BIOLOGY 1030 THINGS TO STUDY FOR THE LECTURE MIDTERM

Size: px
Start display at page:

Download "BIOLOGY 1030 THINGS TO STUDY FOR THE LECTURE MIDTERM"

Transcription

1 BIOLOGY 1030 THINGS TO STUDY FOR THE LECTURE MIDTERM The following is a list of topics or concepts that you should know for the lecture portion of the midterm exam. These statements/questions are not meant to be answered in a few words, but rather they are meant to get you thinking about all of the aspects of the topic in question. You should know and be able to define and use all important terms in the attached list. This list may seem like a lot, but that is only because it IS a lot. Try to link common terms or themes; there is often considerable overlap between the groups. This is where the table should help or you can make your own. This guide is not intended to scare you. Many of the terms are easily defined and some concepts are simpler than others. If you can clearly and concisely discuss these points, you are sure to do well. Feel free to come by and see me for help if you need it! TOPIC 1 ANIMAL DIVERSITY (~16Q) 1. What is the basic definition of an animal? 2. Which animals (taxa) have the following: a. True tissues? b. Diploblastic versus triploblastic? c. Asymmetrical vs. radial vs. bilateral symmetry? d. Acoelomate vs. pseudocoelomate vs, eucoelomate? e. Protostome vs. deuterostome? i. Cleavage pattern? ii. Coelom formation? f. Metameric segmentation? 3. What is the basic body plan for each of the major taxa discussed in class? a. Are there any specialized cells/structures for each taxa? 4. Using the molluscan body plan as an example describe adaptive radiation. a. Try to apply the idea of adaptive radiation to modifications of a common body plan in other classes we ve discussed. 5. What are the basic characters for the Lophotrochozoa? The Edysozoa? 6. You should be able to fill out the majority of the table provided earlier. a. Answers will posted on my office door and online. 7. What brought about this new division? 8. How do we organize the phylogeny of animals? a. You should be able to compare and contrast both traditional and molecular views. 9. What is parsimony? How do we apply it to phylogeny? 10. What are the proposed evolutionary patterns regarding the above traits? a. Are they different for the traditional vs. molecular phylogenies?

2 TOPIC 2 REPRODUCTION & DEVELOPMENT 1. What are the stages of animal development? 2. Describe the process of gametogenesis. Where does this occur? a. What are the differences between spermatogenesis and oogenesis? 3. What events occur during fertilization? a. Where does fertilization occur? 4. How does yolk affect cleavage? 5. What are the stages seen in embryo development? a. What major events occur at each stage? 6. Compare and contrast oviparity, ovoviviparity and viviparity. a. What are the advantages and disadvantages of each? 7. What are the three types of gastrulation? a. Why is there a difference? 8. How do animals reproduce asexually? a. What are the varieties of parthenogenesis? 9. What is a hermaphrodite? What types of hermaphrodites are there? TOPIC 3 NUTRITION 1. What are the basic dietary requirements of all animals? a. What is an essential nutrient? 2. What are the methods animals use to obtain food (feeding strategies)? a. Can you provide examples of each? b. What is a potential complication with blood feeding? 3. What is the advantage of ingesting food in pieces rather than whole? a. How is dentition (teeth) changed to reflect an animal s diet? b. How is the intestinal tract modified to reflect an animal s diet? 4. How do animals process the food they eat? a. Ingestion digestion absorption elimination 5. What is the difference between a gastrovascular cavity and an alimentary canal? 6. What are some methods animals use to help breakdown cellulose? TOPIC 4 CIRCULATION & GAS EXCHANGE 1. How is respiration different from cellular respiration? 2. How do gases move from place to place? How efficient is this movement? a. What are the requirements for gases to move across a surface? 3. What types of respiratory surfaces do animal s use? a. When are these strategies employed? 4. What is meant by a countercurrent exchange mechanism? 5. Compare the strategies employed by insects and other air breathing animals. 6. Compare and contrast the three types of circulatory systems. a. What are the advantages of each? b. What are the circulatory fluids in each? Why the difference? 7. What types of blood vessels are used to move the circulatory fluid? a. How does their structure reflect their function? 8. Describe the evolution of the vertebrate circulatory system from fishes to mammals? 9. Discuss how the gradients of O 2 and CO 2 promote exchange at the tissues.

3 TOPIC 5 THE IMMUNE SYSTEM 1. What are the 2 major branches of the immune system? a. How do they differ in their function? b. What are the cell types involved in each (phagocytes & lymphocytes)? What are the major functions of these cells? 2. Describe the process of phagocytosis. a. How do phagocytes use this to protect the body? 3. How does complement kill invading pathogens? 4. What are the cardinal signs of inflammation? a. What are the underlying causes for these signs? 5. Describe the events of the inflammatory response. 6. How are antigens presented to T-cells? How doe T-cells recognize specific antigens? a. How do helper and cytotoxic T-cells respond once recognition has occurred? 7. What do B-cells do upon activation? Describe clonal expansion. 8. What are memory cells for? 9. What are the major functions of antibodies? TOPIC 6 THE ENDOCRINE SYSTEM 1. What are the types of signals used for the coordination of bodily functions? 2. What are the types of chemical signals and how do thy compare? 3. What is the difference between an endocrine and exocrine gland? 4. How is the production/secretion of hormones regulated in the body? a. How can target cells regulate their response to a hormone? 5. You should be able to briefly discuss the functions of those hormones discussed in class. a. Only to the level at which they were discussed. 6. What is the underlying hormonal disturbance in the few diseases mentioned? TOPIC 7 THE NERVOUS SYSTEM 1. What are the divisions of the nervous system? What are the functional units? 2. What is the anatomy of a neuron? What is myelination? 3. Describe the resting membrane potential. 4. How do neurons generate action potentials? What is meant by threshold voltage? a. What channels/pumps are involved? b. What happens at the stages of the action potential? c. How do they propagate along the axon? i. What is salutatory conduction? 7. What happens at the chemical synapse? 5. How does the target cell membrane potential respond to EPSPs or IPSPs? 6. Discuss the organization of the nervous system in radially symmetrical organisms versus those that are bilaterally symmetrical. 7. What is cephalization? What advantages does it have?

