Animals. Chapters Exam November 22, 2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Animals. Chapters Exam November 22, 2011"

Transcription

1 Animals Chapters Exam November 22, 2011

2 Overview of Animals Chapter 32

3 General Features of Animals and Evolution of the Body Plan

4 General Features of Animals Heterotrophs Multicellular No Cell Walls Active Movement Diversity in Form and Habitat Sexual Reproduction Embryonic Development Unique Tissues

5 Key Evolutionary Developments Evolution of Tissues Evolution of Symmetry Types Evolution of the Body Cavity Evolution of Developmental Patterns Evolution of Segmentation

6 Tissues Tissues allow for Specialization and Differentiation Only the Parazoa do not have specialized tissues Even the Parazoa have cell-level specialization

7 Symmetry Parazoa are again the exception. Radial Bilateral

8 Body Cavity Most animals produce 3 types of tissue Bilaterally Symmetrical bodies follow three basic plans

9 Circulatory System As body sizes increases the need to move fluid becomes active and we see the evolution of a circulatory system Open Circulatory System Closed Circulatory System

10 Spiralians vs. Deuterstomes

11 Traditional Taxonomy of Animals

12 Parazoa vs. Eumetazoa Traditional taxonomy differentiates between the near animals (Parazoa) and true animals (Metazoa) Parazoa lack true differentiated tissue and symmetry

13 Molecular vs. Morphology On many groupings traditional morphology methods agree with molecular data. Morphology taxonomy is based on the presence or absence of the coelom. Molecular taxonomy is based on the genetics of differentiation End Result: While there is concurrence, molecular data shows that the coelom developed a number of times.

14 Roots of the Animal Family Tree

15 Where did we come from? Multinucleate Hypothesis Colonial Flagellate Hypothesis Molecular Data supports the Colonial model.

16 Noncoelomate Invertebrates Chapter 33

17 The New Invertebrate Phylogeny

18 Parazoa Animals That Lack Specialized Tissues

19 Dominant group of the Parazoa These are the Sponges Lacking true symmetry or tissues While the adults are sessile, the larval stage is motile. Porifera

20 Cell Types

21 Look Familiar?

22 Eumetazoa Animals with True Tissues

23 Phylum Cnidaria Distinct Specialized Tissues Mostly Marine in Nature No Organs Primitive Sensory System

24 Cnidaria Body Plans Polyp vs. Medusa Mesoglea glue material between the epidermis and gastrodermis Gastrovascular Cavity

25 Cnidaria Specialized Tissues

26 Cnidaria Life Cycles Life Cycles vary by species, but can include both a polyp and medusa stage or only one. Individuals are diploid tissue and sexual haploid gametes are produced, sexes can separate. The diploid zygote develops into a larval planula Asexual reproduction is also possible.

27 Nematocysts Defining characteristic of the phylum Used to incapacitate and acquire food Expulsion is one of the fastest known biological processes.

28 Major Groups of Cnidaria Class Anthozoa Sea Anemone and Corals Class Cubozoa Box Jellies Class Hydrazoa Hydroids Class Scyphozoa Jellyfish Class Staurozoa Star Jellies You should learn a defining characteristic of each

29 Phylum Ctenophora Surface similarity to the Cnidaria is not borne out. They do not possess nematocysts and possess an anal pore. They possess colloblasts for prey capture They possess mesoderm tissue

30 The Bilaterian Acoelomates

31 Phylum Platyhelminthes Flatworms Incomplete Guts Complex systems Cephalized

32 Platyhelminthes Groups Class Turbellaria* Free-Living Flatworms Subphylum Neodermata Parasites Possess a Neodermis and lack Eyepores Comprised of two Subgroups Trematodes Flukes Cercomeromorpha - Tapeworms

33 Schistosoma Life Cycle

34 Tapeworms Body divided into three sections Scolex Neck Proglottids No digestive systems

35 Acoel Flatworms Distinct from Flatworms Convergent Appearance Lack digestive cavity Primitive nervous system Uncertain position

36 Phylum Cycliophora Near Microscopic Live in the mouthparts of Claw Lobsters Sexual cycle is linked to Lobster molt

37 The Pseudocoelomates

38 Pseudocoelm A body cavity isolated from the exterior environment Serves as a hydrostatic skeleton Serves as a circulatory system Evolved numerous times

39 Phylum Nematoda Roundworms Possess a cuticle that they molt Developed digestive and reproductive systems Lack circular muscles

40 Nematoda Anatomy

41 Nematoda Life Cycle Most are gonochoric and exhibit sexual dimorphism Development is often indirect (larval to adult) Eutely (a precise number of cells) is common and allows for determination of cellular development in some species.

42 Nematoda Diseases

43 Phylum Rotifera

44 Coelomate Invertebrates Chapter 34

45 Phylum Mollusca

46 Phylum Mollusca

47 Mollusca Characteristics Extremely varied in body plan and appearance. Coelom is reduced and the role replaced by a shell in many. Highly efficient gas exchange system Most mollusks possess a radula Most posses open circulatory systems

48 Class Polyplacophora: Chitons Marine species Covered in shell plates Grazing animals Modified foot that serves as an anchor against predators.

