1. Construct and use dichotomous keys to identify organisms. 2. Define scientific name and the binomial system of nomenclature.

Size: px
Start display at page:

Download "1. Construct and use dichotomous keys to identify organisms. 2. Define scientific name and the binomial system of nomenclature."

Transcription

1 OBJECTIVE SHEET TAXONOMY 1. Construct and use dichotomous keys to identify organisms. 2. Define scientific name and the binomial system of nomenclature. 3. Name and describe the general characteristics of each of the five most common Kingdoms. 4. Describe how biologists group organisms based on Phylogeny (lines of evolutionary descent). 5. Construct a cladogram based on derived characteristics. 6. Discus how similarities in DNA and RNA as well as the use of Molecular Clocks aids in the development of more accurate Phylogenies. 7. Explain the Modern classification of Organisms by identifying the characteristics of the Three-Domain System. 8. Classify a human being using Taxons 1

2 Above is a cladogram showing the evolutionary relationships of dinosaurs leading to modern day birds. Constructing a cladogram helps biologists organize the fossil record to show their evolutionary relationships to modern day organisms. 2

3 Reference pgs A scientific discipline known as allows scientists to classify organisms and assign them a universally accepted name. Advantages of Classification By organizing life into groups, biologists can communicate with each other around the world. The advantages of classification include: 1. Biologists can study the diversity of life with Biological meaning. 2. A name can be recognized by all scientists regardless of language barriers. 3. Newly discovered organisms can be understood better by making comparisons to existing groups. These comparisons can shed light on the evolutionary ancestory of the organism. 4. Classification allows biologists to get a more complete picture of how life evolved on the planet and how this affects the current trends of life on the today s planet. LINNAEUS S HIERARCHIAL CLASSIFICATION Carolus Linnaeus ( ) devised a system to put into the diversity of life. He started the science of taxonomy. First he assigned each species a scientific name composed of two names = binomial nomenclature. Each name is made up of the genus and species name in Latin. Sometimes a third name is included to give credit to the discoverer. Secondly, he adopted a filing system for grouping species into a hierarchy of increasingly general categories. Although, he used only three categories (one in bold), we commonly use all the ones below: KINGDOM PHYLUM CLASS ORDER FAMILY GENUS SPECIES 3

4 The purpose of taxonomy (the identification and classification of species) is to: Sort out closely related organisms and assign them to separate species, describing the characteristics that distinguish one species from another. Each taxonomic category from Kingdom all the way to species is called a TAXON The Kingdom taxon contains the greatest number of organisms as it is the least specific while the species taxon is the most specific. The Species designation is the only taxon that occurs naturally. Organisms decide for themselves whom they want to reproduce to make offspring with under natural conditions. 4

5 The Old Five Kingdom System A five kingdom classification system was introduced in which all living things can fit into, based on their complexity and the methods by which their nutritional needs are met. KINGDOM CHARACTERISTICS Monera Protista Fungi Plantae Animalia Bacteria and Cyanobacteria- All monerans are single-celled. Unlike other cells, the monerans lack a nucleus, and other organelles. They are all prokaryotic. Ameba, Euglena, Paramecia Protists are mainly unicellular organisms that have a membrane-bound nucleus and many other organelles. Some are colonial and multicellular. All protists are eukaryotic. Mushrooms, water mole, bread mold fungi are non-motile and cannot photosynthesize. They are heterotrophic as they absorb nutrients from a living or non-living source. Fungi differ from plants in the way the cell wall is made, in their method of reproduction, and even in their body structure. Includes the mosses, ferns, grasses, shrubs, flowering plants and trees most photosynthesize and contain chloroplasts. All plant cells have a membrane-enclosed nucleus and cell walls that contain a substance called cellulose. All members of the animal kingdom are multicellular. The cells have a discrete nucleus that contains chromosomes. Most animals can move and depend on organic materials for food. Excluding the very simple species, most animals reproduce by means of gametes called egg and sperm cells. Archetista Viruses although not living and acellular, the structure of viruses can evolve to produce drastic changes. Viruses have a protein coat surrounding either DNA or RNA. This sixth kingdom is sometimes used for convenience. Linnaeus s system is still used today but it has its limitations. Using Linnaeus s system of taxons, taxonomists have always tried to group organisms according to biologically important characteristics. But which similarities and differences are most important? Linnaeus s system has limitations and problems although it is still widely used in biology today. 5

6 Phylogeny By using Darwin s ideas about descent with modification, taxonomists can now group organisms into categories that represent lines of evolutionary descent, or phylogeny, not just physical similarities. A phylogeny is a description of the history of descent of a group of organisms from their common ancestor. Groups of evolutionarily related species are represented as related branches in a phylogenetic tree, or a cladogram. A group of species that consists of all the evolutionary descendants of a common ancestor is called a clade. Named clades and species are called taxa. 6

7 How do biologists use phylogenetic trees? A derived trait is one that differs from its form in the common ancestor of a lineage. A node on a tree indicates a derived feature. Biologists can use phylogenetic trees to reconstruct ancestral states. Phylogenetic trees may include estimates of times of divergence of lineages, as determined by a molecular clock analysis. Phylogenetic trees are used to reconstruct the past and understand the origin of traits. Phylogenetic trees are used to make appropriate evolutionary comparisons among living organisms. They can sometimes be used to even predict future evolution. A phylogenetic tree is divided into the following types of groups: 7