4 TOPIC 8 ANIMAL BEHAVIOUR (~3Q) 1. What are behaviours? 2. What are the proximate and ultimate causes of a behaviour? Try to think of these with respect to behaviours you observe. 3. What is the basis of the nature versus nurture debate? 4. What are innate behaviours? Can you describe and provide examples of kinesis, taxis, FAP or imprinting? 5. You should be able to discuss and provide examples of the 4 types of learning exhibited by animals? a. Compare and contrast classical versus operant conditioning. 6. What type of learning are you exhibiting by answering these questions? (If you have to think about this question that IS your answer.) LABORATORY COMPONENT (10Q)

5 LIST OF IMPORTANT TERMS TOPIC 1 ANIMAL DIVERSITY Heterotrophy Invertebrates Vertebrates Body symmetry Cephalization True tissues Endoderm Mesoderm Ectoderm Diploblastic Triploblastic Body cavity = coelom Acoelomate Pseudocoelomate Eucoelomate Protostome Deuterostome Parazoa Porifera Pinacoderm Mesohyl Choanoderm Totipotent Pincaocytes Choanocytes Spongocytes Eumetazoa Cnidaria Medusa Polyp Mesoglea Gastrozooid Dactylozooid Gonozooid Autozooid Lophotrochozoa Trochophore larva Platyhelminthes Turbellaria Cestoda Trematoda Mollusca Polyplacophora Gastropoda Bivalvia Cephalopoda Adaptive radiation Muscular foot Visceral mass Mantle Radula Annelida Polychaeta Hirudinea Oligocaeta Metameric segmentation Homonomous Heteronomous Palps Setae Parapodia Ecdysozoa Ecdysis Nematoda Arthropoda Myriapoda Chelicerata Chelicera Insecta Crustacea Tagmatization Head Trunk Cephalothorax Abdomen Echinodermata Asteroidea Echinoidea Holothuroidea Oral vs. Aboral Water vascular system Chordata Cephalochordata Urochordata Vertebrata Parsimony Molecular Phylogenies TOPIC 2 REPRODUCTION & DEVELOPMENT Gametogenesis Oogenesis Oogonium Oocyte Ovum Isolecithal Mesolecithal Telolecithal Spermatogenesis Spermatogonium spermatid Spermatophore Intromittent Organ Fertilization Acrosome Polyspermy Fertilization envelop Oviparity Ovoviviparity Viviparity Cleavage Spiral cleavage Radial cleavage Gastrulation Invagination Involution Immigration Neurulation Organogenesis Asexual Reproduction Budding Gemmules Fission Fragmentation Parthenogenesis

6 TOPIC 3 NUTRITION Heterotrophy Essential nutrient Vitamins Minerals Electrolytes Osteophagia Filter feeding Substrate feeding Fluid feeding Bulk feeding Ingestion Digestion Mechanical digestion Chemical digestion Absorption Elimination Teeth Incisors Canines Premolars Molars Gastrovascular Cavities Alimentary Canals TOPIC 4 CIRCULATION & GAS EXCHANGE Respiration Respirtatory surface Cutaneous respiration Ventilation Countercurrent exchange Tracheal system Gastrovascular cavity Open circulatory system Sinuses Ostia Closed circulatory system Circulatory fluid Blood Hemolymph Interstitial fluid Lymph Arteries Arterioles Veins Venules Capillaries TOPIC 5 THE IMMUNE SYSTEM Innate Immunity Adaptive Immunity Antigen Pathogen Phagocyte Neutrophil Eosinophil Macrophage Dendritic cell Lymphocyte Natural Killer Cell T-Lymphocyte Helper T-Cells Cytotoxic T-Cells B-Lymphocyte Plasma Cell Memory Cell Phagocytosis Phagosome Lysosome Phagolysosome Complement Membrane Attack Complex Inflammation Vasodilation Edema Mast Cells Histamine Antibodies Opsonization Cytokines Major Histocompatibility Complex T-Cell Receptor Cell-Mediated Immunity Humoral Immunity B-Cell Receptor Clonal Selection Immune Memory Self vs. Foreign