49 Class Gastropoda Snails and Slugs Most adults are not bilaterally symmetrical due to torsion. Numerous predatory adaptations Evolution of a primitive lung.

50 Class Bivalvia Clams and such No radula or cephalization Extremely agile while digging or swimming Two shells

51 Class Cephalopoda Octopuses, squids, and nautiluses Highly divergent and specialized body plan Largest relative brain sizes of invertebrates Direct development Highly advanced eyes

52 Phylum Annelida

53 Annelida Characteristics Body Segmentation Cephalized with developed brains Head and Tail develop first, then the internal segments develop Segments are separated by septa, but communicate between the sections. Most possess chaetae Circulatory system is closed, but excretory system is segmented.

54 Possess paired fleshy parapodia Class Polychaeta

55 Class Clitellata Earthworms and leeches Named for the clitellum, a thicken saddle around the worm.

56 Hirudo medicinalis

57 The Lophophorates Bryozoa and Brachiopoda

58 Lophophore Defining characteristic of these Phyla A circular or U-shaped ridge around the mouth bearing one or two rows of ciliated tentacles into which the coelom extends.

59 Phylum Bryozoa Exclusively colonial Specialized members within the colony Can produce structures much like coral.

60 Phylum Brachiopoda Possess a U-shaped digestive system Solitary animals Possess hardened mantles or chitinous sheaths.

61 Phylum Anthropoda

62 Key Features of Arthropoda Segmentation Exoskeleton Jointed Appendages Circulatory System Nervous System (central and diffuse) Respiratory System Excretory Systems

63 Segmentation, Exoskeleton and Joints

64 Internals

65 Class Chelicerata Spiders, mites, ticks, and horseshoe crabs, etc. Defined by the chelicerae, pedipalps and four pairs of walking legs Two body segments

66 Class Crustacea Crabs, Lobsters, Pill Bugs, etc. 2 pairs of antennae, 3 pairs of feeding appendages, and various legs They have appendages on the abdomen.

67 Class Hexapoda Mandibles Three body regions One pair of antennae Thorax has three segments, each with a pair of legs Wings are derived from outgrowths, not legs

68 Class Myriapoda Having a myriad of legs Mandibles A head with various segments Each segment contains a pair of legs. Segments can be added as they grow.

69 Phylum Echinodermata

70 Characteristics Adults are pentaradially symmetrical, but larval forms are bilaterally symmetrical They possess an endoskeleton (the things you usually buy at gift shops) Water-Vascular System Regeneration

71 Anatomy

72 Classes Asteroidea Holothuroidea Echinoidea Crinoidea Ophiuroidea

73 Vertebrates Chapter 35

74 The Chordates and Nonvertebrate Chordates

75 Fishes

76 Amphibians

77 Reptiles

78 Birds

79 Mammals

80 Evolution of Primates

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University The Evolution of Animal Diversity Dr. Stephen J. Salek Biology 130 Fayetteville State University Create your own animal? Start with a basic plant. Make the plant into a simple animal such as a worm. Consider:

More information

What is an animal? Introduction to Animals. Germ Layers. Tissues and Organs. Structural Support. Types of Symmetry 11/3/2015

What is an animal? Introduction to Animals. Germ Layers. Tissues and Organs. Structural Support. Types of Symmetry 11/3/2015 What is an animal? Introduction to Animals Multicellular chemoorganoheterotrophs Eukaryotes that lack cell walls and chloroplasts Have mitochondria Are motile at some point in their lives Contain collagen

More information

INVERTEBRATE DIVERSITY

INVERTEBRATE DIVERSITY INVERTEBRATE DIVERSITY 1 INVERTEBRATES Animals that lack a backbone Invertebrates 2 1 ANIMAL DEVELOPMENT Meiosis Egg Sperm Zygote Adult Blastula hollow ball of cells in a developing animal Gastrula Stage

More information

Chapter 33: Invertebrates

Chapter 33: Invertebrates Name Period Chapters 31, 32, and 33 should be considered as a single unit, and you should try to put all of them together in a single conceptual framework. Due to the scope of our course, you are likely

More information

Invertebrate Survey Lab

Invertebrate Survey Lab Answer these questions before lab. 1. What kingdom do all animals fall into? a. Protist b. Animalia c. Eukarya 2. How many phyla of invertebrates are in appendix E on pages 1074-1076? a. 9 b. 7 c. 8 3.