8 The cladogram below shows the phylogenetic relationships among 6 species labeled (A-F). Use the three groups to match its position on the cladogram. Well known Paraphyletic Groups: The class Reptilia as traditionally defined, are paraphyletic because it excludes birds (class Aves) and mammals (class Mammalia). Using Linneaus system, the three taxa are classes of equal rank. However, mammals hail from the mammallike reptiles and birds are descended from the dinosaurs (a group of Diapsida), both of which are classified as reptiles. Reptiles would be monophyletic if they were defined to include Mammalia and Aves. The prokaryotes (single-celled life forms without cell nuclei), are paraphyletic because they exclude the eukaryotes, a descendant group. Bacteria and Archaea are prokaryotes, but archaea and eukaryotes share a common ancestor that is not ancestral to the bacteria. 8

9 Read page 452 in your text. List the ways that barnacles and limpets are different from each other. List several reasons why we think that barnacles and crabs share a more recent common ancestor than the ancestor that barnacles share with limpets? The table below right shows the ancestral and derived states of 5 traits (a through e) for 6 species. For each box in the cladogram, write in a number (1-6) to indicate where that species should be positioned in the cladogram. Note: circles in the cladogram show where specific derived traits appeared. (-) = ancestral state, (+) = derived state 9

10 Found within the genetic code of all organisms is DNA. This provides us with an excellent way of comparing organisms at their most basic level their genes. Scientists can sequence or read the information coded in DNA and can compare the genetic similarities amongst organisms to trace the history of their genes over millions of years. The more similar the DNA sequences of two species, the more recently they shared a common ancestor, and the more they are related in evolutionary terms. A cladogram helps biologists understand how one lineage branched from another in the course of evolution. Molecular Clocks Molecular clocks allow biologists to make more accurate phylogenetic trees. Simple mutations occur all the time causing slight changes in the DNA structure. Some mutations have positive or negative effects on the phenotype of an organism. Many mutations have no effect at all. These neutral mutations accumulate in the DNA of different species at about the same rate. Comparing such DNA sequences in two species can reveal how dissimilar the genes are and thus provide an indication of how long ago the two species shared a common ancestor. Some genes accumulate mutations faster than others so biologists can time different kinds of evolutionary events, each of which ticks at a different rate. What evidence indicates that Species C is more closely related to Species B than to Species A? 10

11 Reference pgs The Three-Domain System Using the molecular clock model, scientists have grouped modern organisms according to how long they have been evolving independently. The modern day method of classification includes a new taxon called a domain. The three domains are the domain Bacteria, domain Archaea, and domain Eukarya. List the characteristics that distinguish members of the domain Bacteria from members of the domain Archaea. Fill in the missing parts of the chart below as you study the features of each domain: 11

12 Complete the summary of Living Things below: Use the colour diagram in your text pg to indicate the name of each Domain in the diagram. You may want to use colour to hi-lite each domain. 12

13 13

14 14

15 ACROSS 1. eventually exposes recessive genes to the environment for 3. red hair, blue eyes, etc. 4. kingdom with prokaryotic members 8. many different phyla are grouped into one 10. individuals that can interbreed belong to the same 11. an alternate form of a gene, (B or b) 12. to change with time 13. similar looking structure, but suggest evolution along different lineage. 14. according to Lamarck, these can be passed on. 19. wing of a bird and the arm of a person are said to be 21. tried to support Oparin s hypothesis 22. kingdom characterized by being non photosynthetic and getting nutrition by absorption 23. many different genus may belong to the same 24. traits that are present before they are useful. DOWN 2. believed that variations are the raw material for evolution 3 a random change in DNA that turns out to be helpful 5 type of evolution that results in birds and bats having wings (put N and V in the same box) 7 governs one trait 9 appendix, coccyx, dentin in chickens are said to be 15 Bbtt x BBTt 16 a questionable scientific name 17 a trait that must be present in a homozygous condition to show up 18 the science of classification 20 kingdom characterized by nutrition by ingestion, multicellular and eukaryotic 15

16 Why You Are Homo sapiens 1. At present there are six generally recognized kingdoms of organisms and three domains. Since human cells have discrete nuclei surrounded by a nuclear membrane, you belong to the domain Eukarya. Your cells lack chloroplasts and cell walls, and you are a multicellular heterotroph, with highly differentiated tissues and organ systems. That makes you a member of the kingdom Animalia. 2. What kind of animal are you? You possess a spinal column composed of bony vertebrae that has largely replaced a cartilaginous rod you had as an embryo, the notochord. At that time you also had structures that had you been a fish would have developed into gill slits. You have a dorsal nerve cord and brain. These traits mark you out as a chordate and a vertebrate that is, you belong to the phylum Chordata (because you either have or have had a notochord) and to the subphylum Vertebrata (because you have vertebrae that replaced the softer notochord) 3. Among the vertebrates there are several classes: cartilaginous fish, bony fish, jawless fish, amphibia, reptiles, mammals and birds. You are homeothermic (warm blooded) and so must be either a bird or a mammal. Lacking feathers and having teeth and (if you are female) the potential for nursing your young you are of the class Mammalia. If you are male, do not be concerned; even if you cannot nurse, having hair is enough. 4. A number of orders exist within the classes. The Insectivores, for instance, include the moles and shrews, the Chiroptera are the bats, and the Carnivora include dogs, cats, and ferrets among others. Your opposablethumbs, frontally directed eyes, flat fingernails, and other characteristics identify you as the order Primate, along with monkeys, apes and tarsiers. 5. Primates include a number of families. You and the New World monkeys (Western hemisphere) are obviously very different they have prehensile tails, for instance, which you and all Old World monkeys (Eastern hemisphere) and apes lack: indeed, you and the apes lack tails altogether. Your posture is upright, you have long legs and short arms, and not much body hair. You are blessed with your very own family with no other occupants: family Hominidae. 6. Within the Hominidae, anthropologists distinguish several species, all but one of which are known only as fossils. Australopithecus is one of these. If you are alive, you do not belong to any of those extinct genera, but to the genus Homo. 7. Again, the genus Homo has only one living species called sapiens. Since many taxonomists insist that the species name always includes the genus name, (binomial nomenclature) please think of yourself as Homo sapiens. 16

