation: https://youtu.be/h3b9arupxzg Crashcourse: Transcription and Translation - https://youtu. Translation Translation Videos Bozeman, transcription and translation: https://youtu.be/h3b9arupxzg Crashcourse: Transcription and Translation - https://youtu.be/itsb2sqr-r0 Translation Translation The

More information

Conceptofcolinearity: a continuous sequence of nucleotides in DNA encodes a continuous sequence of amino acids in a protein

Conceptofcolinearity: a continuous sequence of nucleotides in DNA encodes a continuous sequence of amino acids in a protein Translation Conceptofcolinearity: a continuous sequence of nucleotides in DNA encodes a continuous sequence of amino acids in a protein Para além do fenómeno do wobble, há que considerar Desvios ao código

More information

Molecular Biology of the Cell

Molecular Biology of the Cell Alberts Johnson Lewis Raff Roberts Walter Molecular Biology of the Cell Fifth Edition Chapter 6 How Cells Read the Genome: From DNA to Protein Copyright Garland Science 2008 Figure 6-1 Molecular Biology

More information

Biochemistry Prokaryotic translation

Biochemistry Prokaryotic translation 1 Description of Module Subject Name Paper Name Module Name/Title Dr. Vijaya Khader Dr. MC Varadaraj 2 1. Objectives 2. Understand the concept of genetic code 3. Understand the concept of wobble hypothesis

More information

GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications

GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications 1 GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications 2 DNA Promoter Gene A Gene B Termination Signal Transcription

More information

Lecture 13: PROTEIN SYNTHESIS II- TRANSLATION

Lecture 13: PROTEIN SYNTHESIS II- TRANSLATION http://smtom.lecture.ub.ac.id/ Password: https://syukur16tom.wordpress.com/ Password: Lecture 13: PROTEIN SYNTHESIS II- TRANSLATION http://hyperphysics.phy-astr.gsu.edu/hbase/organic/imgorg/translation2.gif

More information

Advanced Topics in RNA and DNA. DNA Microarrays Aptamers

Advanced Topics in RNA and DNA. DNA Microarrays Aptamers Quiz 1 Advanced Topics in RNA and DNA DNA Microarrays Aptamers 2 Quantifying mrna levels to asses protein expression 3 The DNA Microarray Experiment 4 Application of DNA Microarrays 5 Some applications

More information

Translation and the Genetic Code

Translation and the Genetic Code Chapter 11. Translation and the Genetic Code 1. Protein Structure 2. Components required for Protein Synthesis 3. Properties of the Genetic Code: An Overview 4. A Degenerate and Ordered Code 1 Sickle-Cell

More information

Chapter 12. Genes: Expression and Regulation

Chapter 12. Genes: Expression and Regulation Chapter 12 Genes: Expression and Regulation 1 DNA Transcription or RNA Synthesis produces three types of RNA trna carries amino acids during protein synthesis rrna component of ribosomes mrna directs protein

More information

Protein synthesis I Biochemistry 302. February 17, 2006

Protein synthesis I Biochemistry 302. February 17, 2006 Protein synthesis I Biochemistry 302 February 17, 2006 Key features and components involved in protein biosynthesis High energy cost (essential metabolic activity of cell Consumes 90% of the chemical energy

More information

Translation and Operons

Translation and Operons Translation and Operons You Should Be Able To 1. Describe the three stages translation. including the movement of trna molecules through the ribosome. 2. Compare and contrast the roles of three different

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

9/11/18. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes

9/11/18. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes Molecular and Cellular Biology Animal Cell ((eukaryotic cell) -----> compare with prokaryotic cell) ENDOPLASMIC RETICULUM (ER) Rough ER Smooth ER Flagellum Nuclear envelope Nucleolus NUCLEUS Chromatin

More information

RNA Processing: Eukaryotic mrnas

RNA Processing: Eukaryotic mrnas RNA Processing: Eukaryotic mrnas Eukaryotic mrnas have three main parts (Figure 13.8): 5! untranslated region (5! UTR), varies in length. The coding sequence specifies the amino acid sequence of the protein

More information

BCMB Chapters 39 & 40 Translation (protein synthesis)

BCMB Chapters 39 & 40 Translation (protein synthesis) BCMB 3100 - Chapters 39 & 40 Translation (protein synthesis) Translation Genetic code trna Amino acyl trna Ribosomes Initiation Elongation Termination How is the nucleotide code translated into a protein

More information

BCMB Chapters 39 & 40 Translation (protein synthesis)

BCMB Chapters 39 & 40 Translation (protein synthesis) BCMB 3100 - Chapters 39 & 40 Translation (protein synthesis) Translation Genetic code trna Amino acyl trna Ribosomes Initiation Elongation Termination How is the nucleotide code translated into a protein

More information

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid.