More information

3. Choanoflagellates resemble what? What is the significance of this resemblance?

3. Choanoflagellates resemble what? What is the significance of this resemblance? I. Animal Diversity 1. What are some basic characteristics of the animal kingdom? What characteristics make them different from plants? - Eukaryotic, heterotrophic (we don t make our own food), we store

More information

Learning Objectives. The Animal Kingdom: An Introduction to Animal Diversity. Sexual Reproduction

Learning Objectives. The Animal Kingdom: An Introduction to Animal Diversity. Sexual Reproduction Learning Objectives The Animal Kingdom: An Introduction to Animal Diversity Chapter 29 What characters are common to most animals? Advantages and disadvantages of different environments Searching for relationships

More information

Introduction to Animal Kingdom. Invertebrates and Vertebrates

Introduction to Animal Kingdom. Invertebrates and Vertebrates Introduction to Animal Kingdom Invertebrates and Vertebrates Introduction To Animals Vertebrate animal with a backbone. Invertebrate animal without a backbone; includes more than 95% of all animal species

More information

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya Classification The three-domains Bacteria Archaea Eukarya The six-kingdom system Bacteria Archaea Protista Plantae Fungi Animalia The traditional five-kingdom system Monera Protista Plantae Fungi Animalia

More information

Animals are in Domain Eukarya

Animals are in Domain Eukarya The Diversity of Animals 1: invertebrates Chapter 23 Animals are in Domain Eukarya Immediate ancestors are a type of Protista Key features Multicellular Kingdom Animalia Heterotrophic: gain energy by consuming

More information

Biology 11. The Kingdom Animalia

Biology 11. The Kingdom Animalia Biology 11 The Kingdom Animalia Objectives By the end of the lesson you should be able to: Describe the 5 ways we classify animals Symmetry Germ layers Body plan Segmentation Animal Evolution Hank Video

More information

Kingdom Animalia. Special Features: Advanced nervous systems means cephalization (faces), brains, and efficient mobility (walk/run/swim/grab)

Kingdom Animalia. Special Features: Advanced nervous systems means cephalization (faces), brains, and efficient mobility (walk/run/swim/grab) Kingdom Animalia Kingdom Animalia Cell Number: Multicellular with extensive specialization Cell Type: Eukaryotic Animal Cells (no cell wall) Food: Heterotrophic Carnivore (meat), Herbivore (plants), Omnivore

More information

Porifera Sponges Features:

Porifera Sponges Features: Porifera Sponges The Phylum Porifera consists only of sponges, which is unique since these animals are entirely aquatic; with 98% found only in marine environments and a small percentage found in freshwater

More information

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia What Is an Animal? What characteristics do all animals have? Animals come in many shapes, forms, and sizes. Scientists estimate that there are between 1 and 2 million species of animals! Some, like whales

More information

Chapter 8-9 Intro to Animals. Image from:

Chapter 8-9 Intro to Animals. Image from: Chapter 8-9 Intro to Animals Image from: http://animaldiversity.ummz.umich.edu/index.html Zoology Definition: the scientific study of the behavior, structure, physiology, classification, and distribution

More information

Animal Phyla: A Summary. Danilo V. Rogayan Jr. Faculty, College of Education, Arts and Sciences Ramon Magsaysay Technological University

Animal Phyla: A Summary. Danilo V. Rogayan Jr. Faculty, College of Education, Arts and Sciences Ramon Magsaysay Technological University Animal Phyla: A Summary Danilo V. Rogayan Jr. Faculty, College of Education, Arts and Sciences Ramon Magsaysay Technological University Phylum Platyhelminthes The phylum consists of four classes Turbellaria

More information

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen What Is an Animal? Section 25.1 Typical Animal Characteristics Biology II Mrs. Michaelsen I. Characteristics of Animals A. All animals are eukaryotic, multicellular, have ways of moving to reproduce, obtain

More information

Chps : Animals. Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs

Chps : Animals. Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs Chps 23-26: Animals Chps. 23-27: Animals Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs Animal Characteristics Forms of symmetry: Radial Bilateral

More information

Invertebrates. Chapter 33. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Invertebrates. Chapter 33. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 33 Invertebrates PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Fig.

More information

The Animals, or Metazoa. Approximate proportions of animal species presently known; The true diversity of animals may be more than 90% Arthropods

The Animals, or Metazoa. Approximate proportions of animal species presently known; The true diversity of animals may be more than 90% Arthropods The Animals, or Metazoa Are some of the best-studied organisms Comprise over a million known species Originated c. the Cambrian (~550 MYA) Most animal phyla are marine; however, due to the diversity of

More information

Eukaryote Phylogeny. Glycogen. Kingdom Animalia. Amoebozoa Animalia. Plantae. Chromalveolata Rhizaria. Fungi. Excavata

Eukaryote Phylogeny. Glycogen. Kingdom Animalia. Amoebozoa Animalia. Plantae. Chromalveolata Rhizaria. Fungi. Excavata Eukaryote Phylogeny most protozoans, brown algae, & water molds Excavata Chromalveolata Rhizaria Plantae Amoebozoa Animalia Fungi cpsts. w/ 2 memb. chitin, hyphae glycogen eukaryotic cells (nucleus, etc.)

More information

Chapter 24 Introduction to Animals

Chapter 24 Introduction to Animals 1 Chapter 24 Introduction to Animals I. Animal characteristics A. General Animal Features Multicellular B. Feeding and Digestion a. acquire nutrients from various sources obtaining nutrients unique to

More information

Chapter 7. Marine Animals Without a Backbone

Chapter 7. Marine Animals Without a Backbone Chapter 7 Marine Animals Without a Backbone General Characteristics of Animals Multicellular, diploid organisms with tissues, organs or organ systems in most Heterotrophic Require oxygen for aerobic

More information

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda Animal Body Plans Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod Sponges Cnidaria, Ctenophora, Platyhelminthes Acoelomate -Eucoelomate Annelid Mollusca Arthropoda Size Constraints

More information

Sponges. What is the sponge s habitat. What level of organization do sponges have? Type of symmetry?