17

1. Construct and use dichotomous keys to identify organisms.

1. Construct and use dichotomous keys to identify organisms. OBJECTIVE SHEET SYSTEMATICS AND CLASSIFICATION 1. Construct and use dichotomous keys to identify organisms. 2. Clarify the purpose behind systematics and phylogeny. 3. Identify the structures of a phylogenetic

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Class: _ Date: _ Ch 17 Practice test 1. A segment of DNA that stores genetic information is called a(n) a. amino acid. b. gene. c. protein. d. intron. 2. In which of the following processes does change

More information

Phylogeny 9/8/2014. Evolutionary Relationships. Data Supporting Phylogeny. Chapter 26

Phylogeny 9/8/2014. Evolutionary Relationships. Data Supporting Phylogeny. Chapter 26 Phylogeny Chapter 26 Taxonomy Taxonomy: ordered division of organisms into categories based on a set of characteristics used to assess similarities and differences Carolus Linnaeus developed binomial nomenclature,

More information

Multiple Choice Write the letter on the line provided that best answers the question or completes the statement.

Multiple Choice Write the letter on the line provided that best answers the question or completes the statement. Chapter 18 Classification Chapter Test A Multiple Choice Write the letter on the line provided that best answers the question or completes the statement. 1. Scientists assign each kind of organism a universally

More information

Section 18-1 Finding Order in Diversity

Section 18-1 Finding Order in Diversity Name Class Date Section 18-1 Finding Order in Diversity (pages 447-450) Key Concepts How are living things organized for study? What is binomial nomenclature? What is Linnaeus s system of classification?

More information

Chapter 26 Phylogeny and the Tree of Life

Chapter 26 Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life Biologists estimate that there are about 5 to 100 million species of organisms living on Earth today. Evidence from morphological, biochemical, and gene sequence

More information

9.3 Classification. Lesson Objectives. Vocabulary. Introduction. Linnaean Classification

9.3 Classification. Lesson Objectives. Vocabulary. Introduction. Linnaean Classification 9.3 Classification Lesson Objectives Outline the Linnaean classification, and define binomial nomenclature. Describe phylogenetic classification, and explain how it differs from Linnaean classification.

More information

Classification Practice Test

Classification Practice Test Classification Practice Test Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. An organism may have different

More information

CLASSIFICATION NOTES

CLASSIFICATION NOTES CLASSIFICATION NOTES Classification Classification = arrangement of living things into groups according to their observed similarities. Important because it allows us to be able to study life easier Living

More information

Fig. 26.7a. Biodiversity. 1. Course Outline Outcomes Instructors Text Grading. 2. Course Syllabus. Fig. 26.7b Table

Fig. 26.7a. Biodiversity. 1. Course Outline Outcomes Instructors Text Grading. 2. Course Syllabus. Fig. 26.7b Table Fig. 26.7a Biodiversity 1. Course Outline Outcomes Instructors Text Grading 2. Course Syllabus Fig. 26.7b Table 26.2-1 1 Table 26.2-2 Outline: Systematics and the Phylogenetic Revolution I. Naming and

More information

Chapter 18: Classification

Chapter 18: Classification Chapter 18: Classification Dichotomous Key A way to identify unknown organisms Contains major characteristics of groups of organisms Pairs of CONTRASTING descriptions 4. After each description key either

More information

Characteristics of Life

Characteristics of Life UNIT 2 BIODIVERSITY Chapter 4- Patterns of Life Biology 2201 Characteristics of Life All living things share some basic characteristics: 1) living things are organized systems made up of one or more cells

More information

Taxonomy and Biodiversity

Taxonomy and Biodiversity Chapter 25/26 Taxonomy and Biodiversity Evolutionary biology The major goal of evolutionary biology is to reconstruct the history of life on earth Process: a- natural selection b- mechanisms that change

More information

CH. 18 Classification

CH. 18 Classification CH. 18 Classification Name:_ 1. Biologists use a classification system to group organisms in part because organisms a. are going extinct. b. are very numerous and diverse. c. are too much alike. d. share

More information

Outline. Classification of Living Things

Outline. Classification of Living Things Outline Classification of Living Things Chapter 20 Mader: Biology 8th Ed. Taxonomy Binomial System Species Identification Classification Categories Phylogenetic Trees Tracing Phylogeny Cladistic Systematics

More information

Objectives. Classification. Activity. Scientists classify millions of species

Objectives. Classification. Activity. Scientists classify millions of species Objectives Classification Notes 8.1 Summarize classification Describe the evidence used to classify organisms. List the seven levels of classification. Describe and list the six kingdoms of living organisms

More information

SECTION 17-1 REVIEW BIODIVERSITY. VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms.