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid. 1. A change that makes a polypeptide defective has been discovered in its amino acid sequence. The normal and defective amino acid sequences are shown below. Researchers are attempting to reproduce the

More information

Lecture 9 Translation.

Lecture 9 Translation. 1 Translation Summary of important events in translation. 2 Translation Reactions involved in peptide bond formation. Lecture 9 3 Genetic code Three types of RNA molecules perform different but complementary

More information

Lesson Overview. Ribosomes and Protein Synthesis 13.2

Lesson Overview. Ribosomes and Protein Synthesis 13.2 13.2 The Genetic Code The first step in decoding genetic messages is to transcribe a nucleotide base sequence from DNA to mrna. This transcribed information contains a code for making proteins. The Genetic

More information

9/2/17. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes

9/2/17. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes Molecular and Cellular Biology Animal Cell ((eukaryotic cell) -----> compare with prokaryotic cell) ENDOPLASMIC RETICULUM (ER) Rough ER Smooth ER Flagellum Nuclear envelope Nucleolus NUCLEUS Chromatin

More information

Chapter 19 Overview. Protein Synthesis. for amino acid. n Protein Synthesis genetic info encoded in nucleic acids translated into standard amino acids

Chapter 19 Overview. Protein Synthesis. for amino acid. n Protein Synthesis genetic info encoded in nucleic acids translated into standard amino acids Chapter 19 Overview Protein Synthesis n Protein Synthesis genetic info encoded in nucleic acids translated into standard amino acids n Genetic code dictionary defining meaning for base sequence n Codon

More information

Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p

Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p.110-114 Arrangement of information in DNA----- requirements for RNA Common arrangement of protein-coding genes in prokaryotes=

More information

NO!!!!! BCMB Chapters 39 & 40 Translation (protein synthesis) BCMB Chapters 39 & 40 Translation (protein synthesis)

NO!!!!! BCMB Chapters 39 & 40 Translation (protein synthesis) BCMB Chapters 39 & 40 Translation (protein synthesis) BCMB 3100 - Chapters 39 & 40 Translation How is the nucleotide code translated into a protein code? translation DNA RNA protein transcription 5 UCA 3 NH 2 Ser COO -????? Adapter Molecule Hypothesis (Crick,

More information

Introduction to the Ribosome Overview of protein synthesis on the ribosome Prof. Anders Liljas

Introduction to the Ribosome Overview of protein synthesis on the ribosome Prof. Anders Liljas Introduction to the Ribosome Molecular Biophysics Lund University 1 A B C D E F G H I J Genome Protein aa1 aa2 aa3 aa4 aa5 aa6 aa7 aa10 aa9 aa8 aa11 aa12 aa13 a a 14 How is a polypeptide synthesized? 2

More information

TRANSLATION: How to make proteins?

TRANSLATION: How to make proteins? TRANSLATION: How to make proteins? EUKARYOTIC mrna CBP80 NUCLEUS SPLICEOSOME 5 UTR INTRON 3 UTR m 7 GpppG AUG UAA 5 ss 3 ss CBP20 PABP2 AAAAAAAAAAAAA 50-200 nts CYTOPLASM eif3 EJC PABP1 5 UTR 3 UTR m 7

More information

Multiple Choice Review- Eukaryotic Gene Expression

Multiple Choice Review- Eukaryotic Gene Expression Multiple Choice Review- Eukaryotic Gene Expression 1. Which of the following is the Central Dogma of cell biology? a. DNA Nucleic Acid Protein Amino Acid b. Prokaryote Bacteria - Eukaryote c. Atom Molecule

More information

Degeneracy. Two types of degeneracy:

Degeneracy. Two types of degeneracy: Degeneracy The occurrence of more than one codon for an amino acid (AA). Most differ in only the 3 rd (3 ) base, with the 1 st and 2 nd being most important for distinguishing the AA. Two types of degeneracy:

More information

Name: SBI 4U. Gene Expression Quiz. Overall Expectation:

