Neural Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc.

Size: px
Start display at page:

Download "Neural Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc."

Transcription

1 12 Neural Tissue PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris

2 An Introduction to the Nervous System The Nervous System Includes all neural tissue in the body Neural tissue contains two kinds of cells 1. Neurons Cells that send and receive signals 2. Neuroglia (glial cells) Cells that support and protect neurons

3 An Introduction to the Nervous System Organs of the Nervous System Brain and spinal cord Sensory receptors of sense organs (eyes, ears, etc.) Nerves connect nervous system with other systems

4 12-1 Divisions of the Nervous System Anatomical Divisions of the Nervous System Central nervous system (CNS) Peripheral nervous system (PNS)

5 12-1 Divisions of the Nervous System The Central Nervous System (CNS) Consists of the spinal cord and brain Contains neural tissue, connective tissues, and blood vessels Functions of the CNS are to process and coordinate: Sensory data from inside and outside body Motor commands control activities of peripheral organs (e.g., skeletal muscles) Higher functions of brain intelligence, memory, learning, emotion

6 12-1 Divisions of the Nervous System The Peripheral Nervous System (PNS) Includes all neural tissue outside the CNS Functions of the PNS Deliver sensory information to the CNS Carry motor commands to peripheral tissues and systems

7 12-1 Divisions of the Nervous System The Peripheral Nervous System (PNS) Nerves (also called peripheral nerves) Bundles of axons with connective tissues and blood vessels Carry sensory information and motor commands in PNS Cranial nerves connect to brain Spinal nerves attach to spinal cord

8 12-1 Divisions of the Nervous System Functional Divisions of the PNS Afferent division Carries sensory information From PNS sensory receptors to CNS Efferent division Carries motor commands From CNS to PNS muscles and glands

9 12-1 Divisions of the Nervous System Functional Divisions of the PNS Receptors Detect changes or respond to stimuli Neurons and specialized cells Complex sensory organs (e.g., eyes, ears)

10 12-1 Divisions of the Nervous System Functional Divisions of the PNS The efferent division Somatic nervous system (SNS) Controls voluntary and involuntary (reflexes) muscle skeletal contractions

11 12-1 Divisions of the Nervous System Functional Divisions of the PNS The efferent division Autonomic nervous system (ANS) Controls subconscious actions, contractions of smooth muscle and cardiac muscle, and glandular secretions Sympathetic division has a stimulating effect Parasympathetic division has a relaxing effect

12 12-2 Neurons Neurons The basic functional units of the nervous system The structure of neurons The multipolar neuron Common in the CNS Cell body (soma) Short, branched dendrites Long, single axon

13 12-2 Neurons Nissl bodies Dense areas of RER and ribosomes Make neural tissue appear gray (gray matter)

14 12-2 Neurons Dendrites Highly branched Dendritic spines Many fine processes Receive information from other neurons 80 90% of neuron surface area

15 12-2 Neurons The axon Is long Carries electrical signal (action potential) to target Axon structure is critical to function

16 Figure 12-1a The Anatomy of a Multipolar Neuron Dendrites Perikaryon Nucleus Cell body Axon Telodendria This color-coded figure shows the four general regions of a neuron.

17 Figure 12-1b The Anatomy of a Multipolar Neuron Dendritic branches Nissl bodies (RER and free ribosomes) Mitochondrion Axon hillock Initial segment of axon Golgi apparatus Neurofilament Nucleus Nucleolus Dendrite Axolemma Axon Telodendria Synaptic terminals See Figure 12 2 PRESYNAPTIC CELL An understanding of neuron function requires knowing its structural components. POSTSYNAPTIC CELL

18 12-2 Neurons The Structure of Neurons The synapse Area where a neuron communicates with another cell

19 12-2 Neurons The Structure of Neurons The synapse Presynaptic cell Neuron that sends message Postsynaptic cell Cell that receives message The synaptic cleft The small gap that separates the presynaptic membrane and the postsynaptic membrane

20 12-2 Neurons The Synapse The synaptic terminal Is expanded area of axon of presynaptic neuron Contains synaptic vesicles of neurotransmitters

21 12-2 Neurons Neurotransmitters Are chemical messengers Are released at presynaptic membrane Affect receptors of postsynaptic membrane Are broken down by enzymes Are reassembled at synaptic terminal

22 12-2 Neurons Types of Synapses Neuromuscular junction Synapse between neuron and muscle Neuroglandular junction Synapse between neuron and gland

23 Figure 12-2 The Structure of a Typical Synapse Telodendrion Synaptic terminal Mitochondrion Endoplasmic reticulum Synaptic vesicles Presynaptic membrane Postsynaptic membrane Synaptic cleft

24 12-2 Neurons Structural Classification of Neurons Anaxonic neurons Found in brain and sense organs Bipolar neurons Found in special sensory organs (sight, smell, hearing) Unipolar neurons Found in sensory neurons of PNS Multipolar neurons Common in the CNS Include all skeletal muscle motor neurons

25 12-2 Neurons Anaxonic Neurons Small All cell processes look alike Bipolar Neurons Are small One dendrite, one axon

26 12-2 Neurons Unipolar Neurons Also called pseudounipolar neurons Have very long axons Fused dendrites and axon Cell body to one side Multipolar Neurons Have very long axons Multiple dendrites, one axon

27 Figure 12-3 A Structural Classification of Neurons Anaxonic neuron Bipolar neuron Unipolar neuron Multipolar neuron Dendritic branches Dendrite Dendrites Initial segment Axon Dendrites Cell body Cell body Cell body Axon Synaptic terminals Axon Cell body Axon Synaptic terminals Synaptic terminals

28 Figure 12-3a A Structural Classification of Neurons Anaxonic neuron Cell body Anaxonic neurons have more than two processes, but axons cannot be distinguished from dendrites.

29 Figure 12-3b A Structural Classification of Neurons Bipolar neuron Dendritic branches Dendrite Cell body Axon Synaptic terminals Bipolar neurons have two processes separated by the cell body.

30 Figure 12-3c A Structural Classification of Neurons Unipolar neuron Dendrites Initial segment Axon Cell body Axon Synaptic terminals Unipolar neurons have a single elongate process, with the cell body situated off to the side.

31 Figure 12-3d A Structural Classification of Neurons Multipolar neuron Dendrites Cell body Axon Synaptic terminals Multipolar neurons have more than two processes; there is a single axon and multiple dendrites.