SECTION 17-1 REVIEW BIODIVERSITY. VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms. SECTION 17-1 REVIEW BIODIVERSITY VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms. 1. taxonomy, taxon 2. kingdom, species 3. phylum, division 4. species name, species

More information

Learning Outcome B1 13/10/2012. Student Achievement Indicators. Taxonomy: Scientific Classification. Student Achievement Indicators

Learning Outcome B1 13/10/2012. Student Achievement Indicators. Taxonomy: Scientific Classification. Student Achievement Indicators Classification of Living Organisms Learning Outcome B1 Learning Outcome B1 Apply the Kingdom System of classification to study the diversity of organisms. Student Achievement Indicators Students who have

More information

The Road to the Six Kingdoms

The Road to the Six Kingdoms Bio 2201 Unit 2 The Road to the Six Kingdoms A 2011study estimated there are about 8.6 million species on earth. Only 1.8 million species have been identified and named. *Chromista is a sub-kingdom group

More information

Biology Classification Unit 11. CLASSIFICATION: process of dividing organisms into groups with similar characteristics

Biology Classification Unit 11. CLASSIFICATION: process of dividing organisms into groups with similar characteristics Biology Classification Unit 11 11:1 Classification and Taxonomy CLASSIFICATION: process of dividing organisms into groups with similar characteristics TAXONOMY: the science of classifying living things

More information

Modern Evolutionary Classification. Section 18-2 pgs

Modern Evolutionary Classification. Section 18-2 pgs Modern Evolutionary Classification Section 18-2 pgs 451-455 Modern Evolutionary Classification In a sense, organisms determine who belongs to their species by choosing with whom they will mate. Taxonomic

More information

Unit Two: Biodiversity. Chapter 4

Unit Two: Biodiversity. Chapter 4 Unit Two: Biodiversity Chapter 4 A. Classifying Living Things (Ch.4 - page 100) Scientific knowledge is constantly evolving ( changing ): new evidence is discovered laws and theories are tested and possibly

More information

chapter 18 Multiple Choice Identify the choice that best completes the statement or answers the question.

chapter 18 Multiple Choice Identify the choice that best completes the statement or answers the question. chapter 18 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. One goal of scientists is to assign every organism a universally accepted name according to

More information

What makes things alive? CRITERIA FOR LIFE

What makes things alive? CRITERIA FOR LIFE What makes things alive? CRITERIA FOR LIFE Learning Goals I can determine if something is alive based on the criteria for life. I can describe the history of life on Earth. I can describe how organisms

More information

Classification. copyright cmassengale

Classification. copyright cmassengale Classification 1 Species of Organisms There are 13 billion known species of organisms This is only 5% of all organisms that ever lived!!!!! New organisms are still being found and identified 2 What is

More information

Classification and Viruses Practice Test

Classification and Viruses Practice Test Classification and Viruses Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Biologists use a classification system to group organisms in part

More information

Summary Finding Order in Diversity Modern Evolutionary Classification

Summary Finding Order in Diversity Modern Evolutionary Classification ( Is (.'I.isiifiuilimi Summary 18-1 Finding Order in Diversity There are millions of different species on Earth. To study this great diversity of organisms, biologists must give each organ ism a name.

More information

9/19/2012. Chapter 17 Organizing Life s Diversity. Early Systems of Classification

9/19/2012. Chapter 17 Organizing Life s Diversity. Early Systems of Classification Section 1: The History of Classification Section 2: Modern Classification Section 3: Domains and Kingdoms Click on a lesson name to select. Early Systems of Classification Biologists use a system of classification

More information

Zoology. Classification

Zoology. Classification Zoology Zoology involves studying all aspects of organisms belonging to the animal kingdom taxonomy, animal physiology, comparative anatomy, and ecology. Our study of Zoology will be focused on the different

More information

Chapter 26 Phylogeny and the Tree of Life

Chapter 26 Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life Chapter focus Shifting from the process of how evolution works to the pattern evolution produces over time. Phylogeny Phylon = tribe, geny = genesis or origin

More information

CLASSIFICATION. Why Classify? 2/18/2013. History of Taxonomy Biodiversity: variety of organisms at all levels from populations to ecosystems.

CLASSIFICATION. Why Classify? 2/18/2013. History of Taxonomy Biodiversity: variety of organisms at all levels from populations to ecosystems. Why Classify? Classification has been around ever since people paid attention to organisms. CLASSIFICATION One primeval system was based on harmful and non-harmful organisms. Life is easier when we organize

More information

8/23/2014. Phylogeny and the Tree of Life

8/23/2014. Phylogeny and the Tree of Life Phylogeny and the Tree of Life Chapter 26 Objectives Explain the following characteristics of the Linnaean system of classification: a. binomial nomenclature b. hierarchical classification List the major

More information

Concept Modern Taxonomy reflects evolutionary history.