Name: SBI 4U. Gene Expression Quiz. Overall Expectation: Gene Expression Quiz Overall Expectation: - Demonstrate an understanding of concepts related to molecular genetics, and how genetic modification is applied in industry and agriculture Specific Expectation(s):

More information

ومن أحياها Translation 1. Translation 1. DONE BY :Maen Faoury

ومن أحياها Translation 1. Translation 1. DONE BY :Maen Faoury Translation 1 DONE BY :Maen Faoury 0 1 ومن أحياها Translation 1 2 ومن أحياها Translation 1 In this lecture and the coming lectures you are going to see how the genetic information is transferred into proteins

More information

ATP. P i. trna. 3 Appropriate trna covalently bonds to amino acid, displacing AMP. Computer model Hydrogen bonds

ATP. P i. trna. 3 Appropriate trna covalently bonds to amino acid, displacing AMP. Computer model Hydrogen bonds mino acid attachment site nticodon Hydrogen bonds mino acid T i denosine i i denosine minoacyl-trn synthetase (enzyme) trn 1 ctive site binds the amino acid and T. 2 T loses two groups and bonds to the

More information

What is the central dogma of biology?

What is the central dogma of biology? Bellringer What is the central dogma of biology? A. RNA DNA Protein B. DNA Protein Gene C. DNA Gene RNA D. DNA RNA Protein Review of DNA processes Replication (7.1) Transcription(7.2) Translation(7.3)

More information

Translation. A ribosome, mrna, and trna.

Translation. A ribosome, mrna, and trna. Translation The basic processes of translation are conserved among prokaryotes and eukaryotes. Prokaryotic Translation A ribosome, mrna, and trna. In the initiation of translation in prokaryotes, the Shine-Dalgarno

More information

Organic Chemistry Option II: Chemical Biology

Organic Chemistry Option II: Chemical Biology Organic Chemistry Option II: Chemical Biology Recommended books: Dr Stuart Conway Department of Chemistry, Chemistry Research Laboratory, University of Oxford email: stuart.conway@chem.ox.ac.uk Teaching

More information

Molecular Genetics Principles of Gene Expression: Translation

Molecular Genetics Principles of Gene Expression: Translation Paper No. : 16 Module : 13 Principles of gene expression: Translation Development Team Principal Investigator: Prof. Neeta Sehgal Head, Department of Zoology, University of Delhi Paper Coordinator: Prof.

More information

From DNA to protein, i.e. the central dogma

From DNA to protein, i.e. the central dogma From DNA to protein, i.e. the central dogma DNA RNA Protein Biochemistry, chapters1 5 and Chapters 29 31. Chapters 2 5 and 29 31 will be covered more in detail in other lectures. ph, chapter 1, will be

More information

Ribosome readthrough

Ribosome readthrough Ribosome readthrough Starting from the base PROTEIN SYNTHESIS Eukaryotic translation can be divided into four stages: Initiation, Elongation, Termination and Recycling During translation, the ribosome

More information

Biophysics Lectures Three and Four

Biophysics Lectures Three and Four Biophysics Lectures Three and Four Kevin Cahill cahill@unm.edu http://dna.phys.unm.edu/ 1 The Atoms and Molecules of Life Cells are mostly made from the most abundant chemical elements, H, C, O, N, Ca,

More information

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Name Period Words to Know: nucleotides, DNA, complementary base pairing, replication, genes, proteins, mrna, rrna, trna, transcription, translation, codon,

More information

Regulation of Transcription in Eukaryotes

Regulation of Transcription in Eukaryotes Regulation of Transcription in Eukaryotes Leucine zipper and helix-loop-helix proteins contain DNA-binding domains formed by dimerization of two polypeptide chains. Different members of each family can

More information

Molecular Biology of the Cell

Molecular Biology of the Cell Alberts Johnson Lewis Raff Roberts Walter Molecular Biology of the Cell Fifth Edition Chapter 6 How Cells Read the Genome: From DNA to Protein Copyright Garland Science 2008 Figure 6-1 Molecular Biology

More information

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline CHAPTER 3 Cell Structure and Genetic Control Chapter 3 Outline Plasma Membrane Cytoplasm and Its Organelles Cell Nucleus and Gene Expression Protein Synthesis and Secretion DNA Synthesis and Cell Division

More information

Part IV => DNA and RNA. 4.6 RNA Translation 4.6a Genetic Code 4.6b Translational Machinery