7 TOPIC 6 THE ENDOCRINE SYSTEM Endocrine system Exocrine glands Endocrine glands Autocrine Paracrine Endocrine Phermones Tropic hormone Hormones Head activator Brain hormone Ecdysone Juvenile hormone Oxytocin Follicle-stimulating H Luteinizing hormone ACTH Thyroid-stimulating H Growth hormone Thyroid hormones Testosterone Estrogen Corticosteroids Insulin Glucagons Diabetes insipidus Diabetes insipidus Diabetes mellitus Acromegaly Pituitary Dwarfism TOPIC 7 THE NERVOUS SYSTEM Sensory division Motor division Autonomic NS Sympathetic NS Parasympathetic NS Neuroglia Schwann cells Myelin Neurons Soma Dendrites Axon Nongated ion channels Ligand-gated ion channels Voltage-gated ion channels Na + /K + ATPase Resting membrane potential Threshold Action potential Rapid depolarization Repolarization Hyperpolarization AP Propagation Salutatory conduction Chemical synapse Neurotransmitter Excitatory postsynaptic potential Inhibitory postsynaptic potential Nerve net Ganglion Cephalization TOPIC 8 ANIMAL BEHAVIOUR Proximate cause Ultimate cause Ethology/ethologist Kinesis Taxis Fixed action pattern Imprinting Habituation Spatial learning Associative learning Classical conditioning Operant conditioning Cognition Problem solving

8 TAXA AND COMMON NAMES YOU ARE RESPONSIBLE FOR * PHYLUM CLASS OR SUBPHYLUM COMMON NAMES Porifera N/A Sponges Cnidaria N/A Corals, anemones, jellyfish Lophotrochozoa Platyhelminthes Turbellaria Free-living flatworms Cestoda Parasitic tapeworms Trematoda Parasitic flukes Mollusca Polyplacophora Chitons Gastropoda Slugs and snails Bivalvia Clams, scallops, mussels Cephalopoda Squid & octopi Annelida Polychaeta Tube worms Hirudinea Leeches Oligocaeta Earthworms Ecdysozoa Nematoda N/A Round worms Arthropoda Myriapoda Centipedes & millipedes Chelicerata Spiders, scorpions, Hexapoda ** Flies, bees, beetles, Crustacea Shrimp, crabs, lobsters Echinodermata N/A Seastars, sea cucumbers, sea urchins, Chordata Cephalochordata Lancelets Urochordata Tunicates Vertebrata fish, amphibians, reptiles, * The level of details you will be expected to know will reflect those discussed in class. ** You do not need to know the orders of the insects.

BIOLOGY 1030 WINTER 2011 THINGS TO STUDY FOR THE LECTURE MIDTERM

BIOLOGY 1030 WINTER 2011 THINGS TO STUDY FOR THE LECTURE MIDTERM BIOLOGY 1030 WINTER 2011 THINGS TO STUDY FOR THE LECTURE MIDTERM The following is a list of topics or concepts that you should know for the lecture portion of the midterm exam. These statements/questions

More information

Chapter 33: Invertebrates

Chapter 33: Invertebrates Name Period Chapters 31, 32, and 33 should be considered as a single unit, and you should try to put all of them together in a single conceptual framework. Due to the scope of our course, you are likely

More information

KINGDOM ANIMALIA CHARACTERISTICS

KINGDOM ANIMALIA CHARACTERISTICS KINGDOM ANIMALIA CHARACTERISTICS EUKARYOTIC MULTICELLULAR HETEROTROPHIC (by ingestion) MOVE AT SOME POINT IN LIFE (not all - sponges are sessile) DIGEST FOOD TO GET NUTRIENTS LACK CELL WALLS CHARACTERISTICS

More information

Biology 1030 Winter 2009

Biology 1030 Winter 2009 Animal Diversity Chapters 32, 33 and 34 (select pages) Living Organisms Three Domains of life Bacteria Archaea Eukarya True nucleus True organelles Heterotrophic Animals Fungi Protists Autotrophic Plants

More information

INVERTEBRATE DIVERSITY

INVERTEBRATE DIVERSITY INVERTEBRATE DIVERSITY 1 INVERTEBRATES Animals that lack a backbone Invertebrates 2 1 ANIMAL DEVELOPMENT Meiosis Egg Sperm Zygote Adult Blastula hollow ball of cells in a developing animal Gastrula Stage

More information

3. Choanoflagellates resemble what? What is the significance of this resemblance?

3. Choanoflagellates resemble what? What is the significance of this resemblance? I. Animal Diversity 1. What are some basic characteristics of the animal kingdom? What characteristics make them different from plants? - Eukaryotic, heterotrophic (we don t make our own food), we store

More information

Unit 10: Animals Guided Reading Questions (80 pts total)

Unit 10: Animals Guided Reading Questions (80 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 32 An Introduction to Animal Diversity 1. Define the following

More information

Invertebrate Survey Lab

Invertebrate Survey Lab Answer these questions before lab. 1. What kingdom do all animals fall into? a. Protist b. Animalia c. Eukarya 2. How many phyla of invertebrates are in appendix E on pages 1074-1076? a. 9 b. 7 c. 8 3.

