History of. Charles Darwin ( ) Today s OUTLINE: Evolutionary Thought: The Grand Evolutionary Synthesis. Carol Eunmi Lee 9/13/17

Size: px
Start display at page:

Download "History of. Charles Darwin ( ) Today s OUTLINE: Evolutionary Thought: The Grand Evolutionary Synthesis. Carol Eunmi Lee 9/13/17"

Transcription

1 Today s OUTLINE: History of Evolutionary Thought: The Grand Evolutionary Synthesis (1) The Sources of Confusion (2) Reconciling Mendel and Darwin (3) The Main Tenets of the Evolutionary Synthesis (4) Key Developments since the Synthesis Dr. Carol Eunmi Lee University of Wisconsin, Madison (5) Gaps in our Understanding Today Charles Darwin ( ) Darwin s contribution: Population Speciation as a result of Natural Selection Last time we discussed Darwin s contributions to evolutionary thinking More offspring are produced than can survive Limited resources and competition for resources There is heritable variation in a population Individuals better adapted to environment survive Survivors leave more offspring ( Survival of the Fittest ) Thus, average character of population is altered But, Darwin s theory was not complete Because Darwin knew nothing about mutation, he had no idea how variation was generated in populations Because Darwin knew nothing about genetics or genes, he had no idea how variation was passed on to offspring (Mendel) Darwin did not know about nonadaptive evolutionary forces, such as Genetic Drift Mendel s work held part of the key to what was missing in Darwin s Theory Mendel published in 1865 was ignored until 1900 Presented a mechanism for how traits got passed on Individuals pass alleles on to their offspring intact (the idea of particulate (genes) inheritance) Title goes here 1

2 Rediscovery of Mendel s laws of inheritance In 1900, Mendel s laws of inheritance were rediscovered Dutch biologist Hugo de Vries, German plant geneticist Carl Correns, and Austrian plant breeder Erich von Tschermak-Seysenegg Worked out laws of inheritance independently Discovered Mendel s work as they were publishing their own Formed the beginning of the foundation of Genetics: Mendel is considered the Father of Genetics Hardy-Weinburg Equilibrium (Lecture 3) Wilhem Weinberg January 13, 1908 G. H. Hardy July 10, 1908 in Science Could mathematically show expectations of Mendelian inheritance and whether expectations are realized in nature BUT Mendel and Darwin s ideas seemed Incompatible PROBLEMS! Mendel s principles: dealt with particulate (discrete) traits (e.g. yellow vs. green, wrinkled vs. smooth) BUT, Darwin observed continuous traits (e.g. beak size, body length) Q: So, how would continuous traits get passed on? Selection vs Mutations Mutations discovered after 1900 Q: If mutations are arising, why need selection... if things are just mutating? Controversy between Mutationists vs Darwinists Mutationists (+ Mendelianism) They thought that evolution required only mutations and passing on of discrete traits Darwinists They thought that evolution required only Natural Selection on continuous variation Title goes here 2

3 Discrete vs Quantitative Traits Darwin was unable to clearly see the pattern of inheritance because he studied quantitative variation Discrete trait: a trait that has distinct values, rather than a range of phenotypes, usually encoded by one or a few genes. Examples: number of fingers, color of Mendel s peas, sickle cell anemia, ABO blood type, number of eggs in a bird clutch, presence/absence of human widow s peak, presence/absence of dimples, etc. Quantitative (continuous) trait: a trait that has a continuum of phenotypes and is encoded by multiple genes. Examples: body size, height, weight, intelligence (IQ), Running speed, beak shape, hair color, skin color, milk yield of cows, lifespan, etc. Frequency Frequency Type Type Proponents of the Darwinist Theory Proponents of Darwinism were correct about mechanisms of Natural Selection, but they did not understand what Selection was acting on, as they were unaware of the unit of inheritance (genes) or how the variation was passed on to the next generation They came up with the idea of Blending inheritance where offspring gain characteristics of both parents, like mixing colors of paint but, this was a vague idea that was incorrect Many of them were Biometricians (statistical types) that thought that evolution was gradually acting on continuous traits Proponents of the Mutationist/Mendelist Theory Many Prominent Geneticists at the time supported the Mutationist/Mendelist theory Proponents of the mutationist theory included Hugo de Vries, among those who discovered Mendel s 1900 paper and Thomas Hunt Morgan, founder of Drosophila genetics Thought that evolution arose through genetic changes (mutations) that were discrete and sudden Controversy between Mutationists vs Darwinists Controversy persisted for ~30 years up till the 1930s, during which little progress was made New species originated when they mutated from pre-existing species, but this process was independent of natural selection Problems to Resolve: At the heart was the question of whether Mendelian genetics and Mutation could be reconciled with mechanisms of Natural Selection. A second issue was whether the broad-scale changes (macroevolution) seen by palaeontologists could be explained by changes seen in local populations (microevolution). Problem caused by: Binary thinking (Black or White thinking): it s this or that if I m right, you must be wrong à When in fact the two or more factors might interact Inability to see overarching mechanism that could explain a wide range of phenomena: How could your Hardy-Weinberg (Mendel) explain the inheritance of 5.1 cm, 5.5 cm beak length (continuous characters)? à When in fact, one principle might govern and explain the different patterns Title goes here 3