Concept Modern Taxonomy reflects evolutionary history. Concept 15.4 Modern Taxonomy reflects evolutionary history. What is Taxonomy: identification, naming, and classification of species. Common Names: can cause confusion - May refer to several species (ex.

More information

Finding Order in Diversity

Finding Order in Diversity Finding Order in Diversity Videos Scishow Taxonomy: https://youtu.be/f38bmgpcz_i Bozeman Taxonomy: https://youtu.be/tyl_8gv7rie Terms to Know 1. Radiometric Dating 12. Miller and Urey s 2. Geologic Time

More information

NAME: DATE: PER: CLASSIFICATION OF LIFE Powerpoint Notes

NAME: DATE: PER: CLASSIFICATION OF LIFE Powerpoint Notes NAME: DATE: PER: CLASSIFICATION OF LIFE Powerpoint Notes 1. Species of Organisms a) There are known species of organisms b) This is only of all organisms that ever lived. c) are still being found and identified.

More information

The Tree of Life. Chapter 17

The Tree of Life. Chapter 17 The Tree of Life Chapter 17 1 17.1 Taxonomy The science of naming and classifying organisms 2000 years ago Aristotle Grouped plants and animals Based on structural similarities Greeks and Romans included

More information

Classification of Living Things. Unit II pp 98

Classification of Living Things. Unit II pp 98 Classification of Living Things Unit II pp 98 Why There is a Need for Classifying There are over 2 million different types of organisms known. biologists can organize living things into groups. Taxonomy

More information

Taxonomy. The science of naming organisms.

Taxonomy. The science of naming organisms. Taxonomy The science of naming organisms. Why Classify? Aristotle Did It Plant or animal? If an animal, does it Fly Swim Crawl Simple classifications Used common names Carolus Linnaeus did it better

More information

Station 1. Explain how scientists use each item below to determine the evolutionary relationships among organisms. 1. Structural similarities:

Station 1. Explain how scientists use each item below to determine the evolutionary relationships among organisms. 1. Structural similarities: Station 1 Explain how scientists use each item below to determine the evolutionary relationships among organisms. 1. Structural similarities: 2. Breeding behavior: 3. Geographical distribution: 4. Chromosome

More information

The Classification of Plants and Other Organisms. Chapter 18

The Classification of Plants and Other Organisms. Chapter 18 The Classification of Plants and Other Organisms Chapter 18 LEARNING OBJECTIVE 1 Define taxonomy Explain why the assignment of a scientific name to each species is important for biologists KEY TERMS TAXONOMY

More information

Chapter 16: Reconstructing and Using Phylogenies

Chapter 16: Reconstructing and Using Phylogenies Chapter Review 1. Use the phylogenetic tree shown at the right to complete the following. a. Explain how many clades are indicated: Three: (1) chimpanzee/human, (2) chimpanzee/ human/gorilla, and (3)chimpanzee/human/

More information

CLASSIFICATION OF LIVING THINGS

CLASSIFICATION OF LIVING THINGS CLASSIFICATION OF LIVING THINGS 1. Taxonomy The branch of biology that deals with the classification of living organisms About 1.8 million species of plants and animals have been identified. Some scientists

More information

PSI Biology Classification Classification

PSI Biology Classification Classification Classification Classification & Naming Classwork 1. What is the correct order of the current classification hierarchy, from most general to most specific? 2. Are two organisms in domain more or less closely

More information

Unit 8 Classification

Unit 8 Classification Unit 8 Classification Chapter 18: Classification www.pearsonrealize.com 18.1 Finding Order in Diversity (510) 18.2 Modern Evolutionary Classification (516) 18.3 Building the Tree of Life (523) Name: Teacher:

More information

What is classification?

What is classification? Classification Table of Contents Objectives Explain why and how organisms are classified. List the eight levels of classification. Explain scientific names. Describe how dichotomous keys help in identifying

More information

Classification Systems. - Taxonomy

Classification Systems. - Taxonomy Classification Systems - Taxonomy Why Classify? 2.5 million kinds of organisms Not complete- 20 million organisms estimated Must divide into manageable groups To work with the diversity of life we need

More information

Carolus Linnaeus System for Classifying Organisms. Unit 3 Lesson 2

Carolus Linnaeus System for Classifying Organisms. Unit 3 Lesson 2 Carolus Linnaeus System for Classifying Organisms Unit 3 Lesson 2 Students will be able to: Conclude some of the classification benefits and importance. Define what is meant by species. Describe the binomial

More information

Classification of Living Things Ch.11 Notes

Classification of Living Things Ch.11 Notes Classification of Living Things Ch.11 Notes Why do we classify things?! Supermarket aisles! Libraries! Classes! Teams/sports! Members of a family! Roads! Cities! Money What is classification?! Classification:

More information

Kingdoms in Eukarya: Protista, Fungi, Plantae, & Animalia Each Eukarya kingdom has distinguishing characteristics:

Kingdoms in Eukarya: Protista, Fungi, Plantae, & Animalia Each Eukarya kingdom has distinguishing characteristics: NAME pg. 1 Classification Domain Kingdom Phylum Class Order Family Genus species Eukarya Animalia Chordata Mammalia Primate Hominidae Homo sapiens Mnemonic: DUMB KING PHILIP CAME OVER FOR GOOD SOUP Domain

More information

Autotrophs capture the light energy from sunlight and convert it to chemical energy they use for food.