More information

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 33 An Introduction to Invertebrates Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 33.UN08 Metazoa Eumetazoa

More information

Introduction to Animal Kingdom. Invertebrates and Vertebrates

Introduction to Animal Kingdom. Invertebrates and Vertebrates Introduction to Animal Kingdom Invertebrates and Vertebrates Introduction To Animals Vertebrate animal with a backbone. Invertebrate animal without a backbone; includes more than 95% of all animal species

More information

Unit 10: Animals Guided Reading Questions (100 pts total)

Unit 10: Animals Guided Reading Questions (100 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 32 An Introduction to Animal Diversity 1. Define the following

More information

Biology 11. The Kingdom Animalia

Biology 11. The Kingdom Animalia Biology 11 The Kingdom Animalia Objectives By the end of the lesson you should be able to: Describe the 5 ways we classify animals Symmetry Germ layers Body plan Segmentation Animal Evolution Hank Video

More information

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University The Evolution of Animal Diversity Dr. Stephen J. Salek Biology 130 Fayetteville State University Create your own animal? Start with a basic plant. Make the plant into a simple animal such as a worm. Consider:

More information

Animals. Chapters Exam November 22, 2011

Animals. Chapters Exam November 22, 2011 Animals Chapters 32-35 Exam November 22, 2011 Overview of Animals Chapter 32 General Features of Animals and Evolution of the Body Plan General Features of Animals Heterotrophs Multicellular No Cell Walls

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Moving Forward Quizlet Each section we cover, 1 group will go to our class on Quizlet and create 20 flash cards on the topic (/5mks) If I warn you about talking while I m talking,

More information

23.1 Animal Characteristics EQ Although diverse, what common characteristics do all animal share?

23.1 Animal Characteristics EQ Although diverse, what common characteristics do all animal share? 23.1 Animal Characteristics EQ Although diverse, what common characteristics do all animal share? Sea Slug 23.1 Animal Characteristics Animals are the most physically diverse kingdom of organisms and all

More information

Invertebrate Diversity

Invertebrate Diversity CHAPTER 23 Invertebrate Diversity Summary of Key Concepts Concept 23.1 Diverse animals share several key characteristics. (pp. 494 496) More than a million living species of animals are organized into

More information

2/17/2017. Lecture 10: Chapter 31 Protostome Diversity

2/17/2017. Lecture 10: Chapter 31 Protostome Diversity 1 Lecture 10: Chapter 31 Protostome Diversity 2 3 Protostomes: one of two monophyletic groups of bilaterally symmetrical, coelomate animals The other group is the Deuterostomes Differ in pattern of early

More information

Biology 211 (1) Exam 2 Worksheet!

Biology 211 (1) Exam 2 Worksheet! Biology 211 (1) Exam 2 Worksheet Chapter 33 Introduction to Animal Diversity Kingdom Animalia: 1. Approximately how many different animal species are alive on Earth currently. How many those species have

More information

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved.

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved. Chapter Presentation Visual Concepts Transparencies Standardized Test Prep Introduction to Animals Table of Contents Section 2 Animal Body Systems Objectives Identify the features that animals have in

More information

ANIMAL DIVERSITY CHAPTERS 32, 33 AND 34

ANIMAL DIVERSITY CHAPTERS 32, 33 AND 34 1 of 20 ANIMAL DIVERSITY CHAPTERS 32, 33 AND 34 WHAT IS AN ANIMAL? Animals are characterized by two basic traits: They eat = heterotrophic They move They are multicellular They lack cell walls They have

More information

Chapter 8-9 Intro to Animals. Image from:

Chapter 8-9 Intro to Animals. Image from: Chapter 8-9 Intro to Animals Image from: http://animaldiversity.ummz.umich.edu/index.html Zoology Definition: the scientific study of the behavior, structure, physiology, classification, and distribution

More information

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida 1 Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida Objectives: Be able to distinguish radial symmetry from bilateral symmetry. Be able to identify which of the phyla

More information

Animal Phyla: A Summary. Danilo V. Rogayan Jr. Faculty, College of Education, Arts and Sciences Ramon Magsaysay Technological University

Animal Phyla: A Summary. Danilo V. Rogayan Jr. Faculty, College of Education, Arts and Sciences Ramon Magsaysay Technological University Animal Phyla: A Summary Danilo V. Rogayan Jr. Faculty, College of Education, Arts and Sciences Ramon Magsaysay Technological University Phylum Platyhelminthes The phylum consists of four classes Turbellaria

More information

Eukaryote Phylogeny. Glycogen. Kingdom Animalia. Amoebozoa Animalia. Plantae. Chromalveolata Rhizaria. Fungi. Excavata

Eukaryote Phylogeny. Glycogen. Kingdom Animalia. Amoebozoa Animalia. Plantae. Chromalveolata Rhizaria. Fungi. Excavata Eukaryote Phylogeny most protozoans, brown algae, & water molds Excavata Chromalveolata Rhizaria Plantae Amoebozoa Animalia Fungi cpsts. w/ 2 memb. chitin, hyphae glycogen eukaryotic cells (nucleus, etc.)

More information

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification?

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? Animals What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? What synapomorphies unite Animals Multicellular Heterotrophs (Metazoans)?

More information

What defines the zygote, the blastula, and the gastrula? Draw pictures.