32 12-2 Neurons Three Functional Classifications of Neurons 1. Sensory neurons Afferent neurons of PNS 2. Motor neurons Efferent neurons of PNS 3. Interneurons Association neurons

33 12-2 Neurons Functions of Sensory Neurons Monitor internal environment (visceral sensory neurons) Monitor effects of external environment (somatic sensory neurons) Structures of Sensory Neurons Unipolar Cell bodies grouped in sensory ganglia Processes (afferent fibers) extend from sensory receptors to CNS

34 12-3 Neuroglia Ganglia Masses of neuron cell bodies Surrounded by neuroglia Found in the PNS

35 12-2 Neurons Three Types of Sensory Receptors 1. Interoceptors Monitor internal systems (digestive, respiratory, cardiovascular, urinary, reproductive) Internal senses (taste, deep pressure, pain) 2. Exteroceptors External senses (touch, temperature, pressure) Distance senses (sight, smell, hearing) 3. Proprioceptors Monitor position and movement (skeletal muscles and joints)

36 12-2 Neurons Motor Neurons Carry instructions from CNS to peripheral effectors Via efferent fibers (axons)

37 12-2 Neurons Motor Neurons Two major efferent systems 1. Somatic nervous system (SNS) Includes all somatic motor neurons that innervate skeletal muscles 2. Autonomic (visceral) nervous system (ANS) Visceral motor neurons innervate all other peripheral effectors Smooth muscle, cardiac muscle, glands, adipose tissue

38 12-2 Neurons Motor Neurons Two groups of efferent axons Signals from CNS motor neurons to visceral effectors pass synapses at autonomic ganglia dividing axons into: Preganglionic fibers Postganglionic fibers

39 12-2 Neurons Interneurons Most are located in brain, spinal cord, and autonomic ganglia Between sensory and motor neurons Are responsible for: Distribution of sensory information Coordination of motor activity Are involved in higher functions Memory, planning, learning

40 12-3 Neuroglia Neuroglia Half the volume of the nervous system Many types of neuroglia in CNS and PNS

41 12-3 Neuroglia Four Types of Neuroglia in the CNS 1. Ependymal cells 2. Astrocytes 3. Oligodendrocytes 4. Microglia

42 12-3 Neuroglia Ependymal Cells Form epithelium called ependyma Line central canal of spinal cord and ventricles of brain Secrete cerebrospinal fluid (CSF) Have cilia or microvilli that circulate CSF Monitor CSF Contain stem cells for repair

43 12-3 Neuroglia Astrocytes Create three-dimensional framework for CNS Repair damaged neural tissue

44 Figure 12-4 An Introduction to Neuroglia Neuroglia are found in Central Nervous System contains Ependymal cells Astrocytes Oligodendrocytes Microglia Line ventricles (brain) and central canal (spinal cord); assist in producing, circulating, and monitoring cerebrospinal fluid Maintain blood brain barrier; provide structural support; regulate ion, nutrient, and dissolvedgas concentrations; absorb and recycle neurotransmitters; form scar tissue after injury Myelinate CNS axons; provide structural framework Remove cell debris, wastes, and pathogens by phagocytosis

45 Figure 12-5a Neuroglia in the CNS Central canal Ependymal cells Central canal of spinal cord LM 450 Gray matter Light micrograph showing the ependymal lining of the central canal of the spinal cord

46 Figure 12-5b Neuroglia in the CNS CENTRAL CANAL Ependymal cells Gray matter Neurons Microglial cell A diagrammatic view of neural tissue in the CNS, showing relationships between neuroglia and neurons

47 Figure 12-5b Neuroglia in the CNS Myelinated axons Internode White matter Myelin (cut) Axon Oligodendrocyte Axolemma Astrocyte Node Unmyelinated axon Basement membrane Capillary A diagrammatic view of neural tissue in the CNS, showing relationships between neuroglia and neurons

48 12-3 Neuroglia Oligodendrocytes Myelination Increases speed of action potentials Myelin insulates myelinated axons Makes nerves appear white

49 12-3 Neuroglia Oligodendrocytes Nodes and internodes Internodes - myelinated segments of axon Nodes

50 Figure 12-6a Schwann Cells and Peripheral Axons Axon hillock Axon Nucleus Myelinated internode Initial segment (unmyelinated) Dendrite Nodes Schwann cell nucleus Axon Neurilemma Axon Axolemma Myelin covering internode A myelinated axon, showing the organization of Schwann cells along the length of the axon. Also shown are stages in the formation of a myelin sheath by a single Schwann cell along a portion of a single axon.

51 Figure 12-6a Schwann Cells and Peripheral Axons Neurilemma Axons Myelin Myelin sheath TEM 20,600 A myelinated axon, showing the organization of Schwann cells along the length of the axon. Also shown are stages in the formation of a myelin sheath by a single Schwann cell along a portion of a single axon.

52 12-3 Neuroglia Myelination White matter Regions of CNS with many myelinated nerves Gray matter Unmyelinated areas of CNS

53 12-3 Neuroglia Microglia Migrate through neural tissue Clean up cellular debris, waste products, and pathogens

54 12-3 Neuroglia Neuroglia of the Peripheral Nervous System Satellite cells Surround ganglia Regulate environment around neuron

55 12-3 Neuroglia Neuroglia of the Peripheral Nervous System Schwann cells Form myelin sheath around peripheral axons One Schwann cell sheaths one segment of axon Many Schwann cells sheath entire axon

56 Figure 12-4 An Introduction to Neuroglia Neuroglia are found in Peripheral Nervous System contains Satellite cells Surround neuron cell bodies in ganglia; regulate O 2, CO 2, nutrient, and neurotransmitter levels around neurons in ganglia Schwann cells Surround all axons in PNS; responsible for myelination of peripheral axons; participate in repair process after injury

57 Figure 12-6b Schwann Cells and Peripheral Axons Schwann cell Schwann cell nucleus Schwann cell #1 Schwann cell #2 Neurilemma Axons Schwann cell #3 nucleus Axons The enclosing of a group of unmyelinated axons by a single Schwann cell. A series of Schwann cells is required to cover the axons along their entire length.

58 Figure 12-6a Schwann Cells and Peripheral Axons Neurilemma Axons Myelin Myelin sheath TEM 20,600 A myelinated axon, showing the organization of Schwann cells along the length of the axon. Also shown are stages in the formation of a myelin sheath by a single Schwann cell along a portion of a single axon.

59 Figure 12-6a Schwann Cells and Peripheral Axons Axon hillock Axon Nucleus Myelinated internode Initial segment (unmyelinated) Dendrite Nodes Schwann cell nucleus Axon Neurilemma Axon Axolemma Myelin covering internode A myelinated axon, showing the organization of Schwann cells along the length of the axon. Also shown are stages in the formation of a myelin sheath by a single Schwann cell along a portion of a single axon.

60 Figure 12-6b Schwann Cells and Peripheral Axons Schwann cell #3 nucleus Axons Neurilemma Axons Unmyelinated axons TEM 27,625 The enclosing of a group of unmyelinated axons by a single Schwann cell. A series of Schwann cells is required to cover the axons along their entire length.

61 12-3 Neuroglia Neurons and Neuroglia Neurons perform: All communication, information processing, and control functions of the nervous system Neuroglia preserve: Physical and biochemical structure of neural tissue Neuroglia are essential to: Survival and function of neurons

62 12-3 Neuroglia Neural Responses to Injuries Axon distal to injury degenerates Schwann cells Form path for new growth Wrap new axon in myelin

63 12-3 Neuroglia Nerve Regeneration in CNS Limited by chemicals released by astrocytes that: Produce scar tissue

64 Figure 12-7 Peripheral Nerve Regeneration after Injury Fragmentation of axon and myelin occurs in distal stump. Axon Myelin Proximal stump Distal stump

65 Figure 12-7 Peripheral Nerve Regeneration after Injury Schwann cells form cord, grow into cut, and unite stumps. Macrophages engulf degenerating axon and myelin. Macrophage Cord of proliferating Schwann cells

66 Figure 12-7 Peripheral Nerve Regeneration after Injury Axon sends buds into network of Schwann cells and then starts growing along cord of Schwann cells.

67 Figure 12-7 Peripheral Nerve Regeneration after Injury Axon continues to grow into distal stump and is enclosed by Schwann cells.