Autotrophs capture the light energy from sunlight and convert it to chemical energy they use for food. Prokaryotic Cell Eukaryotic Cell Autotrophs capture the light energy from sunlight and convert it to chemical energy they use for food. Heterotrophs must get energy by eating autotrophs or other heterotrophs.

More information

Background: Why Is Taxonomy Important?

Background: Why Is Taxonomy Important? Background: Why Is Taxonomy Important? Taxonomy is the system of classifying, or organizing, living organisms into a system based on their similarities and differences. Imagine you are a scientist who

More information

Unit 5: Taxonomy. KEY CONCEPT Organisms can be classified based on physical similarities.

Unit 5: Taxonomy. KEY CONCEPT Organisms can be classified based on physical similarities. KEY CONCEPT Organisms can be classified based on physical similarities. Linnaeus developed the scientific naming system still used today. Taxonomy is the science of naming and classifying organisms. White

More information

Unit 2 Biodiversity Ch. 4 Patterns of Life

Unit 2 Biodiversity Ch. 4 Patterns of Life Unit 2 Biodiversity Ch. 4 Patterns of Life Name: 4.1 Characteristics of Life In order to be considered living, an organism must possess the following Six (6) characteristics: 1. Living things are organized

More information

Macroevolution Part I: Phylogenies

Macroevolution Part I: Phylogenies Macroevolution Part I: Phylogenies Taxonomy Classification originated with Carolus Linnaeus in the 18 th century. Based on structural (outward and inward) similarities Hierarchal scheme, the largest most

More information

UNIT 4 TAXONOMY AND CLASSIFICATION

UNIT 4 TAXONOMY AND CLASSIFICATION UNIT 4 TAXONOMY AND CLASSIFICATION CHAPTER 13 IN TEXT READ P. 4.0 CLASSIFICATION AND TAXONOMY 4.1 Define taxonomy 4.2 Discuss the reasons for classifying organisms 4.3 Define species and binomial nomenclature

More information

2 Big Challenges of Classification

2 Big Challenges of Classification Classification Classification Classify to group things together based on similarities Why Classify? To make organisms/items easier to identify To make organisms/items easier to compare Allows us to predict

More information

The Tree of Life Classification Based on Evolutionary Relationships Modern classification is based on evolutionary relationships.

The Tree of Life Classification Based on Evolutionary Relationships Modern classification is based on evolutionary relationships. CHAPTER 17 The Tree of Life GETTING READY TO LEARN Preview Key Concepts 17.1 The Linnaean System of Classification Organisms can be classified based on physical similarities. 17.2 Classification Based

More information

Chapter 17. Organizing Life's Diversity

Chapter 17. Organizing Life's Diversity Chapter 17 Organizing Life's Diversity Key Concepts: Chapter 17 1. List the 3 domains and the 6 kingdoms. 2. Our current system of classification was originally based on structures; scientists now base

More information

Classification of organisms. The grouping of objects or information based on similarities Taxonomy: branch of biology that classifies organisms

Classification of organisms. The grouping of objects or information based on similarities Taxonomy: branch of biology that classifies organisms Bell Work: Think about your CD, video game, DVD or book collection at home. How would you separate this collection into different groups? What would the groups be? Try to come up with 4 or 5. Classification

More information

Origins of Life. Fundamental Properties of Life. Conditions on Early Earth. Evolution of Cells. The Tree of Life

Origins of Life. Fundamental Properties of Life. Conditions on Early Earth. Evolution of Cells. The Tree of Life The Tree of Life Chapter 26 Origins of Life The Earth formed as a hot mass of molten rock about 4.5 billion years ago (BYA) -As it cooled, chemically-rich oceans were formed from water condensation Life

More information

1.1 Characteristics of Life Block: Date:

1.1 Characteristics of Life Block: Date: Biology 12 Name: 1.1 Characteristics of Life Block: Date: ization of Life (p. 3) Definition Cell Example Blood cell Tissue Muscle tissue Several tissues joined together to form a function system Circulatory

More information

CLASSIFICATION. Similarities and Differences

CLASSIFICATION. Similarities and Differences CLASSIFICATION Similarities and Differences TEKS 8A: Students will define taxonomy and recognize the importance of a standard system to the scientific community 8B: Students will categorize organisms using

More information

UNITY AND DIVERSITY. Why do we classify things? Organizing the world of organsims. The Tree of Life

UNITY AND DIVERSITY. Why do we classify things? Organizing the world of organsims. The Tree of Life Classification Why do we classify things? Classification provides scientists and students a way to sort and group organisms for easier study. There are millions of organisms on earth! Organisms are classified

More information

Classification Cladistics & The Three Domains of Life. Biology Mrs. Flannery

Classification Cladistics & The Three Domains of Life. Biology Mrs. Flannery Classification Cladistics & The Three Domains of Life Biology Mrs. Flannery Finding Order in Diversity Earth is over 4.5 billion years old. Life on Earth appeared approximately 3.5 billion years ago and

More information

The most widely used biological classification system has six kingdoms within three domains.