What defines the zygote, the blastula, and the gastrula? Draw pictures. What makes a multicellular organism multicellular? a) Multiple cells b) Multiple cells that work together c) Specialized cells d) Multiple specialized cells that work together What defines the zygote,

More information

BIOS1101 Lab Notes. Contents ANIMALS. Lab 1: Animal Diversity invertebrates. Lab 2: Animal Diversity 2 vertebrates

BIOS1101 Lab Notes. Contents ANIMALS. Lab 1: Animal Diversity invertebrates. Lab 2: Animal Diversity 2 vertebrates Contents ANIMALS Lab 1: Animal Diversity invertebrates Lab 2: Animal Diversity 2 vertebrates Lab 3: Animal Structure 1 Gross morphology Lab 4: Animal Structure 2 Histology Lab 5: The Nervous System & Sensory

More information

Brief Introduction to the Animal Kingdom

Brief Introduction to the Animal Kingdom Brief Introduction to the Animal Kingdom Vocabulary Vertebrate Invertebrate Detritivore Asymmetry Bilateral symmetry Radial symmetry Cephalization Coelum Pseudocoelum Acoelomates Blastula Blastophore Protosome

More information

Chapter 32: An Introduction to Animal Diversity

Chapter 32: An Introduction to Animal Diversity Chapter 32: An Introduction to Animal Diversity Chapter 32: An Introduction to Animal Diversity Name Period Concept 32.1 Animals are multicellular, heterotrophic eukaryotes with tissues that develop from

More information

Lecture XII Origin of Animals Dr. Kopeny

Lecture XII Origin of Animals Dr. Kopeny Delivered 2/20 and 2/22 Lecture XII Origin of Animals Dr. Kopeny Origin of Animals and Diversification of Body Plans Phylogeny of animals based on morphology Porifera Cnidaria Ctenophora Platyhelminthes

More information

Chapter 32 Intro to Animals. Image from:

Chapter 32 Intro to Animals. Image from: Chapter 32 Intro to Animals Image from: http://animaldiversity.ummz.umich.edu/index.html Animals Invertebrates (animals without a backbone) Porifera Cnidaria Worms Mollusks Echinoderms Arthropods Animals

More information

INTERCONNECTEDNESS REDUCE REUSE RECYCLE

INTERCONNECTEDNESS REDUCE REUSE RECYCLE **** All Quizzes and Tests or Exams, Experiences, are cumulative!! **** For the Final, approximately two thirds to three fourths will be on topics studied for the first three experiences. The remainder

More information

Architectural Pattern of an animal. Chapter 9

Architectural Pattern of an animal. Chapter 9 Architectural Pattern of an animal Chapter 9 What is an animal? Levels of organization and organismal complexity 5 major levels of complexity Unicellular Metazoan? Tissue Organ Organ systems Levels of

More information

Animal Diversity. Features shared by all animals. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers

Animal Diversity. Features shared by all animals. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animal Diversity Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Nutritional mode Ingest food and use enzymes in the body to digest Cell structure and

More information

Learning Objectives. The Animal Kingdom: An Introduction to Animal Diversity. Sexual Reproduction

Learning Objectives. The Animal Kingdom: An Introduction to Animal Diversity. Sexual Reproduction Learning Objectives The Animal Kingdom: An Introduction to Animal Diversity Chapter 29 What characters are common to most animals? Advantages and disadvantages of different environments Searching for relationships

More information

What is an animal? Introduction to Animals. Germ Layers. Tissues and Organs. Structural Support. Types of Symmetry 11/3/2015

What is an animal? Introduction to Animals. Germ Layers. Tissues and Organs. Structural Support. Types of Symmetry 11/3/2015 What is an animal? Introduction to Animals Multicellular chemoorganoheterotrophs Eukaryotes that lack cell walls and chloroplasts Have mitochondria Are motile at some point in their lives Contain collagen

More information

Marine Invertebrates

Marine Invertebrates Name: Date: Period: Marine Invertebrates Porifera Annelida Cnidaria Mollusca Platyhelminthes Arthropoda Nematoda Echinodermata Name Class Date Section 26 2 Sponges (pages 664 667) This section explains

More information

Characteristics of Animals

Characteristics of Animals Characteristics of Animals Multicellular Cellular Organization What is this? Heterotrophic Adaptations CHAPTER 9 Cellular Organization 4 Major Functions of Animals Obtain food and water Sustain metabolism

More information

Kingdom Animalia. Special Features: Advanced nervous systems means cephalization (faces), brains, and efficient mobility (walk/run/swim/grab)

Kingdom Animalia. Special Features: Advanced nervous systems means cephalization (faces), brains, and efficient mobility (walk/run/swim/grab) Kingdom Animalia Kingdom Animalia Cell Number: Multicellular with extensive specialization Cell Type: Eukaryotic Animal Cells (no cell wall) Food: Heterotrophic Carnivore (meat), Herbivore (plants), Omnivore

More information

BIOLOGY - CLUTCH CH.32 - OVERVIEW OF ANIMALS.

BIOLOGY - CLUTCH CH.32 - OVERVIEW OF ANIMALS. !! www.clutchprep.com Animals are multicellular, heterotrophic eukaryotes that feed by ingesting their food Most animals are diploid, and produce gametes produced directly by meiosis Animals lack cell

More information

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia What Is an Animal? What characteristics do all animals have? Animals come in many shapes, forms, and sizes. Scientists estimate that there are between 1 and 2 million species of animals! Some, like whales

More information

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges.