68 12-4 Transmembrane Potential The Transmembrane Potential Three important concepts 1. The extracellular fluid (ECF) and intracellular fluid (cytosol) differ greatly in ionic composition Concentration gradient of ions (Na +, K + ) 2. Cells have selectively permeable membranes 3. Membrane permeability varies by ion

69 12-4 Transmembrane Potential Passive Forces acting Across the Plasma Membrane Chemical gradients Concentration gradients (chemical gradient) of ions (Na +, K + ) Electrical gradients Separate charges of positive and negative ions Result in potential difference

70 Figure 12-9 The Resting Potential is the Transmembrane Potential of an Undisturbed Cell EXTRACELLULAR FLUID mv K + leak channel Cl 3 Na + Na + leak channel Plasma membrane Sodium potassium exchange pump CYTOSOL Protein 2 K + Protein Protein

71 12-4 Transmembrane Potential The Electrochemical Gradient For a particular ion (Na +, K + ) is: The sum of chemical and electrical forces Acting on the ion across a plasma membrane

72 Figure 12-10a Electrochemical Gradients for Potassium and Sodium Ions Potassium Ion Gradients At normal resting potential, an electrical gradient opposes the chemical gradient for potassium ions (K + ). The net electrochemical gradient tends to force potassium ions out of the cell. Potassium chemical gradient Potassium electrical gradient Net potassium electrochemical gradient Resting potential 70 mv Plasma membrane K + Cytosol Protein

73 Figure 12-10b Electrochemical Gradients for Potassium and Sodium Ions Potassium Ion Gradients If the plasma membrane were freely permeable to potassium ions, the outflow of K + would continue until the equilibrium potential ( 90 mv) was reached. Potassium chemical gradient Potassium electrical gradient Equilibrium potential 90 mv Plasma membrane K + Cytosol Protein

74 Figure 12-10c Electrochemical Gradients for Potassium and Sodium Ions Sodium Ion Gradients At the normal resting potential, chemical and electrical gradients combine to drive sodium ions (Na + ) into the cell. Sodium chemical gradient Sodium electrical gradient Net sodium electrochemical gradient Resting potential 70 mv Plasma membrane Cytosol Protein

75 Figure 12-10d Electrochemical Gradients for Potassium and Sodium Ions Sodium Ion Gradients If the plasma membrane were freely permeable to sodium ions, the influx of Na + would continue until the equilibrium potential (+66 mv) was reached. Sodium chemical gradient Sodium electrical gradient Equilibrium potential +66 mv Plasma membrane Cytosol Protein

76 12-4 Transmembrane Potential Active Forces across the Membrane Sodium potassium ATPase (exchange pump) Is powered by ATP Carries 3 Na + out and 2 K + in Balances passive forces of diffusion Maintains resting potential ( 70 mv)

77 12-4 Transmembrane Potential The Resting Potential Because the plasma membrane is highly permeable to potassium ions: The resting potential of approximately 70 mv is fairly close to 90 mv, the equilibrium potential for K + The electrochemical gradient for sodium ions is very large, but the membrane s permeability to these ions is very low Na + has only a small effect on the normal resting potential, making it just slightly less negative than the equilibrium potential for K +

78 12-4 Transmembrane Potential The Resting Potential The sodium potassium exchange pump ejects 3 Na + ions for every 2 K + ions that it brings into the cell It serves to stabilize the resting potential when the ratio of Na + entry to K + loss through passive channels is 3:2 At the normal resting potential, these passive and active mechanisms are in balance The resting potential varies widely with the type of cell A typical neuron has a resting potential of approximately 70 mv

79 12-4 Transmembrane Potential Changes in the Transmembrane Potential Transmembrane potential rises or falls In response to temporary changes in membrane permeability Resulting from opening or closing specific membrane channels

80 12-4 Transmembrane Potential Sodium and Potassium Channels Membrane permeability to Na + and K + determines transmembrane potential They are either passive or active

81 12-4 Transmembrane Potential Passive Channels (Leak Channels) Are always open Permeability changes with conditions Active Channels (Gated Channels) Open and close in response to stimuli At resting potential, most gated channels are closed

82 12-4 Transmembrane Potential Three Classes of Gated Channels 1. Chemically gated channels 2. Voltage-gated channels 3. Mechanically gated channels

83 12-4 Transmembrane Potential Chemically Gated Channels Open in presence of specific chemicals (e.g., ACh) at a binding site Found on neuron cell body and dendrites

84 12-4 Transmembrane Potential Voltage-gated Channels Respond to changes in transmembrane potential Have activation gates (open) and inactivation gates (close) Characteristic of excitable membrane Found in neural axons, skeletal muscle sarcolemma, cardiac muscle

85 12-4 Transmembrane Potential Mechanically Gated Channels Respond to membrane distortion Found in sensory receptors (touch, pressure, vibration)

86 Figure 12-11a Gated Channels Chemically gated channel Resting state Presence of ACh ACh Binding site Channel closed Gated channel Channel open A chemically gated Na + channel that opens in response to the presence of ACh at a binding site.

87 Figure 12-11b Gated Channels Voltage-gated channel 70 mv Channel closed Inactivation gate 60 mv Channel open +30 mv Channel inactivated

88 Figure 12-11c Gated Channels Mechanically gated channel Channel closed Applied pressure Channel open Pressure removed Channel closed

89 12-4 Transmembrane Potential Graded Potentials Also called local potentials Changes in transmembrane potential That cannot spread far from site of stimulation Any stimulus that opens a gated channel Produces a graded potential

90 12-4 Transmembrane Potential Graded Potentials The resting state Opening sodium channel produces graded potential Resting membrane exposed to chemical Sodium channel opens Sodium ions enter the cell Transmembrane potential rises Depolarization occurs

91 Figure Graded Potentials Initial segment Resting State Resting membrane with closed chemically gated sodium ion channels 70 mv EXTRA- CELLULAR FLUID CYTOSOL

92 12-4 Transmembrane Potential Graded Potentials Depolarization A shift in transmembrane potential toward 0 mv Movement of Na + through channel

93 Figure Graded Potentials Stimulus applied here Stimulation Membrane exposed to chemical that opens the sodium ion channels 65 mv

94 Figure Graded Potentials Graded Potential Spread of sodium ions inside plasma membrane produces a local current that depolarizes adjacent portions of the plasma membrane Local current 60 mv 65 mv 70 mv Local current

95 12-4 Transmembrane Potential Graded Potentials Repolarization When the stimulus is removed, transmembrane potential returns to normal Hyperpolarization Increasing the negativity of the resting potential Result of opening a potassium channel Opposite effect of opening a sodium channel Positive ions move out, not into cell

96 Figure Depolarization, Repolarization, and Hyperpolarization Chemical stimulus applied Chemical stimulus removed Repolarization Chemical stimulus applied Chemical stimulus removed Transmembrane potential (mv) Depolarization Resting potential Hyperpolarization Return to resting potential

97 12-5 Action Potential Action Potentials Propagated changes in transmembrane potential Affect an entire excitable membrane

98 12-5 Action Potential Initiating Action Potential Initial stimulus A graded depolarization of axon large enough (10 to 15 mv) to change resting potential ( 70 mv) to threshold level of voltage-gated sodium channels ( 60 to 55 mv)

99 12-5 Action Potential Initiating Action Potential All-or-none principle If a stimulus exceeds threshold amount The action potential is the same No matter how large the stimulus Action potential is either triggered, or not

100 Figure Generation of an Action Potential Resting Potential 70 mv The axolemma contains both voltagegated sodium channels and voltagegated potassium channels that are closed when the membrane is at the resting potential. KEY = Sodium ion = Potassium ion

101 12-5 Action Potential Four Steps in the Generation of Action Potentials Step 1: Depolarization to threshold Step 2: Activation of Na channels Step 3: Inactivation of Na channels and activation of K channels Step 4: Return to normal permeability