Sponges. What is the sponge s habitat. What level of organization do sponges have? Type of symmetry? Sponges What is the sponge s habitat Marine (few freshwater species) What level of organization do sponges have? Cell level Type of symmetry? None Type of digestive system (none, complete or incomplete)?

More information

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification?

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? Animals What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? What synapomorphies unite Animals Multicellular Heterotrophs (Metazoans)?

More information

Arthropoda ARTHRO JOINTED PODA FEET

Arthropoda ARTHRO JOINTED PODA FEET Arthropoda ARTHRO JOINTED PODA FEET The arthropods are a group of animals which has attained the greatest biological success largest number of species and individuals and occupy the greatest number of

More information

Unit 10: Animals Guided Reading Questions (80 pts total)

Unit 10: Animals Guided Reading Questions (80 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 32 An Introduction to Animal Diversity 1. Define the following

More information

An Introduction to the Invertebrates, Part One Phyla Placozoa, Porifera, Cnidaria, Ctenophora. Reference: Chapter 33.1, 33.2

An Introduction to the Invertebrates, Part One Phyla Placozoa, Porifera, Cnidaria, Ctenophora. Reference: Chapter 33.1, 33.2 An Introduction to the Invertebrates, Part One Phyla Placozoa, Porifera, Cnidaria, Ctenophora Reference: Chapter 33.1, 33.2 Overview: Life Without a Backbone v Invertebrates are animals that lack a backbone

More information

Chapter 8. Sponges Phylum Porifera Basic characteristics: simple asymmetric sessile

Chapter 8. Sponges Phylum Porifera Basic characteristics: simple asymmetric sessile Chapter 8 Key Concepts Sponges are asymmetric, sessile animals that filter food from the water circulating through their bodies. Sponges provide habitats for other animals. Cnidarians and ctenophores exhibit

More information

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals Introduction to Animals Table of Contents Objectives Identify four important characteristics of animals. List two kinds of tissues found only in animals. Explain how the first animals may have evolved

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: Welcome to Your Kingdom The animal kingdom

More information

Sponge and Cnidarian Review

Sponge and Cnidarian Review Name Period Date Sponge and Cnidarian Review Matching On the lines provided, write the letter of the definition that matches each term. 1. Invertebrate 2. Filter feeder 3. Asymmetry 4. Radial 5. Medusa

More information

Introduction to Animal Diversity. Chapter 23.1, 23.2 and additional

Introduction to Animal Diversity. Chapter 23.1, 23.2 and additional Introduction to Animal Diversity Chapter 23.1, 23.2 and additional 1 Think of an Animal... Does your choice have hair or fur? Does it have a skeleton? Over a million species of animals described 95% have

More information

Protists. Simple Eukaryotes. Regents Biology Common ancestor. Domain Archaebacteria. Domain Eukaryotes. Domain Bacteria

Protists. Simple Eukaryotes. Regents Biology Common ancestor. Domain Archaebacteria. Domain Eukaryotes. Domain Bacteria Protists Simple Eukaryotes Domain Bacteria Domain Archaebacteria Domain Eukaryotes Regents Biology 2006-2007 Common ancestor General characteristics Classification criteria eukaryotes not animal, plant

More information

I n t roduction to Phy l a

I n t roduction to Phy l a I n t roduction to Phy l a Earth carries millions of animal species that come in a spectacular array of shapes and sizes. Some even challenge our conceptions about animals. Despite this wealth of species,

More information

What is a Cnidarian?

What is a Cnidarian? Invertebrate What is a Cnidarian? 9000 species of jellyfishes, corals, sea anemones, hydras Mostly marine animals Radially symmetrical One body opening Two layers of cells organized into tissues with specific

More information

v Scientists have identified 1.3 million living species of animals v The definition of an animal

v Scientists have identified 1.3 million living species of animals v The definition of an animal Biosc 41 9/10 Announcements BIOSC 041 v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal

More information

Chapter 32 Intro to Animals. Image from:

Chapter 32 Intro to Animals. Image from: Chapter 32 Intro to Animals Image from: http://animaldiversity.ummz.umich.edu/index.html Animals Invertebrates (animals without a backbone) Porifera Cnidaria Worms Mollusks Echinoderms Arthropods Animals

More information

8/23/2014. Introduction to Animal Diversity

8/23/2014. Introduction to Animal Diversity Introduction to Animal Diversity Chapter 32 Objectives List the characteristics that combine to define animals Summarize key events of the Paleozoic, Mesozoic, and Cenozoic eras Distinguish between the

More information

c. Can you locate the planaria eyespots? What do the eyespots sense?