Part IV => DNA and RNA. 4.6 RNA Translation 4.6a Genetic Code 4.6b Translational Machinery Part IV => DNA and RNA 4.6 RNA Translation 4.6a Genetic Code 4.6b Translational Machinery Section 4.6a: Genetic Code Synopsis 4.6a - In order to translate the genetic information (or genetic code) carried

More information

UNIT 5. Protein Synthesis 11/22/16

UNIT 5. Protein Synthesis 11/22/16 UNIT 5 Protein Synthesis IV. Transcription (8.4) A. RNA carries DNA s instruction 1. Francis Crick defined the central dogma of molecular biology a. Replication copies DNA b. Transcription converts DNA

More information

Eukaryotic vs. Prokaryotic genes

Eukaryotic vs. Prokaryotic genes BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 18: Eukaryotic genes http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Eukaryotic vs. Prokaryotic genes Like in prokaryotes,

More information

Protein synthesis I Biochemistry 302. Bob Kelm February 23, 2004

Protein synthesis I Biochemistry 302. Bob Kelm February 23, 2004 Protein synthesis I Biochemistry 302 Bob Kelm February 23, 2004 Key features of protein synthesis Energy glutton Essential metabolic activity of the cell. Consumes 90% of the chemical energy (ATP,GTP).

More information

Molecular Biology of the Cell

Molecular Biology of the Cell Alberts Johnson Lewis Raff Roberts Walter Molecular Biology of the Cell Fifth Edition Chapter 6 How Cells Read the Genome: From DNA to Protein Copyright Garland Science 2008 Figure 6-1 Molecular Biology

More information

Computational Biology: Basics & Interesting Problems

Computational Biology: Basics & Interesting Problems Computational Biology: Basics & Interesting Problems Summary Sources of information Biological concepts: structure & terminology Sequencing Gene finding Protein structure prediction Sources of information

More information

TRANSLATION: How to make proteins?

TRANSLATION: How to make proteins? TRANSLATION: How to make proteins? EUKARYOTIC mrna CBP80 NUCLEUS SPLICEOSOME 5 UTR INTRON 3 UTR m 7 GpppG AUG UAA 5 ss 3 ss CBP20 PABP2 AAAAAAAAAAAAA 50-200 nts CYTOPLASM eif3 EJC PABP1 5 UTR 3 UTR m 7

More information

Central Dogma. DNA is the genetic material within the nucleus. The process of replication creates new copies of DNA.

Central Dogma. DNA is the genetic material within the nucleus. The process of replication creates new copies of DNA. Protein Synthesis Outline Central dogma Genetic code Ribosome Structure and Assembly Mechanics of Protein Synthesis Protein Synthesis in Eukaryotes Inhibitors of Protein Synthesis Postranslation modification

More information

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 REVIEW: Signals that Start and Stop Transcription and Translation BUT, HOW DO CELLS CONTROL WHICH GENES ARE EXPRESSED AND WHEN? First of

More information

Student Learning Outcomes: Nucleus distinguishes Eukaryotes from Prokaryotes

Student Learning Outcomes: Nucleus distinguishes Eukaryotes from Prokaryotes 9 The Nucleus Student Learning Outcomes: Nucleus distinguishes Eukaryotes from Prokaryotes Explain general structures of Nuclear Envelope, Nuclear Lamina, Nuclear Pore Complex Explain movement of proteins

More information

Chapter 17 The Mechanism of Translation I: Initiation

Chapter 17 The Mechanism of Translation I: Initiation Chapter 17 The Mechanism of Translation I: Initiation Focus only on experiments discussed in class. Completely skip Figure 17.36 Read pg 521-527 up to the sentence that begins "In 1969, Joan Steitz..."

More information

mrna and Genetic code standard

mrna and Genetic code standard Synthesis and Processing of the Proteome. (mrna and Genetic code: standard and variations; codon anti codon interactions), The role of trna in protein synthesis, Role of Ribosome in Protein synthesis (Ribosome

More information

15.2 Prokaryotic Transcription *

15.2 Prokaryotic Transcription * OpenStax-CNX module: m52697 1 15.2 Prokaryotic Transcription * Shannon McDermott Based on Prokaryotic Transcription by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

Translational Initiation

Translational Initiation Translational Initiation Lecture Outline 1. Process of Initiation. Alternative mechanisms of Initiation 3. Key Experiments on Initiation 4. Regulation of Initiation Translation is a process with three

More information

Quiz answers. Allele. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA)

Quiz answers. Allele. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA) BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA) http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Quiz answers Kinase: An enzyme

More information

1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine.