102 12-5 Action Potential Step 1: Depolarization to threshold Step 2: Activation of Na channels Rapid depolarization Na + ions rush into cytoplasm Inner membrane changes from negative to positive

103 Figure Generation of an Action Potential Depolarization to Threshold 60 mv Local current KEY = Sodium ion = Potassium ion

104 Figure Generation of an Action Potential Activation of Sodium Channels and Rapid Depolarization +10 mv KEY = Sodium ion = Potassium ion

105 12-5 Action Potential Step 3: Inactivation of Na channels and activation of K channels At +30 mv Inactivation gates close (Na channel inactivation) K channels open Repolarization begins

106 Figure Generation of an Action Potential Inactivation of Sodium Channels and Activation of Potassium Channels +30 mv KEY = Sodium ion = Potassium ion

107 12-5 Action Potential Step 4: Return to normal permeability K + channels begin to close When membrane reaches normal resting potential ( 70 mv) K + channels finish closing Membrane is hyperpolarized to 90 mv Transmembrane potential returns to resting level Action potential is over

108 Figure Generation of an Action Potential Closing of Potassium Channels 90 mv KEY = Sodium ion = Potassium ion

109 Figure Generation of an Action Potential Transmembrane potential (mv) Sodium channels close, voltagegated potassium channels open D E P O L A R I Z A T I O N R E P O L A R I Z A T I O N Resting potential Voltage-gated sodium ion channels open Threshold All channels closed Graded potential causes threshold ABSOLUTE REFRACTORY PERIOD Cannot respond RELATIVE REFRACTORY PERIOD Responds only to a larger than normal stimulus Time (msec)

110 12-5 Action Potential Propagation of Action Potentials Propagation Moves action potentials generated in axon hillock Along entire length of axon Two methods of propagating action potentials 1. Continuous propagation (unmyelinated axons) 2. Saltatory propagation (myelinated axons)

111 12-5 Action Potential Continuous Propagation Of action potentials along an unmyelinated axon Affects one segment of axon at a time Steps in propagation Step 1: Action potential in segment 1 Depolarizes membrane to +30 mv Local current Step 2: Depolarizes second segment to threshold Second segment develops action potential

112 Figure Continuous Propagation of an Action Potential along an Unmyelinated Axon Action potential As an action potential develops at the initial segment, the transmembrane potential at this site depolarizes to +30 mv. Na mv 70 mv Extracellular Fluid 70 mv Cell membrane Cytosol

113 Figure Continuous Propagation of an Action Potential along an Unmyelinated Axon As the sodium ions entering at spread away from the open voltage-gated channels, a graded depolarization quickly brings the membrane in segment to threshold. Graded depolarization 60 mv 70 mv

114 Figure Continuous Propagation of an Action Potential along an Unmyelinated Axon An action potential now occurs in segment while segment beings repolarization. Repolarization (refractory) Na mv 70 mv

115 Figure Continuous Propagation of an Action Potential along an Unmyelinated Axon As the sodium ions entering at segment spread laterally, a graded depolarization quickly brings the membrane in segment to threshold, and the cycle is repeated. 60 mv

116 12-5 Action Potential Saltatory Propagation Action potential along myelinated axon Faster and uses less energy than continuous propagation Myelin insulates axon, prevents continuous propagation Local current jumps from node to node Depolarization occurs only at nodes

117 Figure Saltatory Propagation along a Myelinated Axon An action potential has occurred at the initial segment. +30 mv 70 mv 70 mv Extracellular Fluid Na + Myelinated internode Myelinated internode Myelinated internode Plasma membrane Cytosol

118 Figure Saltatory Propagation along a Myelinated Axon A local current produces a graded depolarization that brings the axolemma at the next node to threshold. 60 mv 70 mv Local current

119 Figure Saltatory Propagation along a Myelinated Axon An action potential develops at node. Repolarization (refractory) +30 mv 70 mv Na +

120 Figure Saltatory Propagation along a Myelinated Axon A local current produces a graded depolarization that brings the axolemma at node to threshold. 60 mv Local current

121 12-6 Axon Diameter and Speed Axon Diameter and Propagation Speed Ion movement is related to cytoplasm concentration Axon diameter affects action potential speed The larger the diameter, the lower the resistance

122 12-6 Axon Diameter and Speed Three Groups of Axons 1. Type A fibers 2. Type B fibers 3. Type C fibers These groups are classified by: Diameter Myelination Speed of action potentials

123 12-6 Axon Diameter and Speed Type A Fibers Myelinated Large diameter High speed (140 m/sec) Carry rapid information to/from CNS For example, position, balance, touch, and motor impulses

124 12-6 Axon Diameter and Speed Type B Fibers Myelinated Medium diameter Medium speed (18 m/sec) Carry intermediate signals For example, sensory information, peripheral effectors

125 12-6 Axon Diameter and Speed Type C Fibers Unmyelinated Small diameter Slow speed (1 m/sec) Carry slower information For example, involuntary muscle, gland controls

126 12-6 Axon Diameter and Speed Information Information travels within the nervous system As propagated electrical signals (action potentials) The most important information (vision, balance, motor commands) Is carried by large-diameter, myelinated axons

127 12-7 Synapses Synaptic Activity Action potentials (nerve impulses) Are transmitted from presynaptic neuron To postsynaptic neuron (or other postsynaptic cell) Across a synapse

128 12-7 Synapses 1. Chemical synapses Signal transmitted across a gap by chemical neurotransmitters

129 12-7 Synapses Chemical Synapses Are found in most synapses between neurons and all synapses between neurons and other cells Cells not in direct contact Action potential may or may not be propagated to postsynaptic cell, depending on: Amount of neurotransmitter released Sensitivity of postsynaptic cell

130 12-7 Synapses Two Classes of Neurotransmitters 1. Excitatory neurotransmitters Cause depolarization of postsynaptic membranes Promote action potentials 2. Inhibitory neurotransmitters Cause hyperpolarization of postsynaptic membranes Suppress action potentials

131 12-7 Synapses The Effect of a Neurotransmitter On a postsynaptic membrane Depends on the receptor Not on the neurotransmitter For example, acetylcholine (ACh) Usually promotes action potentials But inhibits cardiac neuromuscular junctions

132 12-7 Synapses Cholinergic Synapses Any synapse that releases ACh at: 1. All neuromuscular junctions with skeletal muscle fibers 2. Many synapses in CNS 3. All neuron-to-neuron synapses in PNS 4. All neuromuscular and neuroglandular junctions of ANS parasympathetic division

133 12-7 Synapses Events at a Cholinergic Synapse 1. Action potential arrives, depolarizes synaptic terminal 2. Calcium ions enter synaptic terminal, trigger exocytosis of ACh 3. ACh binds to receptors, depolarizes postsynaptic membrane 4. ACh removed by AChE AChE breaks ACh into acetate and choline

134 Figure Events in the Functioning of a Cholinergic Synapse An action potential arrives and depolarizes the synaptic terminal Presynaptic neuron Synaptic vesicles ER Action potential EXTRACELLULAR FLUID Synaptic terminal AChE Initial segment POSTSYNAPTIC NEURON

135 Figure Events in the Functioning of a Cholinergic Synapse Extracellular Ca 2+ enters the synaptic terminal, triggering the exocytosis of ACh ACh Ca2+ Ca 2+ Synaptic cleft Chemically gated sodium ion channels