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges. College Biology - Problem Drill 15: The Evolution of Animal Diversity Question No. 1 of 10 1. Which is not a feature of the phyla porifera- sponges? Question #01 (A) Most are marine animals. (B) They have

More information

Chapter 32 Introduction to Animal Diversity. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Chapter 32 Introduction to Animal Diversity. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Chapter 32 Introduction to Animal Diversity Welcome to Your Kingdom The animal kingdom extends far beyond humans and other animals we may encounter 1.3 million living species of animals have been identified

More information

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, and Lophotrochozoa

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, and Lophotrochozoa 1 Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, and Lophotrochozoa Objectives: Be able to distinguish radial symmetry from bilateral symmetry. Be able to identify which of the phyla

More information

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny BIOSC 041 Overview of Animal Diversity: Animal Body Plans Reference: Chapter 32 Outline v Definition and major characteristics of animals v Dividing animals into groups based on: Body symmetry Tissues

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: Welcome to Your Kingdom The animal kingdom

More information

1. General Features of Animals

1. General Features of Animals Chapter 32: An Overview of Animal Diversity 1. General Features of Animals 2. The History of Animals 1. General Features of Animals General Characteristics of Animals animals are multicellular eukaryotic

More information

v Scientists have identified 1.3 million living species of animals v The definition of an animal

v Scientists have identified 1.3 million living species of animals v The definition of an animal Biosc 41 9/10 Announcements BIOSC 041 v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal

More information

Chps : Animals. Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs

Chps : Animals. Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs Chps 23-26: Animals Chps. 23-27: Animals Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs Animal Characteristics Forms of symmetry: Radial Bilateral

More information

Kingdom Animalia. Zoology the study of animals

Kingdom Animalia. Zoology the study of animals Kingdom Animalia Zoology the study of animals Summary Animals are multicellular and eukaryotic. consume and digest organic materials thereby being heterotrophs. Most are motile at some time in their lives.

More information

Biosc 41 9/10 Announcements

Biosc 41 9/10 Announcements Biosc 41 9/10 Announcements v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal Body Plans

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Name Class Date. After you read this section, you should be able to answer these questions:

Name Class Date. After you read this section, you should be able to answer these questions: CHAPTER 14 3 Invertebrates SECTION Introduction to Animals BEFORE YOU READ After you read this section, you should be able to answer these questions: What structures and systems perform basic life functions

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS

ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS GENERAL FEATURES OF ANIMALS Heterotrophy - obtain energy and organic molecules by ingesting other organisms Multicellularity - Many have complex bodies

More information

Kingdom Animalia - Evolution of Form and Function by Dana Krempels

Kingdom Animalia - Evolution of Form and Function by Dana Krempels Kingdom Animalia - Evolution of Form and Function by Dana Krempels A. Identification of synapomorphies defining major animal taxa Note the characters in the table below. Each should be placed on the phylogenetic

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Characteristics of Animals multicellular Except for sponges, animal cells are arranged into tissues. Tissues are necessary to produce organs and organ systems. Tissues, organs,

More information

BIOLOGY. Chapter 27 Introduction to Animal Diversity

BIOLOGY. Chapter 27 Introduction to Animal Diversity BIOLOGY Chapter 27 Introduction to Animal Diversity Fig. 32-1 An Overview of Animal Diversity Multicellular Nutrition mode: Heterotrophic (ingestion) Cell structure & specialization Tissues develop from

More information

Features of the Animal

Features of the Animal Features of the Animal Kingdom Bởi: OpenStaxCollege Even though members of the animal kingdom are incredibly diverse, animals share common features that distinguish them from organisms in other kingdoms.

More information

Instructor Information!

Instructor Information! Instructor Information Dr. Anne Boettger Office: 610-430-4601 email: aboettger@wcupa.edu Schmucker North 475 Office hours: Monday 1-2 pm Tuesday/Thursday 9-11am otherwise by appointment All pertinent information

More information

Unit 12 ~ Learning Guide

Unit 12 ~ Learning Guide Unit 12 ~ Learning Guide Name: INSTRUCTIONS Complete the following notes and questions as you work through the related lessons. You are required to have this package completed BEFORE you write your unit

More information

Choanoflagellates. Porifera (sponges) Ctenophora (comb jellies) Cnidaria (jellyfish, corals, sea anemones) Acoela (acoels)

Choanoflagellates. Porifera (sponges) Ctenophora (comb jellies) Cnidaria (jellyfish, corals, sea anemones) Acoela (acoels) Choanoflagellates Fungi Choanoflagellates ANIMALIA Porifera (sponges) ANIMALIA Multicellularity Ctenophora (comb jellies) Diploblasty Cnidaria (jellyfish, corals, sea anemones) Acoela (acoels) Triploblasty

More information

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017 Animal Diversity Chapter 32 Which of these organisms are animals? Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animals share the same: Nutritional

More information

Kingdom: Animals. Domain Archaea. Domain Eukarya. Domain Bacteria. Common ancestor

Kingdom: Animals. Domain Archaea. Domain Eukarya. Domain Bacteria. Common ancestor Kingdom: Animals Domain Eukarya Domain Bacteria Domain Archaea Domain Eukarya Common ancestor 1 Animal Characteristics Heterotrophs must ingest others for nutrients Multicellular complex bodies No cell

More information

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals Introduction to Animals Table of Contents Objectives Identify four important characteristics of animals. List two kinds of tissues found only in animals. Explain how the first animals may have evolved

More information

Superphylum Deuterostomia

Superphylum Deuterostomia Superphylum Deuterostomia Bởi: OpenStaxCollege The phyla Echinodermata and Chordata (the phylum in which humans are placed) both belong to the superphylum Deuterostomia. Recall that protostome and deuterostomes

More information

Nervous System Organization

Nervous System Organization The Nervous System Chapter 44 Nervous System Organization All animals must be able to respond to environmental stimuli -Sensory receptors = Detect stimulus -Motor effectors = Respond to it -The nervous