c. Can you locate the planaria eyespots? What do the eyespots sense? Invertebrate Lab II Learning Objectives State the phyla of the organisms discussed in the lab activities Use the characteristics of symmetry, coelom, embryo tissue layers, and patterns of development to

More information

Lab 2 Phylum Porifera and phylum Cnidaria. Grantia. Phylum Porifera. Kingdom :- Animalia. Phylum:- Porifera. Class:- Calcarea. Order:- Leucosolenida

Lab 2 Phylum Porifera and phylum Cnidaria. Grantia. Phylum Porifera. Kingdom :- Animalia. Phylum:- Porifera. Class:- Calcarea. Order:- Leucosolenida Lab 2 Phylum Porifera and phylum Cnidaria Phylum Porifera Adults sessile and attached Radial symmetry or asymmetrical Multi-cellular ; loose aggregation of cells Skeleton made of collagen and spicules

More information

Worms and Mollusks (pp )

Worms and Mollusks (pp ) Worms and Mollusks (pp. 424 432) This section tells about the characteristics of the three main groups of worms and the main characteristics of mollusks. Use Target Reading Skills As you read, take notes

More information

What defines the zygote, the blastula, and the gastrula? Draw pictures.

What defines the zygote, the blastula, and the gastrula? Draw pictures. What makes a multicellular organism multicellular? a) Multiple cells b) Multiple cells that work together c) Specialized cells d) Multiple specialized cells that work together What defines the zygote,

More information

DO NOT OPEN EXAM UNTIL INSTRUCTED TO DO SO

DO NOT OPEN EXAM UNTIL INSTRUCTED TO DO SO Name: Last KEY First ID# Lab. Date and Time Lab. TA Biological Sciences 1B Dr. Herrlinger Summer Sessions I 2000 Midterm 2 July 21, 2000 DO NOT OPEN EXAM UNTIL INSTRUCTED TO DO SO Multiple Choice Questions

More information

GREENWOOD PUBLIC SCHOOL DISTRICT Zoology I and II Pacing Guide FIRST NINE WEEKS Zoology I (Invertebrate)

GREENWOOD PUBLIC SCHOOL DISTRICT Zoology I and II Pacing Guide FIRST NINE WEEKS Zoology I (Invertebrate) 1 GREENWOOD PUBLIC SCHOOL DISTRICT FIRST NINE WEEKS Zoology I (Invertebrate) Aug. 1 Introduction to Course Aug. 7 11 5 2 Aug. 1 18 5 3 Aug. 21 25 5 Aug. 28 Sept. 1 5 ADDED Overarching Science & Engineering

More information

Unit 10: Animals Guided Reading Questions (100 pts total)

Unit 10: Animals Guided Reading Questions (100 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 32 An Introduction to Animal Diversity 1. Define the following

More information

Natural Sciences 360 Legacy of Life Lecture 07 Dr. Stuart S. Sumida ANIMALIA. (More Similar to Fungi than Plants)

Natural Sciences 360 Legacy of Life Lecture 07 Dr. Stuart S. Sumida ANIMALIA. (More Similar to Fungi than Plants) Natural Sciences 360 Legacy of Life Lecture 07 Dr. Stuart S. Sumida ANIMALIA (More Similar to Fungi than Plants) ANIMAL SIMILARITIES PLANTS FUNGI Cell Walls - Immobile - Often need - substrate - Heterotrophs

More information

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017 Animal Diversity Chapter 32 Which of these organisms are animals? Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animals share the same: Nutritional

More information

Chapter 18 ANIMAL EVOLUTION AND DIVERSITY. Introduction What is an animal? The Evolution of Invertebrate Diversity

Chapter 18 ANIMAL EVOLUTION AND DIVERSITY. Introduction What is an animal? The Evolution of Invertebrate Diversity Chapter 18 The Evolution of Invertebrate Diversity Introduction Most octopuses rely on nonaggressive defense mechanisms such as camouflage. The blue-ringed octopus is an exception, with a toxin 10,000

More information

Lab 6: An Introduction to Animal Diversity

Lab 6: An Introduction to Animal Diversity Bio 10 Lab #6 1 Animal Kingdom Major characteristics: Lab 6: An Introduction to Animal Diversity Most people, when they think of animals, think of those similar to ourselves: dogs, cats, horses, apes,

More information

CHAPTER 32 INTRODUCTION TO ANIMAL EVOLUTION. Section A: What is an animal?

CHAPTER 32 INTRODUCTION TO ANIMAL EVOLUTION. Section A: What is an animal? CHAPTER 32 INTRODUCTION TO ANIMAL EVOLUTION Section A: What is an animal? 1. Structure, nutrition, and life history define animals 2. The animal kingdom probably evolved from a colonial, flagellated protist

More information

TYPES OF SKELETONS 28 MAY 2014

TYPES OF SKELETONS 28 MAY 2014 TYPES OF SKELETONS 28 MAY 2014 In this lesson we: Lesson Description Different types of skeletons Summary A skeleton is the part of an animal that provides support and shape for the rest of the body A

More information

Name Class Date. After you read this section, you should be able to answer these questions:

Name Class Date. After you read this section, you should be able to answer these questions: CHAPTER 14 3 Invertebrates SECTION Introduction to Animals BEFORE YOU READ After you read this section, you should be able to answer these questions: What structures and systems perform basic life functions

More information

Chapter 13. Radiate Animals. Biological Contributions. Biological Contributions. Phylum Cnidaria. Definition. Position in Animal Kingdom

Chapter 13. Radiate Animals. Biological Contributions. Biological Contributions. Phylum Cnidaria. Definition. Position in Animal Kingdom Copyright The McGraw Hill Companies, Inc. Permission required for reproduction or display. Chapter 13 Radiate Animals Position in Animal Kingdom Both phyla Cnidaria and Ctenophora make up the radiate animals.