136 Figure Events in the Functioning of a Cholinergic Synapse ACh binds to receptors and depolarizes the postsynaptic membrane Initiation of action potential if threshold is reached at the initial segment Na + Na + Na + Na + Na +

137 Figure Events in the Functioning of a Cholinergic Synapse ACh is removed by AChE Propagation of action potential (if generated)

138 12-8 Neurotransmitters and Neuromodulators Important Neurotransmitters Other than acetylcholine Norepinephrine (NE) Dopamine Serotonin Gamma aminobutyric acid (GABA)

139 12-8 Neurotransmitters and Neuromodulators Norepinephrine (NE) Released by adrenergic synapses Excitatory and depolarizing effect Widely distributed in brain and portions of ANS Dopamine A CNS neurotransmitter May be excitatory or inhibitory Involved in Parkinson s disease and cocaine use

140 12-8 Neurotransmitters and Neuromodulators Serotonin A CNS neurotransmitter Affects attention and emotional states Gamma Aminobutyric Acid (GABA) Inhibitory effect Functions in CNS Not well understood

141 12-8 Neurotransmitters and Neuromodulators Many Drugs Affect nervous system by stimulating receptors that respond to neurotransmitters Can have complex effects on perception, motor control, and emotional states

Dendrites - receives information from other neuron cells - input receivers.

Dendrites - receives information from other neuron cells - input receivers. The Nerve Tissue Neuron - the nerve cell Dendrites - receives information from other neuron cells - input receivers. Cell body - includes usual parts of the organelles of a cell (nucleus, mitochondria)

More information

BIO 210: Anatomy and Physiology Text: Fundamentals of Anatomy and Physiology 9ed. Chapter 12 NEURAL TISSUE

BIO 210: Anatomy and Physiology Text: Fundamentals of Anatomy and Physiology 9ed. Chapter 12 NEURAL TISSUE NAME COURSE BIO 210: Anatomy and Physiology Text: Fundamentals of Anatomy and Physiology 9ed. Chapter 12 NEURAL TISSUE Like a telephone switchboard, the nervous system directs a countless number of incoming

More information

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent Overview Organization: Central Nervous System (CNS) Brain and spinal cord receives and processes information. Peripheral Nervous System (PNS) Nerve cells that link CNS with organs throughout the body.

More information

Neurons and Nervous Systems

Neurons and Nervous Systems 34 Neurons and Nervous Systems Concept 34.1 Nervous Systems Consist of Neurons and Glia Nervous systems have two categories of cells: Neurons, or nerve cells, are excitable they generate and transmit electrical

More information

Nervous System Organization

Nervous System Organization The Nervous System Nervous System Organization Receptors respond to stimuli Sensory receptors detect the stimulus Motor effectors respond to stimulus Nervous system divisions Central nervous system Command

More information

Intro and Homeostasis

Intro and Homeostasis Intro and Homeostasis Physiology - how the body works. Homeostasis - staying the same. Functional Types of Neurons Sensory (afferent - coming in) neurons: Detects the changes in the body. Informations

More information

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials Nerve Signal Conduction Resting Potential Action Potential Conduction of Action Potentials Resting Potential Resting neurons are always prepared to send a nerve signal. Neuron possesses potential energy

More information

Nervous Tissue. Neurons Neural communication Nervous Systems

Nervous Tissue. Neurons Neural communication Nervous Systems Nervous Tissue Neurons Neural communication Nervous Systems What is the function of nervous tissue? Maintain homeostasis & respond to stimuli Sense & transmit information rapidly, to specific cells and

More information

Nervous System Organization

Nervous System Organization The Nervous System Chapter 44 Nervous System Organization All animals must be able to respond to environmental stimuli -Sensory receptors = Detect stimulus -Motor effectors = Respond to it -The nervous

More information

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation Nervous Tissue Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation What is the function of nervous tissue? Maintain homeostasis & respond to stimuli

More information

NOTES: CH 48 Neurons, Synapses, and Signaling

NOTES: CH 48 Neurons, Synapses, and Signaling NOTES: CH 48 Neurons, Synapses, and Signaling A nervous system has three overlapping functions: 1) SENSORY INPUT: signals from sensory receptors to integration centers 2) INTEGRATION: information from

More information

Chapter 9. Nerve Signals and Homeostasis

Chapter 9. Nerve Signals and Homeostasis Chapter 9 Nerve Signals and Homeostasis A neuron is a specialized nerve cell that is the functional unit of the nervous system. Neural signaling communication by neurons is the process by which an animal

More information

Nervous Systems: Neuron Structure and Function

Nervous Systems: Neuron Structure and Function Nervous Systems: Neuron Structure and Function Integration An animal needs to function like a coherent organism, not like a loose collection of cells. Integration = refers to processes such as summation

More information

Chapter 48 Neurons, Synapses, and Signaling

Chapter 48 Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling Concept 48.1 Neuron organization and structure reflect function in information transfer Neurons are nerve cells that transfer information within the body Neurons

More information

Action Potentials & Nervous System. Bio 219 Napa Valley College Dr. Adam Ross

Action Potentials & Nervous System. Bio 219 Napa Valley College Dr. Adam Ross Action Potentials & Nervous System Bio 219 Napa Valley College Dr. Adam Ross Review: Membrane potentials exist due to unequal distribution of charge across the membrane Concentration gradients drive ion

More information

Nervous system. 3 Basic functions of the nervous system !!!! !!! 1-Sensory. 2-Integration. 3-Motor

Nervous system. 3 Basic functions of the nervous system !!!! !!! 1-Sensory. 2-Integration. 3-Motor Nervous system 3 Basic functions of the nervous system 1-Sensory 2-Integration 3-Motor I. Central Nervous System (CNS) Brain Spinal Cord I. Peripheral Nervous System (PNS) 2) Afferent towards afferent

More information

Neurochemistry 1. Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906

Neurochemistry 1. Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906 Neurochemistry 1 Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906 How Many Neurons Do We Have? The human brain contains ~86 billion neurons and

More information

Nervous System: Nervous Tissue (Chapter 12) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus

Nervous System: Nervous Tissue (Chapter 12) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Nervous System: Nervous Tissue (Chapter 12) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Primary Sources for figures and content: Marieb, E. N. Human Anatomy

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 48 Neurons, Synapses, and Signaling

More information

BIOLOGY. 1. Overview of Neurons 11/3/2014. Neurons, Synapses, and Signaling. Communication in Neurons

BIOLOGY. 1. Overview of Neurons 11/3/2014. Neurons, Synapses, and Signaling. Communication in Neurons CAMPBELL BIOLOGY TENTH EDITION 48 Reece Urry Cain Wasserman Minorsky Jackson Neurons, Synapses, and Signaling Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick 1. Overview of Neurons Communication

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lectures for Biology, Eighth Edition Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp and Janette Lewis Copyright

More information

MEMBRANE POTENTIALS AND ACTION POTENTIALS:

MEMBRANE POTENTIALS AND ACTION POTENTIALS: University of Jordan Faculty of Medicine Department of Physiology & Biochemistry Medical students, 2017/2018 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Review: Membrane physiology

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Information processing. Divisions of nervous system. Neuron structure and function Synapse. Neurons, synapses, and signaling 11/3/2017

Information processing. Divisions of nervous system. Neuron structure and function Synapse. Neurons, synapses, and signaling 11/3/2017 Neurons, synapses, and signaling Chapter 48 Information processing Divisions of nervous system Central nervous system (CNS) Brain and a nerve cord Integration center Peripheral nervous system (PNS) Nerves