More information

Life Science 7 th NOTES: Ch Animals Invertebrates

Life Science 7 th NOTES: Ch Animals Invertebrates Life Science 7 th NOTES: Ch 10-11 Animals Invertebrates Write the correct word in the blanks to show directions on an animal body: ** Word Bank (Posterior, Ventral, Dorsal, Anterior) top surface front

More information

The Animal Kingdom: The Protostomes. Protostomes 4/16/2012. Chapter 30

The Animal Kingdom: The Protostomes. Protostomes 4/16/2012. Chapter 30 Porifera Acoelomates ates The Animal Kingdom: The Protostomes Chapter 30 Protostome Bilateral Protostomes Acoelomates ates Characterized by spiral cleavage determinate cleavage (fixed fate of cells) of

More information

Chapter 24 Introduction to Animals

Chapter 24 Introduction to Animals 1 Chapter 24 Introduction to Animals I. Animal characteristics A. General Animal Features Multicellular B. Feeding and Digestion a. acquire nutrients from various sources obtaining nutrients unique to

More information

Workshop: The Evolution of Animalia body symmetry embryonic germ layers ontogenetic origins I. What is an Animal? II. Germ Layers

Workshop: The Evolution of Animalia body symmetry embryonic germ layers ontogenetic origins I. What is an Animal? II. Germ Layers Workshop: The Evolution of Animalia by Dana Krempels Perhaps even more than the other Eukarya, Animalia is characterized by a distinct progression of complexity in form and function as one moves from the

More information

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya Classification The three-domains Bacteria Archaea Eukarya The six-kingdom system Bacteria Archaea Protista Plantae Fungi Animalia The traditional five-kingdom system Monera Protista Plantae Fungi Animalia

More information

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen What Is an Animal? Section 25.1 Typical Animal Characteristics Biology II Mrs. Michaelsen I. Characteristics of Animals A. All animals are eukaryotic, multicellular, have ways of moving to reproduce, obtain

More information

Animal Form and Function by Dana Krempels

Animal Form and Function by Dana Krempels Animal Form and Function by Dana Krempels Animalia is characterized by a distinct progression of complexity in form and function. Early in animal evolution, body symmetry, embryonic germ layers, and ontogenetic

More information

Gen Bio III Lab 7 Animal Diversity Part II

Gen Bio III Lab 7 Animal Diversity Part II Gen Bio III Lab 7 Animal Diversity Part II Introduction Last lab you were introduced to animals and provided with some ways to think about them (body plan, phylogenies and trait mapping, adaptations for

More information

Today: Animal Body Plans. Animal Body Plans: The Gut. The Animal Kingdom- General Characteristics: Animal Body Plans: Symmetry

Today: Animal Body Plans. Animal Body Plans: The Gut. The Animal Kingdom- General Characteristics: Animal Body Plans: Symmetry Today: Exploring the Animal Kingdom Introduction to Ecology The Animal Kingdom- General Characteristics: Multicellular Heterotrophic (via ingestion) Eukaryotes Require Oxygen for aerobic respiration Reproduce

More information

Animals are in Domain Eukarya

Animals are in Domain Eukarya The Diversity of Animals 1: invertebrates Chapter 23 Animals are in Domain Eukarya Immediate ancestors are a type of Protista Key features Multicellular Kingdom Animalia Heterotrophic: gain energy by consuming

More information

Protists. Simple Eukaryotes. Regents Biology Common ancestor. Domain Archaebacteria. Domain Eukaryotes. Domain Bacteria

Protists. Simple Eukaryotes. Regents Biology Common ancestor. Domain Archaebacteria. Domain Eukaryotes. Domain Bacteria Protists Simple Eukaryotes Domain Bacteria Domain Archaebacteria Domain Eukaryotes Regents Biology 2006-2007 Common ancestor General characteristics Classification criteria eukaryotes not animal, plant

More information

Guided Reading Activities

Guided Reading Activities Name Period Chapter 18: The Evolution of Invertebrate Diversity Guided Reading Activities Big idea: Animal evolution and diversity Answer the following questions as you read modules 18.1 18.4: 1. The eating

More information

Arthropoda ARTHRO JOINTED PODA FEET

Arthropoda ARTHRO JOINTED PODA FEET Arthropoda ARTHRO JOINTED PODA FEET The arthropods are a group of animals which has attained the greatest biological success largest number of species and individuals and occupy the greatest number of

More information

A Brief Survey of Life s Diversity 1

A Brief Survey of Life s Diversity 1 Name A Brief Survey of Life s Diversity 1 AP WINTER BREAK ASSIGNMENT (CH 25-34). Complete the questions using the chapters of your textbook Campbell s Biology (8 th edition). CHAPTER 25: The History of

More information

Intro to Animals. Chapter 32

Intro to Animals. Chapter 32 Intro to Animals Chapter 32 1) Multicellular Organization (Different cells have different functions) Specialization: adaptation of a cell for a particular function Remember: cells tissues organs organ

More information

Chapter 32 Introduction to Animal Diversity

Chapter 32 Introduction to Animal Diversity Chapter 32 Introduction to Animal Diversity Review: Biology 101 There are 3 domains: They are Archaea Bacteria Protista! Eukarya Endosymbiosis (proposed by Lynn Margulis) is a relationship between two

More information

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals Control and Integration Neurophysiology Chapters 10-12 Nervous system composed of nervous tissue cells designed to conduct electrical impulses rapid communication to specific cells or groups of cells Endocrine