More information

Chapter 32 Introduction to Animal Diversity

Chapter 32 Introduction to Animal Diversity Chapter 32 Introduction to Animal Diversity Review: Biology 101 There are 3 domains: They are Archaea Bacteria Protista! Eukarya Endosymbiosis (proposed by Lynn Margulis) is a relationship between two

More information

A. Why Classify? 1. organization makes it easier to understand and find information 2. taxonomy scientists classify organisms and assign each

A. Why Classify? 1. organization makes it easier to understand and find information 2. taxonomy scientists classify organisms and assign each Classification A. Why Classify? 1. organization makes it easier to understand and find information 2. taxonomy scientists classify organisms and assign each organism a universally accepted name by using

More information

BI 101: Invertebrate Animals Announcements

BI 101: Invertebrate Animals Announcements BI 101: Invertebrate Animals Announcements Quiz #6 Friday Plants: Gymnosperms & Angiosperms Don t forget the prelab just the front page I have another lab to substitute the one in the packet--- food web

More information

Phylum Cnidaria Test True/False Indicate whether the sentence or statement is true or false. Mark a for true and b for false.

Phylum Cnidaria Test True/False Indicate whether the sentence or statement is true or false. Mark a for true and b for false. PLEASE WRITE YOUR NAME HERE: 1 Phylum Cnidaria Test True/False Indicate whether the sentence or statement is true or false. Mark a for true and b for false. 1. Polyps are a body form of cnidarians that

More information

Ph. Porifera and Ph. Cnidaria

Ph. Porifera and Ph. Cnidaria I. Phylum Porifera (sponges; pore bearer ) A. General characteristics 1. simplest animals 2. asymmetric 3. aquatic habitats a. typically marine 4. live alone or in colonies a. often members of reef habitats

More information

Overview of Animal Diversity

Overview of Animal Diversity Chapter 32 CHAPTER Overview of Animal Diversity Chapter Outline 32.1 Some General Features of Animals 32.2 Evolution of the Animal Body Plan 32.3 The Classification of Animals 32.4 The Roots of the Animal

More information

introduction to the Animal Kingdom (pages $55-560) Formulating a Definition: Building Vocabulary Skills

introduction to the Animal Kingdom (pages $55-560) Formulating a Definition: Building Vocabulary Skills STUDY GUIDE CHAPTER Sponges, Cnidarians, and Unsegmented Worms Section 26-1 introduction to the Animal Kingdom (pages $55-560) SECTION REVIEW With this section you began your study of the animal kingdom.

More information

A. Carranza Physiology Study Guide Bio 10

A. Carranza Physiology Study Guide Bio 10 Plants Types (gradual adaptations to land) Byrophytes: Mosses, hornwart, liverwarts Development of cuticle to conserve water Ferns, lycophytes and horsetails Cuticle plus rudimentary vascular and root

More information

Chapter 33 Invertebrates

Chapter 33 Invertebrates Chapter 33 Invertebrates Multiple-Choice Questions 1) Which cells in a sponge are primarily responsible for trapping and removing food particles from circulating water? A) choanocytes B) mesoglea cells

More information

Kingdom Animalia: Phyla Porifera and Cnidaria

Kingdom Animalia: Phyla Porifera and Cnidaria Kingdom Animalia: Phyla Porifera and Cnidaria Essential Question(s): What are key characteristics to the animal kingdom? Objectives: 1. Students will be able to distinguish essential characteristics in

More information

Survey of the Phyla- Animalia, Invertebrates

Survey of the Phyla- Animalia, Invertebrates Survey of the Phyla- Animalia, Invertebrates The Kingdom Animalia is in the domain Eukarya and in the supergroup Unikonta. They are in the group Opisthkonta with fungi. Both groups have different unicellular

More information

Animal Origins and Evolution

Animal Origins and Evolution Animal Origins and Evolution Common Features of Animals multicellular heterotrophic motile Sexual reproduction, embryo Evolution of Animals All animals are multicellular and heterotrophic, which means

More information

Architectural Pattern of an animal. Chapter 9

Architectural Pattern of an animal. Chapter 9 Architectural Pattern of an animal Chapter 9 What is an animal? Levels of organization and organismal complexity 5 major levels of complexity Unicellular Metazoan? Tissue Organ Organ systems Levels of