More information

A. Visceral and somatic divisions. B. Sympathetic and parasympathetic divisions. C. Central and peripheral divisions

A. Visceral and somatic divisions. B. Sympathetic and parasympathetic divisions. C. Central and peripheral divisions Ch 8: Neurons: Cellular and Network Properties, Part 1 Review of the Nervous System Objectives: Describe the Cells of the NS Explain the creation and propagation of an electrical signal in a nerve cell

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES Neuron Communication Neurons are stimulated by receptors on dendrites and cell bodies (soma) Ligand gated ion channels GPCR s Neurons stimulate cells

More information

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer 48 Neurons, Synapses, and Signaling CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 48.1: Neuron organization

More information

Neurons. General neuron anatomy. BIOL 164 Human Biology Ch 7 Neurons. Nervous system:

Neurons. General neuron anatomy. BIOL 164 Human Biology Ch 7 Neurons. Nervous system: BIOL 164 Human Biology Ch 7 Neurons Nervous system: Neurons Integrates and coordinates the body s ac3vi3es Provides rapid and brief responses to s3muli Major divisions: Central nervous system (CNS) brain

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 37 Neurons, Synapses, and Signaling Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

The Nervous System. What did you learn at school today? Neurophysiology!

The Nervous System. What did you learn at school today? Neurophysiology! The Nervous System What did you learn at school today? Neurophysiology! The Nervous System Controls heart rate, emotions, memories, consciousness, and much more. The most intricate and beautifully complex

More information

Neurophysiology. Review from 12b. Topics in neurophysiology 7/08/12. Lecture 11b BIOL241

Neurophysiology. Review from 12b. Topics in neurophysiology 7/08/12. Lecture 11b BIOL241 Neurophysiology Lecture 11b BIOL241 Review from 12b. CNS brain and spinal cord PNS nerves SNS (somatic) ANS (autonomic) Sympathetic NS Parasympathetic NS Afferent vs efferent (SAME) Cells of the nervous

More information

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals Control and Integration Neurophysiology Chapters 10-12 Nervous system composed of nervous tissue cells designed to conduct electrical impulses rapid communication to specific cells or groups of cells Endocrine

More information

37 Neurons, Synapses, and Signaling

37 Neurons, Synapses, and Signaling CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 37 Neurons, Synapses, and Signaling Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Lines of Communication

More information

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 KEY CONCEPTS 34.1 Nervous Systems Are Composed of Neurons and Glial Cells 34.2 Neurons Generate Electric Signals by Controlling Ion Distributions 34.3

More information

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle The Nervous System and Muscle SECTION 2 2-1 Nernst Potential 2-2 Resting Membrane Potential 2-3 Axonal Action Potential 2-4 Neurons 2-5 Axonal Conduction 2-6 Morphology of Synapses 2-7 Chemical Synaptic

More information

Neurophysiology. Danil Hammoudi.MD

Neurophysiology. Danil Hammoudi.MD Neurophysiology Danil Hammoudi.MD ACTION POTENTIAL An action potential is a wave of electrical discharge that travels along the membrane of a cell. Action potentials are an essential feature of animal

More information

Ch 8: Neurons: Cellular and Network Properties, Part 1

Ch 8: Neurons: Cellular and Network Properties, Part 1 Developed by John Gallagher, MS, DVM Ch 8: Neurons: Cellular and Network Properties, Part 1 Objectives: Describe the Cells of the NS Explain the creation and propagation of an electrical signal in a nerve

More information

Ch 7. The Nervous System 7.1 & 7.2

Ch 7. The Nervous System 7.1 & 7.2 Ch 7 The Nervous System 7.1 & 7.2 SLOs Describe the different types of neurons and supporting cells, and identify their functions. Identify the myelin sheath and describe how it is formed in the CNS and

More information

tre of Mark Louie D. Lop

tre of Mark Louie D. Lop NERVE PHYSIOLOGY Mark Louie D. Lopez College of Science Polytechnic University of the Philippines FUNCTIONS OF NERVOUS SYSTEM Sensory input or detection Integration processing transmission of information

More information

Ch 33. The nervous system

Ch 33. The nervous system Ch 33 The nervous system AP bio schedule Tuesday Wed Thursday Friday Plant test Animal behavior lab Nervous system 25 Review Day (bring computer) 27 Review Day (bring computer) 28 Practice AP bio test

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES In Physiology Today Ohm s Law I = V/R Ohm s law: the current through a conductor between two points is directly proportional to the voltage across the

More information

Organization of the nervous system. Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2

Organization of the nervous system. Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2 Nervous system Organization of the nervous system Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2 Autonomic and somatic efferent pathways Reflex arc - a neural pathway that

More information

Purpose: Perception, Movement, Learning, Memory, Thinking, Communication Functions:

Purpose: Perception, Movement, Learning, Memory, Thinking, Communication Functions: Nervous System Purpose: Perception, Movement, Learning, Memory, Thinking, Communication Functions: Sensory Input: Obtaining stimulation from the environment (light, heat, pressure, vibration, chemical,

More information

Neurons: Cellular and Network Properties HUMAN PHYSIOLOGY POWERPOINT

Neurons: Cellular and Network Properties HUMAN PHYSIOLOGY POWERPOINT POWERPOINT LECTURE SLIDE PRESENTATION by LYNN CIALDELLA, MA, MBA, The University of Texas at Austin Additional text by J Padilla exclusively for physiology at ECC UNIT 2 8 Neurons: PART A Cellular and

More information

BIOLOGY. Neurons, Synapses, and Signaling CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Neurons, Synapses, and Signaling CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 48 Neurons, Synapses, and Signaling Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Lines of Communication The

More information

The Nervous System. Nerve Impulses. Resting Membrane Potential. Overview. Nerve Impulses. Resting Membrane Potential

The Nervous System. Nerve Impulses. Resting Membrane Potential. Overview. Nerve Impulses. Resting Membrane Potential The Nervous System Overview Nerve Impulses (completed12/03/04) (completed12/03/04) How do nerve impulses start? (completed 19/03/04) (completed 19/03/04) How Fast are Nerve Impulses? Nerve Impulses Nerve

More information

The Nervous System. Nervous System Organization. Nerve Tissue. Two parts to the nervous system 11/27/2016

The Nervous System. Nervous System Organization. Nerve Tissue. Two parts to the nervous system 11/27/2016 The Nervous System Nervous System Organization Animals must be able to respond to environmental stimuli. Three functions of the nervous system: Sensory input conduction of signals from sensory receptors.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which body fluid compartment contains high levels of K +, large anions, and proteins?

More information

NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below.

NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below. Anatomy & Physiology Nervous System Part I 2/26/16 NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below. 1. 2. 3. 5. 4. 6. Part

More information

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling Name: AP Biology Mr. Croft Section 1 1. What is a neuron? Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling 2. Neurons can be placed into three groups, based on their location and function.

More information

2401 : Anatomy/Physiology

2401 : Anatomy/Physiology Dr. Chris Doumen Week 6 2401 : Anatomy/Physiology Action Potentials NeuroPhysiology TextBook Readings Pages 400 through 408 Make use of the figures in your textbook ; a picture is worth a thousand words!

More information

Cells. Steven McLoon Department of Neuroscience University of Minnesota

Cells. Steven McLoon Department of Neuroscience University of Minnesota Cells Steven McLoon Department of Neuroscience University of Minnesota 1 Microscopy Methods of histology: Treat the tissue with a preservative (e.g. formaldehyde). Dissect the region of interest. Embed

More information

1. True or false: at this moment, some of the muscle fibers in your gluteus maximus (a whole muscle) are contracting. a. True b.