The most widely used biological classification system has six kingdoms within three domains. Section 3: The most widely used biological classification system has six kingdoms within three domains. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the major characteristics

More information

Chapter 17A. Table of Contents. Section 1 Categories of Biological Classification. Section 2 How Biologists Classify Organisms

Chapter 17A. Table of Contents. Section 1 Categories of Biological Classification. Section 2 How Biologists Classify Organisms Classification of Organisms Table of Contents Section 1 Categories of Biological Classification Section 1 Categories of Biological Classification Classification Section 1 Categories of Biological Classification

More information

Evolution and Taxonomy Laboratory

Evolution and Taxonomy Laboratory Evolution and Taxonomy Laboratory 1 Introduction Evolution refers to the process by which forms of life have changed through time by what is described as descent with modification. Evolution explains the

More information

The Living Environment Unit 4 History of Biological Diversity Unit 17: Organizing the Diversity of Life-class key.

The Living Environment Unit 4 History of Biological Diversity Unit 17: Organizing the Diversity of Life-class key. Name: Period: Chapter 17 assignments Pages/Sections Date Assigned Date Due Topic: The Tree of Life Objective: How may we organize so many different organisms? The Tree of Life o organize organisms by structure

More information

Chapter 1. How Do Biologists Study Life?

Chapter 1. How Do Biologists Study Life? Chapter 1 How Do Biologists Study Life? Biology is the study of life Biologists ask questions about all aspects of living organisms Bios logos means a discourse on life in Greek Biology has many sub-disciplines

More information

Section 1 Lesson 1 Living Versus Nonliving

Section 1 Lesson 1 Living Versus Nonliving Page 1 of 12 Section 1 Lesson 1 Living Versus Nonliving Characteristics of Living Things In order to be considered living, an organism must possess the following Six (6) characteristics. a. Living things

More information

Chapter 18: Classification Structured Notes

Chapter 18: Classification Structured Notes Chapter 18: Classification Structured Notes Why Classify? 1) ) Taxon = Taxonomy = Field of biology that deals with classifying and naming organisms Taxonomist = is a scientists who determines relationships

More information

Phylogeny and the Tree of Life

Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Unit 9: Taxonomy (Classification) Notes

Unit 9: Taxonomy (Classification) Notes Name Exam Date Class Unit 9: Taxonomy (Classification) Notes What is Classification? is when we place organisms into based on their. Classification is also known as. Taxonomists are scientists that & organisms

More information

Biology Unit 02 Biodiversity Section 01 Test Taxonomy/Classification

Biology Unit 02 Biodiversity Section 01 Test Taxonomy/Classification Biology 2201(A) Unit 02 Biodiversity Page 1 of 12 Biology 2201 Unit 02 Biodiversity Section 01 Test Taxonomy/Classification Instructions for Students: 1. This test is composed of two parts. Part 1 consists

More information

Any evidence of an organism that lived long ago. Sedimentary. Relative Dating. Absolute Dating

Any evidence of an organism that lived long ago. Sedimentary. Relative Dating. Absolute Dating A fossil is: Any evidence of an organism that lived long ago Sedimentary Rock Almost all fossils are found in How do scientists determine the age of fossils? Relative Dating Absolute Dating The deeper

More information

What is the purpose of the Classifying System? To allow the accurate identification of a particular organism

What is the purpose of the Classifying System? To allow the accurate identification of a particular organism What is the purpose of the Classifying System? To allow the accurate identification of a particular organism Taxonomy The practice of classifying organisms -Taxonomy was founded nearly 300 years ago by

More information

Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships

Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships Chapter 26: Phylogeny and the Tree of Life You Must Know The taxonomic categories and how they indicate relatedness. How systematics is used to develop phylogenetic trees. How to construct a phylogenetic

More information

Prokaryote vs. Eukaryote

Prokaryote vs. Eukaryote DIVERSITY OF LIVING THINGS Prokaryote vs. Eukaryote 1. Test Monday 2. Lab Report Rough Draft (typed) due Wednesday 3. Lab Report Due Friday Oct 7th 4. Letter to MP due Tuesday Oct 11 th CAROLUS LINNAEUS

More information

PHYLUM CLASS ORDER FAMILY SPECIES

PHYLUM CLASS ORDER FAMILY SPECIES CLASSIFICATION LEVELS KINGDOM PHYLUM CLASS ORDER FAMILY GENUS SPECIES Classification of ME! Animalia Multicellular, mobile, eukaryotic, heterotroph Chordata Dorsal nerve chord, pharyngeal gill slits, bilateral

More information

Unit 1 The Study of Life Student Notes

Unit 1 The Study of Life Student Notes Unit 1 The Study of Life Student Notes 1.1 Introduction to Biology What is Science? is a special way of looking at and learning about the. a. Looks into relationships between. b. Tries to those relationships

More information

How Biological Diversity Evolves

How Biological Diversity Evolves CHAPTER 14 How Biological Diversity Evolves PowerPoint Lectures for Essential Biology, Third Edition Neil Campbell, Jane Reece, and Eric Simon Essential Biology with Physiology, Second Edition Neil Campbell,

More information

Biology 211 (2) Week 1 KEY!