4 Genetic Drift A concept as important as Natural Selection But, not as prominent on people s minds 1872 Gulick: Neutral theory (Genetic Drift) 1921 A.C. Hagedoorn produced data to support Neutral Theory Genetic Drift The Modern Synthesis 1930s ~ 1940s Also called the Synthesis of Evolution and Genetics The synthesis of population genetics (role of mutation, selection, genetic drift), paleontology, systematics Darwin and Mendel Reconciled The Modern Synthesis 1930s ~ 1940s Also called the Synthesis of Evolution and Genetics Among the Greatest Scientific Revolutions of the Century Three of the "architects" of the evolutionary synthesis: G. Ledyard Stebbins, Jr., George Gaylord Simpson, Theodosius Dobzhansky Photograph from Smocovitis, V. B G. Ledyard Stebbins, Jr. and the evolutionary synthesis ( ). American Journal of Botany 84: Some Key Tenets of the Modern Synthesis Populations are the units of Evolution The Evolutionary Synthesis was important because many scientists from different fields convened to discuss the evolutionary mechanisms and clear up confusion and inconsistencies Mendel vs Darwin: continuous traits are also coded by particulate genes, but many genes Mutation vs Selection: Mutations are sources of genetic variation upon which Selection acts Natural Selection and Mutation are not the only evolutionary forces. Examples: Genetic Drift, Recombination Microevolutionary processes, such as Drift, Selection, Mutation, lead to Macroevolutionary changes Title goes here 4

5 Some Tenets of the Evolutionary Synthesis The phenotype is different from the genotype Acquired characters (phenotypic plasticity) are not inherited Traits are inherited via genes, and they do not blend with other genes (Darwin was wrong about this one) Genes mutate, resulting in different alleles Evolution occurs at the population level, due to a change in proportions of individuals with different genotypes Changes in proportion in a population could occur via random genetic drift (Sewall Wright) or Natural Selection the rate of mutation is usually too low to cause large changes in proportions Even very weak natural selection could cause substantial changes over a longer time scale Mutations generate the genetic variation upon which natural selection acts Microevolutionary processes lead to Macroevolutionary changes (speciation) All organisms on the planet are related to one another in a great tree of life, and have diverged by branching from common ancestors Gaps in the fossil record are likely due to incompleteness of the fossil record. Gradual changes seen in many parts of the fossil record suggest gradual changes over time Mutation vs Selection and Reconciling Mendel and Darwin Mutation vs Selection And Reconciling Mendel and Darwin continuous and discrete traits could follow the same principles of inheritance (Mendel), just that continuous traits are coded by many genes (loci) If there are many genes (loci) coding for a trait, rather than one, the offspring look intermediate between the parents (looks like blending inheritance ) BUT, the SAME Mendelian patterns of inheritance apply for multi-locus traits, it s just that you don t see the particulate inheritance of each gene in the offspring, but the average effect across all the genes affecting the trait How do you deal with multi-locus quantitative traits? (2 nd point below) Hardy Weinberg: multiple alleles at a single locus: 3 alleles: (p + q + r) 2 which expands to... p 2 + 2pq + q 2 + 2pr + 2qr + r 2 =1.0 4 alleles: (p + q + r + s) 2 Hardy Weinberg: multiple loci HW principle still applies to each locus independently Need to use principles of Quantitative Genetics to examine effects of multiple loci The Population Geneticists Fisher vs Wright JBS Haldane Sewall Wright Both appreciated the importance of Natural Selection AND Genetic Drift But they argued about the relative importance Mathematical theory of population genetics showed that mutation and selection TOGETHER cause adaptive evolution: RA Fisher Mutation is NOT an alternative to Natural Selection, but the raw material upon which natural selection acts. Title goes here 5