1. True or false: at this moment, some of the muscle fibers in your gluteus maximus (a whole muscle) are contracting. a. True b. Exam III ANP 213 Spring 2008 You only need to print out the last two pages. Please do not consult classmates once you have begun this exam. Multiple Choice- 1 point each (use a ScanTron) 1. True or false:

More information

Fundamentals of the Nervous System and Nervous Tissue

Fundamentals of the Nervous System and Nervous Tissue Chapter 11 Part B Fundamentals of the Nervous System and Nervous Tissue Annie Leibovitz/Contact Press Images PowerPoint Lecture Slides prepared by Karen Dunbar Kareiva Ivy Tech Community College 11.4 Membrane

More information

Electrical Signaling. Lecture Outline. Using Ions as Messengers. Potentials in Electrical Signaling

Electrical Signaling. Lecture Outline. Using Ions as Messengers. Potentials in Electrical Signaling Lecture Outline Electrical Signaling Using ions as messengers Potentials in electrical signaling Action Graded Other electrical signaling Gap junctions The neuron Using Ions as Messengers Important things

More information

BIOL Week 5. Nervous System II. The Membrane Potential. Question : Is the Equilibrium Potential a set number or can it change?

BIOL Week 5. Nervous System II. The Membrane Potential. Question : Is the Equilibrium Potential a set number or can it change? Collin County Community College BIOL 2401 Week 5 Nervous System II 1 The Membrane Potential Question : Is the Equilibrium Potential a set number or can it change? Let s look at the Nernst Equation again.

More information

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles 1 Response Mechanism tropism Definition A growth movement of part of plant in response to a directional stimulus examples Positive:

More information

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES.

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES. !! www.clutchprep.com K + K + K + K + CELL BIOLOGY - CLUTCH CONCEPT: PRINCIPLES OF TRANSMEMBRANE TRANSPORT Membranes and Gradients Cells must be able to communicate across their membrane barriers to materials

More information

UNIT I INTRODUCTION TO ARTIFICIAL NEURAL NETWORK IT 0469 NEURAL NETWORKS

UNIT I INTRODUCTION TO ARTIFICIAL NEURAL NETWORK IT 0469 NEURAL NETWORKS UNIT I INTRODUCTION TO ARTIFICIAL NEURAL NETWORK IT 0469 NEURAL NETWORKS Elementary Neuro Physiology Neuron: A neuron nerve cell is an electricallyexcitable cell that processes and transmits information

More information

The Neuron - F. Fig. 45.3

The Neuron - F. Fig. 45.3 excite.org(anism): Electrical Signaling The Neuron - F. Fig. 45.3 Today s lecture we ll use clickers Review today 11:30-1:00 in 2242 HJ Patterson Electrical signals Dendrites: graded post-synaptic potentials

More information

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 2 Chapter 9 Muscles and Muscle Tissue Overview of Muscle Tissue types of muscle: are all prefixes for muscle Contractility all muscles cells can Smooth & skeletal

More information

Neurons. The Molecular Basis of their Electrical Excitability

Neurons. The Molecular Basis of their Electrical Excitability Neurons The Molecular Basis of their Electrical Excitability Viva La Complexity! Consider, The human brain contains >10 11 neurons! Each neuron makes 10 3 (average) synaptic contacts on up to 10 3 other

More information

Nervous System AP Biology

Nervous System AP Biology Nervous System 2007-2008 Why do animals need a nervous system? What characteristics do animals need in a nervous system? fast accurate reset quickly Remember Poor think bunny! about the bunny signal direction

More information

Neurophysiology. + = Na + - = Cl - Proteins HOW? HOW?

Neurophysiology. + = Na + - = Cl - Proteins HOW? HOW? All animal cells have electric potential differences (voltages) across plasma s only electrically excitable cells can respond with APs Luigi Galvani (1791) Animal electricity Electrical fluid passed through

More information

Nervous System: Part II How A Neuron Works

Nervous System: Part II How A Neuron Works Nervous System: Part II How A Neuron Works Essential Knowledge Statement 3.E.2 Continued Animals have nervous systems that detect external and internal signals, transmit and integrate information, and

More information

Cellular Neuroanatomy II The Prototypical Neuron: Neurites. Reading: BCP Chapter 2

Cellular Neuroanatomy II The Prototypical Neuron: Neurites. Reading: BCP Chapter 2 Cellular Neuroanatomy II The Prototypical Neuron: Neurites Reading: BCP Chapter 2 Major Internal Features of a Neuron The neuron is the functional unit of the nervous system. A typical neuron has a soma

More information

12-The Nervous System. Taft College Human Physiology

12-The Nervous System. Taft College Human Physiology 12-The Nervous System Taft College Human Physiology Introduction To The Nervous System The nervous system is a wired system with discrete pathways (nerves) and local actions. The effects of nervous stimulation

More information

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p.

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. 5 Signaling in Nerve Cells p. 9 Cellular and Molecular Biology of Neurons

More information

Biology September 2015 Exam One FORM G KEY

Biology September 2015 Exam One FORM G KEY Biology 251 17 September 2015 Exam One FORM G KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information

Biology September 2015 Exam One FORM W KEY

Biology September 2015 Exam One FORM W KEY Biology 251 17 September 2015 Exam One FORM W KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information

Neurophysiology. I. Background. A. Cell Types 1. Neurons 2. Glia. B. Subtypes 1. Differ based on their structure, chemistry and function

Neurophysiology. I. Background. A. Cell Types 1. Neurons 2. Glia. B. Subtypes 1. Differ based on their structure, chemistry and function Neurophysiology I. Background A. Cell Types 1. Neurons 2. Glia B. Subtypes 1. Differ based on their structure, chemistry and function C. Relative distribution 1. 100 billion neurons (give or take 100 million)

More information

! Depolarization continued. AP Biology. " The final phase of a local action

! Depolarization continued. AP Biology.  The final phase of a local action ! Resting State Resting potential is maintained mainly by non-gated K channels which allow K to diffuse out! Voltage-gated ion K and channels along axon are closed! Depolarization A stimulus causes channels

More information

UNIT 6 THE MUSCULAR SYSTEM

UNIT 6 THE MUSCULAR SYSTEM UNIT 6 THE MUSCULAR SYSTEM I. Functions of Muscular System A. Produces Movement Internal vs. External «locomotion & manipulation «circulate blood & maintain blood pressure «move fluids, food, baby B. Maintaining

More information

Curtis et al. Il nuovo Invito alla biologia.blu BIOLOGY HIGHLIGHTS KEYS

Curtis et al. Il nuovo Invito alla biologia.blu BIOLOGY HIGHLIGHTS KEYS BIOLOGY HIGHLIGHTS KEYS Watch the videos and download the transcripts of this section at: online.scuola.zanichelli.it/curtisnuovoinvitoblu/clil > THE HUMAN NERVOUS SYSTEM 2. WARM UP a) The structures that

More information

Neurophysiology. Membrane Potential. body is electrically neutral. = resting membrane potential

Neurophysiology. Membrane Potential. body is electrically neutral. = resting membrane potential Membrane Potential body is electrically neutral Neurophysiology there are small differences in electrical charge between inside and outside of cell membranes à due to differences in + and ions on inside

More information

CIE Biology A-level Topic 15: Control and coordination

CIE Biology A-level Topic 15: Control and coordination CIE Biology A-level Topic 15: Control and coordination Notes Neuron structure The nerve cells called neurones play an important role in coordinating communication within the nervous system. The structure