More information

Kingdom. Phylum. Class. Order. Family. Genus. Species

Kingdom. Phylum. Class. Order. Family. Genus. Species 5.5 - Classification 5.5.1 - Outline the binomial system of nomenclature In this system, each species has two names - a noun and an adjective. The first is the genus, which starts with an upper case letter,

More information

Class Webpage. Forms of Diversity. biol170/biol170syl.htm

Class Webpage. Forms of Diversity.  biol170/biol170syl.htm Class Webpage http://userwww.sfsu.edu/~efc/classes/ biol170/biol170syl.htm What is an animal? While there are exceptions, five criteria distinguish animals from other life forms. (1)Animals are multicellular,

More information

Classification: Evolution:

Classification: Evolution: Review for Final Exam Suggestions All material covered in the course is testable. The following are suggested topics to cover, but is not meant to be an exhaustive list. Topics that are not listed but

More information

Dearolf BIOL 220. Freshwater Brackish water Marine Terrestrial Parasitic

Dearolf BIOL 220. Freshwater Brackish water Marine Terrestrial Parasitic CLADE METAZOA Phylum Porifera Hickman Chapter 12 The Origins of Multicellularity Phylum Porifera: Sponges Characteristics of Phylum Porifera (page 248) Figure 12.2 (page 248) Form and Function Figure 12.5

More information

Kingdom Animalia - Evolution of Form and Function by Dana Krempels

Kingdom Animalia - Evolution of Form and Function by Dana Krempels Kingdom Animalia - Evolution of Form and Function by Dana Krempels A. Identification of synapomorphies defining major animal taxa Note the characters in the table below. Each should be placed on the phylogenetic

More information

CHAPTER 33 INVERTEBRATES

CHAPTER 33 INVERTEBRATES CHAPTER 33 INVERTEBRATES OUTLINE I. The Parazoa A. Phylum Porifera: sponges are sessile with porous bodies and choanocytes II. The Radiata A. Phylum Cnidaria: cnidarians have radial symmetry, a gastrovascular

More information

Z361 Final Fall 2000 Multiple Choice Section

Z361 Final Fall 2000 Multiple Choice Section Name: Z361 Final Fall 2000 Multiple Choice Section Answer all 32 questions using a No. 2 pencil to fill in a scantron form provided. Except for question #32, there is only one correct answer to each question.

More information

Invertebrate Zoology. Unit 2: Phylums: Porifera, Cnidaria, and Ctenophora

Invertebrate Zoology. Unit 2: Phylums: Porifera, Cnidaria, and Ctenophora Invertebrate Zoology Unit 2: Phylums: Porifera, Cnidaria, and Ctenophora Objective 1: Differentiate between the 3 types of Poriferians (Asconoids, Syconoids, and Leuconoids) and the three main classes

More information

31.1 What Evidence Indicates the Animals Are Monophyletic?

31.1 What Evidence Indicates the Animals Are Monophyletic? 31.1 What Evidence Indicates the Animals Are Monophyletic? What traits distinguish the animals from the other groups of organisms? In contrast to the Bacteria, Archaea, and most microbial eukaryotes, all

More information

*Add to Science Notebook Name 1

*Add to Science Notebook Name 1 *Add to Science Notebook Name 1 Arthropods, Ch. 13, pg. 374-382 Characteristics of Arthropods *Arthropods are the largest group of animals. *Arthropods have jointed and include,,, and. *Arthropod appendages

More information

Name: Date: ID: 3. What are some limitations to scientific models? - Most models include simplifications, approximations, and/or lack details

Name: Date: ID: 3. What are some limitations to scientific models? - Most models include simplifications, approximations, and/or lack details Name: Date: ID: 2 ND 9-WEEKS STUDY GUIDE Shared Answers Communication Skills 1. Define the term Scientific Model in your own terms. - A description of a system, theory, or phenomenon 2. List 5 things we

More information

Workshop: The Evolution of Animalia body symmetry embryonic germ layers ontogenetic origins I. What is an Animal? II. Germ Layers

Workshop: The Evolution of Animalia body symmetry embryonic germ layers ontogenetic origins I. What is an Animal? II. Germ Layers Workshop: The Evolution of Animalia by Dana Krempels Perhaps even more than the other Eukarya, Animalia is characterized by a distinct progression of complexity in form and function as one moves from the

More information

Invertebrates. Invertebrate Characteristics. Body Symmetry

Invertebrates. Invertebrate Characteristics. Body Symmetry 3 Invertebrates Key Concept Invertebrates do not have backbones, but they do have other structures to perform their life functions. What You Will Learn Invertebrates have many specialized structures that

More information

4. The structures in Bryophytes that penetrate the ground to anchor the plant are: a) xylem. b) phloem. c) rhizomes. d) rhizoids.

4. The structures in Bryophytes that penetrate the ground to anchor the plant are: a) xylem. b) phloem. c) rhizomes. d) rhizoids. 1. Algae do not have specialized cells for reproduction: 2. An example of a multicellular green algae is: a) ulva b) kelp c) chlamydomonas d) oedogonium 3. In Bryophytes, water passes from cell to cell

More information

UNIT 5 PROKARYOTES 16.1 Prokaryotes have inhabited Earth for billions of years Prokaryotes

UNIT 5 PROKARYOTES 16.1 Prokaryotes have inhabited Earth for billions of years Prokaryotes UNIT 5 PROKARYOTES 16.1 Prokaryotes have inhabited Earth for billions of years Prokaryotes Remain the most numerous and widespread organisms today Survive in environments too extreme for Despite being

More information

Biology B. There are no objectives for this lesson.