6 Ronald Aylmer Fisher ( ) Ronald Aylmer Fisher ( ) Natural selection occurs in large populations Many genes are involved Background in math, physics, astronomy, and genetics Made key contributions to the field of Statistics Mutations are the main substrate for selection Other Contributions: Adding mathematical rigor into the theory of selection Elegant synthesis of Mendelian inheritance into the Theory of Selection Important developments in Statistics (ANOVA) Sewall Wright ( ) Sewall Wright ( ) Heavily influenced by examples from agriculture Worked for the US Dept of Agriculture: breeding in guinea pigs and cattle Became a professor at UW-Madison in Genetics Inbreeding and Genetic Drift are important for creating new gene interactions These new gene interactions (epistasis caused by new recombinations) are the main substrate for selection The Population Geneticists Reconciling Microevolutionary Mechanisms and Macroevolutionary processes If you want to read more about this topic, this book is a good read Title goes here 6

7 Ernst Mayr Microevolution à Macroevolution Ernst Mayr George Gaylord Simpson G. Ledyard Stebbins Bernhard Rensch and others George Gaylord Simpson Microevolutionary processes within species account for macroevolution among species That is, mutation, recombination, natural selection, and other processes that act within species (microevolution) are the SAME mechanisms that account for the origin of new species and major long term evolution (macroevolution) James F. Crow ( ) University of Wisconsin, Madison His work has touched on nearly every area of evolutionary genetics -will discuss some of his contributions in Lecture on Mutations Professor James Crow Lecture: Selection on Quantitative Traits (multi-locus traits): video.wpt.org/video/ / Moral of the Story Scientists from different fields should talk to each other Should avoid binary thinking (this vs. that, right vs. wrong), as different mechanisms might work together in an integrated fashion We are often biased by what we study (example of continuous vs. discrete traits) After the Evolutionary Synthesis The Importance of Natural Selection vs Genetic Drift Ongoing debate after the Evolutionary Synthesis Title goes here 7

8 Even after the synthesis the relative importance of Natural Selection and Genetic Drift was debated During the Evolutionary Synthesis, Sewall Wright focused more on importance of Genetic Drift, whereas Fisher focused on Natural Selection Shortly after the Evolutionary Synthesis many focused on selection to the point of assuming that most phenotypes were the result of Natural Selection Emphasis on Genetic Drift resurged in the 1970s, 80s with Kimura s Neutral Theory Then in the 2000s and 2010s interest in Selection increased with the ability to detect signatures of Natural Selection in genome sequence data Motoo Kimura ( ) The Neutral Theory of Molecular Evolution Classic Paper: Kimura, Motoo Evolutionary rate at the molecular level. Nature. 217: Classic Book: Kimura, Motoo (1983). The neutral theory of molecular evolution. Cambridge University Press. The Neutral Theory of Molecular Evolution (Lecture #6) The Neutral theory posits that the vast majority of evolutionary change at the molecular level is caused by random genetic drift rather than natural selection. Motoo Kimura Neutral theory is not incompatible with Darwin's theory of evolution by natural selection: adaptive changes are acknowledged as present and important, but hypothesized to be a small minority evolutionary change. Recent tests of selection have found that in many cases evolution is not neutral, even in non-coding regions of the genome. While the Evolutionary Synthesis was a HUGE leap in the right direction, there were a few tenets that required modification (as a result of new discoveries in Genetics) Nevertheless, the neutral theory is useful as a null hypothesis, against which selection could be tested. Some Tenets of the Evolutionary Synthesis The phenotype is different from the genotype Acquired characters (phenotypic plasticity) are not inherited not always true Traits are inherited via genes, and they do not blend with other genes (Darwin was wrong about this one) Genes mutate, resulting in different alleles Evolution occurs at the population level, due to a change in proportions of individuals with different genotypes Changes in proportion in a population could occur via random genetic drift (Sewall Wright) or Natural Selection the rate of mutation is usually too low to cause large changes in proportions Even very weak natural selection could cause substantial changes over a longer time scale Mutations generate the genetic variation upon which natural selection acts Microevolutionary processes lead to Macroevolutionary changes (speciation) All organisms on the planet are related to one another in a great tree of life, and have diverged by branching from common ancestors Gaps in the fossil record are likely due to incompleteness of the fossil record. Gradual changes seen in many parts of the fossil record suggest gradual changes over time not always true Completing the Synthesis Advances in Genetics Epigenetic Inheritance (Lecture #9) Some genetic changes could lead to radical changes in phenotype (Lecture #7) Polyploidization seen often in plants Changes in developmental genes Regulatory Evolution Transposons Title goes here 8