Biology 211 (2) Week 1 KEY! Biology 211 (2) Week 1 KEY Chapter 1 KEY FIGURES: 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 VOCABULARY: Adaptation: a trait that increases the fitness Cells: a developed, system bound with a thin outer layer made of

More information

Phylogeny and the Tree of Life

Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life Lecture Outline Overview: Investigating the Tree of Life Evolutionary biology is about both process and pattern. o The processes of evolution are natural selection

More information

Organizing Life on Earth

Organizing Life on Earth Organizing Life on Earth Inquire: Organizing Life on Earth Overview Scientists continually obtain new information that helps to understand the evolutionary history of life on Earth. Each group of organisms

More information

Taxonomy. Taxonomy is the science of classifying organisms. It has two main purposes: to identify organisms to represent relationships among organisms

Taxonomy. Taxonomy is the science of classifying organisms. It has two main purposes: to identify organisms to represent relationships among organisms Taxonomy Taxonomy Taxonomy is the science of classifying organisms. It has two main purposes: to identify organisms to represent relationships among organisms Binomial Nomenclature Our present biological

More information

The Tree of Life. Phylogeny

The Tree of Life. Phylogeny The Tree of Life Phylogeny Phylogenetics Phylogenetic trees illustrate the evolutionary relationships among groups of organisms, or among a family of related nucleic acid or protein sequences Each branch

More information

PHYLOGENY & THE TREE OF LIFE

PHYLOGENY & THE TREE OF LIFE PHYLOGENY & THE TREE OF LIFE PREFACE In this powerpoint we learn how biologists distinguish and categorize the millions of species on earth. Early we looked at the process of evolution here we look at

More information

Sorting It All Out CLASSIFICATION OF ORGANISMS

Sorting It All Out CLASSIFICATION OF ORGANISMS Sorting It All Out CLASSIFICATION OF ORGANISMS 1 WHAT DO I NEED TO LEARN FROM THIS UNIT? Classify organisms into the currently recognized kingdoms according to characteristics that they share. Be familiar

More information

Classification. Essential Question Why is it important to place living things into categories?

Classification. Essential Question Why is it important to place living things into categories? Classification Essential Question Why is it important to place living things into categories? Compare and contrast Taxonomy comparison 18.1 History of Taxonomy Objectives Describe Aristotle s classification

More information

Classification. Species of Organisms. What is Classification?

Classification. Species of Organisms. What is Classification? Classification 1 Species of Organisms There are known species of organisms This is organisms that ever lived!!!!! are still being found and identified 2 What is Classification? is the arrangement of organisms

More information

Hierarchies can be represented as trees:

Hierarchies can be represented as trees: Diversity of Life Classification - an organized scheme for grouping organisms - a tool for communication - Hierarchical - a series of successive and inclusive rankings Domain - the highest rank - contains

More information

PHYLOGENY AND SYSTEMATICS

PHYLOGENY AND SYSTEMATICS AP BIOLOGY EVOLUTION/HEREDITY UNIT Unit 1 Part 11 Chapter 26 Activity #15 NAME DATE PERIOD PHYLOGENY AND SYSTEMATICS PHYLOGENY Evolutionary history of species or group of related species SYSTEMATICS Study

More information

3. Discuss the various clues that provide evidence for evolution.

3. Discuss the various clues that provide evidence for evolution. OBJECTIVE SHEET EVOLUTION 1. Describe the contributions of Hutton,Lyell, Lamarck and Malthus to the evolutionary thought of Charles Darwin. 2. Explain Natural Selection as a mechanism to describe how evolution

More information

Classification is the grouping of objects based on similarities. Examine the evolutionary basis of modern classification systems.

Classification is the grouping of objects based on similarities. Examine the evolutionary basis of modern classification systems. 1 Classification is the grouping of objects based on similarities. Examine the evolutionary basis of modern classification systems. (six kingdoms) 2 Classification Classification is an important In understanding

More information

Announcements: 1. Labs meet this week 2. Lab manuals have been ordered 3. Some slides from each lecture will be on the web 4. Study questions will be

Announcements: 1. Labs meet this week 2. Lab manuals have been ordered 3. Some slides from each lecture will be on the web 4. Study questions will be Announcements: 1. Labs meet this week 2. Lab manuals have been ordered 3. Some slides from each lecture will be on the web 4. Study questions will be posted after each lecture Prokaryotes Eukaryotes Protozoa

More information

Classification. A. Why classify?

Classification. A. Why classify? Classification A. Why classify? 1. Organize in a meaningful way Too many living things to talk about without organization 2. Universal naming All scientists everywhere use the one same name. For example:

More information

Name Class Date. In the space provided, write the letter of the description that best matches the term or phrase.

Name Class Date. In the space provided, write the letter of the description that best matches the term or phrase. Assessment Chapter Test B Classification of Organisms In the space provided, write the letter of the description that best matches the term or phrase. 1. Archaea 2. Bacteria a. kingdom; includes Euglena

More information

Chapter 17. Organizing Life's Diversity

Chapter 17. Organizing Life's Diversity Chapter 17 Organizing Life's Diversity Key Concepts: Chapter 17 1. List the six kingdoms. 2. Our current system of classification was originally based on structures; scientists now base classification

More information

Characteristics of Living Things Card Sort

Characteristics of Living Things Card Sort Characteristics of Living Things Card Sort All of these terms are characteristics of organisms that allow scientists to classify (organize) them into groups. Chapter 9 in your text covers the characteristics

More information

How related are organisms?

How related are organisms? The Evolution and Classification of Species Darwin argued for adaptive radiation in which demes spread out in a given environment and evolved How related are organisms? Taonomy the science of classifying

More information