Biology B. There are no objectives for this lesson. Biology B Course Summary This is the second of two courses that comprise Biology. This course is designed to prepare the student to confidently enter and complete college-level biology courses. The Glencoe

More information

Characteristics and Classification of Living Organism (IGCSE Biology Syllabus )

Characteristics and Classification of Living Organism (IGCSE Biology Syllabus ) Characteristics and Classification of Living Organism (IGCSE Biology Syllabus 2016-2018) Characteristics of Living Organisms o Movement o Respiration o Sensitivity o Growth o Reproduction o Excretion o

More information

Zoology Mollusks Block 1 Nabinger

Zoology Mollusks Block 1 Nabinger Mollusks Block 1 Nabinger Purpose This lesson is intended to introduce the phylum Mollusca and to go over its general physical characteristics. It will also be used to setup a comparison between the major

More information

Unit 2. The pellicle acts as a membrane It maintains the shape of the protozoan but remains flexible Ectoplasm

Unit 2. The pellicle acts as a membrane It maintains the shape of the protozoan but remains flexible Ectoplasm Kingdom Protista A polyphyletic group containing: Unit 2 Polyphyletic- The Protozoans (Unicellular - can be very complex) Individuals may group together to form colonies Colony Specialized organelles Pellicle

More information

An Introduction to the Invertebrates

An Introduction to the Invertebrates An Introduction to the Invertebrates Janet Moore New Hall, Cambridge niustrations by Raith Overhill Second Edition. :::.. CAMBRIDGE :: UNIVERSITY PRESS ~nts ao Paulo, Delhi rcss, New York._ MOO 586 List

More information

BOOK 3 OUR PLANET SECTION 2 WORLD OF LIFE

BOOK 3 OUR PLANET SECTION 2 WORLD OF LIFE BOOK 3 OUR PLANET SECTION 2 WORLD OF LIFE ANIMAL AND PLANT CELLS There are two general types of cell - the animal cell and the plant cell. The animal cell is the most basic with the fewest parts. The plant

More information

Ms. SASTRY 1 Chapter in class follow along lecture notes

Ms. SASTRY 1 Chapter in class follow along lecture notes Ms. SASTRY 1 Chapter 26 34 in class follow along lecture notes Chp 26 Origin of life: 1) When did earth form? 2) What is the order of evolution of life forms on earth? 3) What were their modes of nutrition

More information

Workshop: The Evolution of Animalia body symmetry embryonic germ layers ontogenetic origins I. What is an Animal?

Workshop: The Evolution of Animalia body symmetry embryonic germ layers ontogenetic origins I. What is an Animal? Workshop: The Evolution of Animalia by Dana Krempels Perhaps even more than the other Eukarya, Animalia is characterized by a distinct progression of complexity in form and function as one moves from the

More information

Chapter 24 Animal Evolution The Invertebrates

Chapter 24 Animal Evolution The Invertebrates Chapter 24 Animal Evolution The Invertebrates 24.1 Medicines from the Sea Invertebrates No backbone Most diverse and numerous of land and ocean animals Marine invertebrates Many produce secondary metabolites

More information

EXTERNAL ANATOMY OF INSECTS

EXTERNAL ANATOMY OF INSECTS External Anatomy of Insects 1 The insect s exoskeleton is made up of a series of plates EXTERNAL ANATOMY OF INSECTS These plates make up the insect s exoskeleton. These plates are connected by joints or

More information

Animal Form and Function by Dana Krempels

Animal Form and Function by Dana Krempels Animal Form and Function by Dana Krempels Animalia is characterized by a distinct progression of complexity in form and function. Early in animal evolution, body symmetry, embryonic germ layers, and ontogenetic

More information

Invertebrates 2. Cladograms. Cladograms. Cladograms. Cladistics example. Cladogram of Phyla covered in Bio 11

Invertebrates 2. Cladograms. Cladograms. Cladograms. Cladistics example. Cladogram of Phyla covered in Bio 11 Invertebrates 2 Cladogram of Phyla covered in Bio 11 Cladograms Cladograms are constructed using a method known as cladistics. This method analyzes a collection of heritable character data compiled by

More information

Science 316 Sample questions, exam 3. Sun

Science 316 Sample questions, exam 3. Sun Notes: This sample exam contains questions primarily relevant to the final 3 rd of the class (though some will also require remembering earlier material). Remember, however, that your final will be cumulative

More information

CTY Course Syllabus - Zoology

CTY Course Syllabus - Zoology CTY Course Syllabus - Zoology Day 1: Monday Topics: Introductions/What is living? Introductions, Goals & Expectations, Course Objectives/Syllabus, Class Procedures, Pre-Assessment What is a living organism?

More information