9 The role of Epigenetics (Lecture #9) Lamarck Revisited Lamarck was incorrect in thinking that the inheritance of acquired characters is the main mechanism of evolution However, we do now know that the inheritance of acquired characters does happen sometimes, through the inheritance of epigenetic modifications Evolution at the Molecular Genetic Level Which types of mutations predominate and contribute to adaptations more often? Structural vs Regulatory? Is phenotypic evolution occurring predominantly at the level of gene products (e.g. proteins) or at the level of gene regulation (e.g. transcription, RNA processing, translation, etc.)? cis-regulation vs trans-regulation? Is regulatory evolution occurring predominantly at the level of cis-regulatory elements (e.g. promoter, enhancers) or at the level of trans-acting factors (e.g. transcription factors, etc.)? More on Lectures on Molecular Evolution (Lecture #13) C.H. Waddington --his resurgence Largely dismissed during the Evolutionary Synthesisà attacked for being Lamarckian for his ideas on Genetic Assimilation Father of Developmental Biology Introduced the concept of Canalization Coined the term Epigenetics Conrad Hal Waddington Interested in the interplay between phenotypic plasticity (response to stress) and selectionà Genetic Assimilation Why did Waddington become popular starting in the 1990 s? Evo-Devo: Evolution of Development as playing an important role in the evolution of phenotypes Evolution of developmental program could cause radical phenotypic change The idea of evolution of canalization and decalanization of a developmental program Genetic Assimilation: stress could cause decanalization, and the phenotypes that are exposed could then be under selection à creation of Hopeful Monsters Evolution of Development (Lecture #26) How small changes in developmental genes (like Hox genes) could radically cause the evolution of body plans Role of Genomics (Lectures #15, 16) How does the whole genome evolve? How does selection act on networks of interacting genes? Will talk more about this when I get to lecture on Animal Diversity How many and which genes are involved in the formation of new species? Title goes here 9

10 Today: Genome Evolution and Systems Biology How do multiple genes interact? How do multiple genes affect a phenotype? Systems Biology: How does selection act on interacting gene regulatory networks? Evolution of Genome Architecture Questions: (1) What were the sources of confusion regarding evolutionary mechanisms prior to the Evolutionary Synthesis? (2) What was the Modern (Evolutionary) Synthesis? (3) What were the main tenets of the Evolutionary Synthesis? (4) What is the relationship between natural selection, genetic drift, mutations, and recombination? (5) What were some of the limitations of the Evolutionary Synthesis? (6) What were some key developments since the Evolutionary Synthesis? (7) What gaps remain in our understanding today? Sample Exam Questions 1. For several decades "Darwinists" and "Mendelists" battled over the mechanisms of evolution. Which of the following did NOT contribute to this particular conflict? (a) Geneticists/Evolutionary biologists did not understand that continuous and discrete traits follow the same principle of inheritance (b) Geneticists/Evolutionary biologists did not understand that natural selection acts on mutations in a population (c) Mendel worked with discrete traits, whereas Darwin worked with continuous traits, leading to differences in perspectives on inheritance (d) Darwin was unaware of the mechanism or unit of inheritance (e) Darwin was unaware of the mechanisms of Genetic Drift Sample Exam Question 2.Which of the following was NOT a tenet of the Evolutionary Synthesis? (a) Evolution occurs at the level of populations, in terms of changes in allele frequencies, rather than changes at the individual level (b) Selection could act on traits that are coded by multiple genes (c) Selection acts on genetic variation in traits that are caused by mutations (d) Natural Selection and Mutation are the only causes of evolutionary change (e) Microevolutionary processes within populations lead to Macroevolutionary changes among populations Answers: 1. E (Darwin did not know about Genetic Drift, but that was not a reason for the conflict between the Darwinists and Mendelists ) 2. D Title goes here 10

History of. Charles Darwin ( ) Today s OUTLINE: Evolutionary Thought: The Grand Evolutionary Synthesis. Carol Eunmi Lee 9/17/18

History of. Charles Darwin ( ) Today s OUTLINE: Evolutionary Thought: The Grand Evolutionary Synthesis. Carol Eunmi Lee 9/17/18 Today s OUTLINE: History of Evolutionary Thought: The Grand Evolutionary Synthesis Considered one of the most important Biological Revolutions of the Century Dr. Carol Eunmi Lee University of Wisconsin,

More information

The world distribution of organisms was puzzling: Marsupial mammals generally very rare, but all Australian mammals were marsupials

The world distribution of organisms was puzzling: Marsupial mammals generally very rare, but all Australian mammals were marsupials Reference: Chapter 2 of Futuyma The Early Seeds of Evolutionary Thinking The Classical view Buffon 1770 Erasmus Darwin 1770 Lamarck 1810 The Classical view: Living organisms are constant and unchanging.