1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine. Protein Synthesis & Mutations RNA 1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine. RNA Contains: 1. Adenine 2.

More information

Activation of a receptor. Assembly of the complex

Activation of a receptor. Assembly of the complex Activation of a receptor ligand inactive, monomeric active, dimeric When activated by growth factor binding, the growth factor receptor tyrosine kinase phosphorylates the neighboring receptor. Assembly

More information

Energy and Cellular Metabolism

Energy and Cellular Metabolism 1 Chapter 4 About This Chapter Energy and Cellular Metabolism 2 Energy in biological systems Chemical reactions Enzymes Metabolism Figure 4.1 Energy transfer in the environment Table 4.1 Properties of

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

PROTEIN SYNTHESIS INTRO

PROTEIN SYNTHESIS INTRO MR. POMERANTZ Page 1 of 6 Protein synthesis Intro. Use the text book to help properly answer the following questions 1. RNA differs from DNA in that RNA a. is single-stranded. c. contains the nitrogen

More information

Introduction. Gene expression is the combined process of :

Introduction. Gene expression is the combined process of : 1 To know and explain: Regulation of Bacterial Gene Expression Constitutive ( house keeping) vs. Controllable genes OPERON structure and its role in gene regulation Regulation of Eukaryotic Gene Expression

More information

protein synthesis and the ribosome

protein synthesis and the ribosome protein synthesis and the ribosome Central dogma of biology DNA codes for DNA DNA codes for RNA RNA codes for proteins not surprisingly, many points for regulation of the process RNA codes for proteins

More information

Name Period The Control of Gene Expression in Prokaryotes Notes

Name Period The Control of Gene Expression in Prokaryotes Notes Bacterial DNA contains genes that encode for many different proteins (enzymes) so that many processes have the ability to occur -not all processes are carried out at any one time -what allows expression

More information

The Eukaryotic Genome and Its Expression. The Eukaryotic Genome and Its Expression. A. The Eukaryotic Genome. Lecture Series 11

The Eukaryotic Genome and Its Expression. The Eukaryotic Genome and Its Expression. A. The Eukaryotic Genome. Lecture Series 11 The Eukaryotic Genome and Its Expression Lecture Series 11 The Eukaryotic Genome and Its Expression A. The Eukaryotic Genome B. Repetitive Sequences (rem: teleomeres) C. The Structures of Protein-Coding

More information

Old FINAL EXAM BIO409/509 NAME. Please number your answers and write them on the attached, lined paper.

Old FINAL EXAM BIO409/509 NAME. Please number your answers and write them on the attached, lined paper. Old FINAL EXAM BIO409/509 NAME Please number your answers and write them on the attached, lined paper. Gene expression can be regulated at several steps. Describe one example for each of the following:

More information

c. Covalent bonds involve the transfer of electrons between atoms, and ionic bonds involve the sharing of neutrons between atoms. d.

c. Covalent bonds involve the transfer of electrons between atoms, and ionic bonds involve the sharing of neutrons between atoms. d. Final Exam Review *Disclaimer I do not have a PHD. Everything here is just speculation for what I think will be on your test. Your professor is going over everything that will be on your test 12/02/17

More information

Ch 10, 11 &14 Preview

Ch 10, 11 &14 Preview Ch 10, 11 &14 Preview Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Why did the original one-gene, one-enzyme hypothesis have to be modified? a. Some

More information

Protein Biosynthesis: The Overall Picture

Protein Biosynthesis: The Overall Picture Protein Biosynthesis: The Overall Picture From: Biochemistry Berg, Tymoczko, Stryer 5 th Ed. The Nature of the Genetic Code Three bases code for one amino acid WHY? Consider 4 n then 1 base can only code

More information

GENE REGULATION AND PROBLEMS OF DEVELOPMENT

GENE REGULATION AND PROBLEMS OF DEVELOPMENT GENE REGULATION AND PROBLEMS OF DEVELOPMENT By Surinder Kaur DIET Ropar Surinder_1998@ yahoo.in Mob No 9988530775 GENE REGULATION Gene is a segment of DNA that codes for a unit of function (polypeptide,

More information