More information

1. Dendrites contain the nuclei, ribosomes, mitochondria, and other structures found in most cells.

1. Dendrites contain the nuclei, ribosomes, mitochondria, and other structures found in most cells. : Nerve Cells and Nerve Impulses TRUE/FALSE 1. Dendrites contain the nuclei, ribosomes, mitochondria, and other structures found in most cells. ANS: F PTS: 1 DIF: factual REF: Anatomy of Neurons 2. A small

More information

Physiology 2 nd year. Neuroscience Optional Lecture

Physiology 2 nd year. Neuroscience Optional Lecture Academic year 2018/2019 Physiology 2 nd year Semester 1 Curricula Nervous system physiology Blood physiology Acid-base equilibrium Bibliography: Boron & Boulpaep Medical Physiology, 3 rd edition Physiology

More information

Universality of sensory-response systems

Universality of sensory-response systems excite.org(anism): Electrical Signaling Universality of sensory-response systems Three step process: sensation-integration-response Bacterial chemotaxis Madigan et al. Fig. 8.24 Rick Stewart (CBMG) Human

More information

Peripheral Nerve II. Amelyn Ramos Rafael, MD. Anatomical considerations

Peripheral Nerve II. Amelyn Ramos Rafael, MD. Anatomical considerations Peripheral Nerve II Amelyn Ramos Rafael, MD Anatomical considerations 1 Physiologic properties of the nerve Irritability of the nerve A stimulus applied on the nerve causes the production of a nerve impulse,

More information

Nervous & Endocrine System

Nervous & Endocrine System 3/19 HW Day 1 Read pages 897-900 Complete Vocab. on pg 897 Aim: What is Regulation? Do Now: What 2 organ systems are involved in regulation? Nervous & Endocrine System Regulation: The control and coordination

More information

NEURONS Excitable cells Therefore, have a RMP Synapse = chemical communication site between neurons, from pre-synaptic release to postsynaptic

NEURONS Excitable cells Therefore, have a RMP Synapse = chemical communication site between neurons, from pre-synaptic release to postsynaptic NEUROPHYSIOLOGY NOTES L1 WHAT IS NEUROPHYSIOLOGY? NEURONS Excitable cells Therefore, have a RMP Synapse = chemical communication site between neurons, from pre-synaptic release to postsynaptic receptor

More information

Neuron Func?on. Principles of Electricity. Defini?ons 2/6/15

Neuron Func?on. Principles of Electricity. Defini?ons 2/6/15 Neuron Func?on 11 Fundamentals of the Nervous System and Nervous Tissue: Part B Neurons are highly Respond to adequate s?mulus by genera?ng an ac?on poten?al (nerve impulse) Impulse is always the regardless

More information

Housekeeping, 26 January 2009

Housekeeping, 26 January 2009 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Neurons Chapter 11 Kevin Bonine & Kevin Oh 1. Finish Solutes + Water 2. Neurons

More information

Neurons. 5 th & 6 th Lectures Mon 26 & Wed 28 Jan Finish Solutes + Water. 2. Neurons. Chapter 11

Neurons. 5 th & 6 th Lectures Mon 26 & Wed 28 Jan Finish Solutes + Water. 2. Neurons. Chapter 11 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Neurons Chapter 11 Kevin Bonine & Kevin Oh 1. Finish Solutes + Water 2. Neurons

More information

Animal structure and function

Animal structure and function Animal structure and function The nervous system Parts of the nervous system 43C, 44B, 45D Brain structure and function Eyes Retina Neurons: How neurons communicate: Resting potential: The resting

More information

Neural Conduction. biologyaspoetry.com

Neural Conduction. biologyaspoetry.com Neural Conduction biologyaspoetry.com Resting Membrane Potential -70mV A cell s membrane potential is the difference in the electrical potential ( charge) between the inside and outside of the cell. The

More information

Nervous Lecture Test Questions Set 2

Nervous Lecture Test Questions Set 2 Nervous Lecture Test Questions Set 2 1. The role of chloride in a resting membrane potential: a. creates resting potential b. indirectly causes repolarization c. stabilization of sodium d. it has none,

More information

What are neurons for?

What are neurons for? 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh 1. Finish Solutes Water 2. Neurons Neurons Chapter 11

More information

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a. Lecture 04, 04 Sept 2003 Chapters 4 and 5 Vertebrate Physiology ECOL 437 University of Arizona Fall 2003 instr: Kevin Bonine t.a.: Bret Pasch Vertebrate Physiology 437 1. Membranes (CH4) 2. Nervous System

More information

QUESTION? Communication between neurons depends on the cell membrane. Why is this so?? Consider the structure of the membrane.

QUESTION? Communication between neurons depends on the cell membrane. Why is this so?? Consider the structure of the membrane. QUESTION? Communication between neurons depends on the cell membrane Why is this so?? Consider the structure of the membrane. ECF ICF Possible ANSWERS?? Membrane Ion Channels and Receptors: neuron membranes

More information

LESSON 2.2 WORKBOOK How do our axons transmit electrical signals?

LESSON 2.2 WORKBOOK How do our axons transmit electrical signals? LESSON 2.2 WORKBOOK How do our axons transmit electrical signals? This lesson introduces you to the action potential, which is the process by which axons signal electrically. In this lesson you will learn

More information

Converting energy into nerve impulses, resting potentials and action potentials Sensory receptors

Converting energy into nerve impulses, resting potentials and action potentials Sensory receptors D 1.3 s Converting energy into nerve impulses, resting potentials and action potentials Sensory receptors A receptor converts an external or internal stimulus into an electrical signal. Sensory receptors

More information

Lecture 2. Excitability and ionic transport

Lecture 2. Excitability and ionic transport Lecture 2 Excitability and ionic transport Selective membrane permeability: The lipid barrier of the cell membrane and cell membrane transport proteins Chemical compositions of extracellular and intracellular

More information

لجنة الطب البشري رؤية تنير دروب تميزكم

لجنة الطب البشري رؤية تنير دروب تميزكم 1) Hyperpolarization phase of the action potential: a. is due to the opening of voltage-gated Cl channels. b. is due to prolonged opening of voltage-gated K + channels. c. is due to closure of the Na +

More information

Chapter 2: Neurons and Glia

Chapter 2: Neurons and Glia Chapter 2: Neurons and Glia The Prototypical Neuron The Soma Cytosol: watery fluid inside the cell Organelles: membrane-enclosed structures within the soma Cytoplasm: contents within a cell membrane, e.g.,

More information

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/ MEMBRANE STRUCTURE Lecture 9 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University RED BLOOD CELL MEMBRANE PROTEINS The Dynamic Nature of the Plasma Membrane SEM of human erythrocytes

More information

Nerves and their impulses. Biology 12 C-11

Nerves and their impulses. Biology 12 C-11 Nerves and their impulses Biology 12 C-11 Nerves and their impulses Nerves are designed to transmit electrical impulses from the dendrites, over the cell body and through the axon. The impulse will then

More information

Resting Distribution of Ions in Mammalian Neurons. Outside Inside (mm) E ion Permab. K Na Cl

Resting Distribution of Ions in Mammalian Neurons. Outside Inside (mm) E ion Permab. K Na Cl Resting Distribution of Ions in Mammalian Neurons Outside Inside (mm) E ion Permab. K + 5 100-81 1.0 150 15 +62 0.04 Cl - 100 10-62 0.045 V m = -60 mv V m approaches the Equilibrium Potential of the most

More information