More information

Animals contain specialized cells

Animals contain specialized cells What is an Animal? Kingdom Animalia Main Characteristics Members of the Animal Kingdom are: Eukaryotic Multicellular Heterotrophic Have cells with membranes BUT NO cell wall Animals contain specialized

More information

Lab 6: An Introduction to Animal Diversity

Lab 6: An Introduction to Animal Diversity Bio 10 Lab #6 1 Animal Kingdom Major characteristics: Lab 6: An Introduction to Animal Diversity Most people, when they think of animals, think of those similar to ourselves: dogs, cats, horses, apes,

More information

Introduction to Animal Diversity. Chapter 23.1, 23.2 and additional

Introduction to Animal Diversity. Chapter 23.1, 23.2 and additional Introduction to Animal Diversity Chapter 23.1, 23.2 and additional 1 Think of an Animal... Does your choice have hair or fur? Does it have a skeleton? Over a million species of animals described 95% have

More information

Porifera Sponges Features:

Porifera Sponges Features: Porifera Sponges The Phylum Porifera consists only of sponges, which is unique since these animals are entirely aquatic; with 98% found only in marine environments and a small percentage found in freshwater

More information

Tuesday February 26, 2013 Invertebrate Animals Animals: Multicellular, no cell wall or chlorophyll, eukaryotic, heterotrophs

Tuesday February 26, 2013 Invertebrate Animals Animals: Multicellular, no cell wall or chlorophyll, eukaryotic, heterotrophs Name: Class: Biology Weekly Packet February 25 th - March 1 st, 2013 Monday February 25, 2013 Catalyst Tuesday February 26, 2013 Invertebrate Animals Animals: Multicellular, no cell wall or chlorophyll,

More information

Are these organisms. animals or not?

Are these organisms. animals or not? 1 2 3 4 5 Are these organisms 6 7 8 animals or not? 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 Typical Animal Characteristics Eukaryotic Multicellular Ability to move Reproduce Obtain food (heterotrophic)

More information

Section 4 Professor Donald McFarlane

Section 4 Professor Donald McFarlane Characteristics Section 4 Professor Donald McFarlane Lecture 11 Animals: Origins and Bauplans Multicellular heterotroph Cells lack cell walls Most have nerves, muscles, capacity to move at some point in

More information

Domain 6: Communication

Domain 6: Communication Domain 6: Communication 6.1: Cell communication processes share common features that reflect a shared evolutionary history. (EK3.D.1) 1. Introduction to Communication Communication requires the generation,

More information

UNIT 8A MARINE SCIENCE: Lower Invertebrates

UNIT 8A MARINE SCIENCE: Lower Invertebrates UNIT 8A MARINE SCIENCE: Lower Invertebrates Essential Questions: What are the characteristics of the simple body structured organisms? Unit Objectives/I Can Statements: General Invertebrates 1. List taxa

More information

Introduction to Animal Diversity Lecture 7 Winter 2014

Introduction to Animal Diversity Lecture 7 Winter 2014 Introduction to Animal Diversity Lecture 7 Winter 2014 Evolution of Animals 1 Prokaryotes Eukaryotes Prokaryotes No nucleus Nucleoid region Simple No membrane bound organelles Smaller (1-5 nm) Evolutionarily

More information

Sponges. What is the sponge s habitat. What level of organization do sponges have? Type of symmetry?

Sponges. What is the sponge s habitat. What level of organization do sponges have? Type of symmetry? Sponges What is the sponge s habitat Marine (few freshwater species) What level of organization do sponges have? Cell level Type of symmetry? None Type of digestive system (none, complete or incomplete)?

More information

Natural Sciences 360 Legacy of Life Lecture 07 Dr. Stuart S. Sumida ANIMALIA. (More Similar to Fungi than Plants)

Natural Sciences 360 Legacy of Life Lecture 07 Dr. Stuart S. Sumida ANIMALIA. (More Similar to Fungi than Plants) Natural Sciences 360 Legacy of Life Lecture 07 Dr. Stuart S. Sumida ANIMALIA (More Similar to Fungi than Plants) ANIMAL SIMILARITIES PLANTS FUNGI Cell Walls - Immobile - Often need - substrate - Heterotrophs

More information

Fern: 2. Fern spores are produced in structures known as a) antheridia. b) archegonia. c) sporangia d) seeds

Fern: 2. Fern spores are produced in structures known as a) antheridia. b) archegonia. c) sporangia d) seeds 1. The structures in Bryophytes that penetrate the ground to anchor the plant are: a) xylem. b) phloem. c) rhizomes. d) rhizoids. 2. Fern spores are produced in structures known as a) antheridia. b) archegonia.

More information

The Animals, or Metazoa. Approximate proportions of animal species presently known; The true diversity of animals may be more than 90% Arthropods

The Animals, or Metazoa. Approximate proportions of animal species presently known; The true diversity of animals may be more than 90% Arthropods The Animals, or Metazoa Are some of the best-studied organisms Comprise over a million known species Originated c. the Cambrian (~550 MYA) Most animal phyla are marine; however, due to the diversity of

More information

Biology B. There are no objectives for this lesson.

Biology B. There are no objectives for this lesson. Biology B Course Summary This is the second of two courses that comprise Biology. This course is designed to prepare the student to confidently enter and complete college-level biology courses. The Glencoe

More information