More information

Evolution. A Brief and Idiosyncratic History of the Concept of. Evolution. Archbishop James Ussher ( ) Pre-scientific World View

Evolution. A Brief and Idiosyncratic History of the Concept of. Evolution. Archbishop James Ussher ( ) Pre-scientific World View Evolution A Brief and Idiosyncratic History of the Concept of Evolution or why we think we know how we got here The concept of evolution is used widely across subdisciplines in anthropology Most broadly

More information

Evolution after Darwin

Evolution after Darwin Evolution after Darwin Evolution After Darwin Peppered Moth (Biston betularia) as classic example of natural selection Peppered Moth populations respond to changing environment (pollution). Why has the

More information

Chapter 16: Evolutionary Theory

Chapter 16: Evolutionary Theory Chapter 16: Evolutionary Theory Section 1: Developing a Theory Evolution: Artificial Selection: Evolution: I. A Theory to Explain Change Over Time B. Charles Darwin C. Theory: D. Modern evolutionary theory

More information

2/17/17. B. Four scientists important in development of evolution theory

2/17/17. B. Four scientists important in development of evolution theory UNIT 4: EVOLUTION Chapter 10: Principles of Evolution I. Early Ideas about Evolution (10.1) A. Early scientists proposed ideas about evolution 1. Evolution- process of biological change by which descendants

More information

Chapter 22: Descent with Modification: A Darwinian View of Life

Chapter 22: Descent with Modification: A Darwinian View of Life Chapter 22: Descent with Modification Name Period Chapter 22: Descent with Modification: A Darwinian View of Life As you study this chapter, read several paragraphs at a time to catch the flow of ideas

More information

Class Copy! Return to teacher at the end of class! Mendel's Genetics

Class Copy! Return to teacher at the end of class! Mendel's Genetics Class Copy! Return to teacher at the end of class! Mendel's Genetics For thousands of years farmers and herders have been selectively breeding their plants and animals to produce more useful hybrids. It

More information

Darwin was not the first

Darwin was not the first A look forward. Laying the groundwork I: The birth of evolutionary theory Darwin was not the first 1 Historical constraints to thoughts about nature of life on earth 1. The earth is young James Uscher:

More information

History of Genetics in Evolution

History of Genetics in Evolution History of Genetics in Evolution Joe Felsenstein GENOME 453, Autumn 2009 History of Genetics in Evolution p.1/38 The Great Chain of Being (1600 s onward) Deity Angels Man Mammals Birds Reptiles Amphibians

More information

UNIT 4: EVOLUTION Chapter 10: Principles of Evolution. I. Early Ideas about Evolution (10.1) A. Early scientists proposed ideas about evolution

UNIT 4: EVOLUTION Chapter 10: Principles of Evolution. I. Early Ideas about Evolution (10.1) A. Early scientists proposed ideas about evolution UNIT IV Chapter 10 Principles of Evolution UNIT 4: EVOLUTION Chapter 10: Principles of Evolution I. Early Ideas about Evolution (10.1) A. Early scientists proposed ideas about evolution 1. Evolution- process

More information

THE THEORY OF EVOLUTION

THE THEORY OF EVOLUTION THE THEORY OF EVOLUTION Why evolution matters Theory: A well-substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation

More information

9/19/2013. Lecture 2 19 th century progress. Biology 145 EVOLUTION. Evidence for Evolution prior to 1830

9/19/2013. Lecture 2 19 th century progress. Biology 145 EVOLUTION. Evidence for Evolution prior to 1830 Lecture 2 19 th century progress Biology 145 EVOLUTION 1 More than 700,000 species of beetle alone. WHY??? The Creator, if He exists, has an inordinate fondness for beetles JBS Haldane Not all individuals

More information

History of Genetics in Evolution

History of Genetics in Evolution History of Genetics in Evolution Joe Felsenstein GENOME 453, Winter 2005 History of Genetics in Evolution p.1/39 The Great Chain of Being (1600 s onward) Deity Angels Man Mammals Birds Reptiles Amphibians

More information

Study of similarities and differences in body plans of major groups Puzzling patterns:

Study of similarities and differences in body plans of major groups Puzzling patterns: Processes of Evolution Evolutionary Theories Widely used to interpret the past and present, and even to predict the future Reveal connections between the geological record, fossil record, and organismal

More information

Module: NEO-LAMARCKISM AND NEO-DARWINISM (12/15)

Module: NEO-LAMARCKISM AND NEO-DARWINISM (12/15) Title: ANTHROPOLOGY Paper: PAPER No. 2 Course name: PHYSICAL ANTHROPOLOGY Module: NEO-LAMARCKISM AND NEO-DARWINISM (12/15) The concepts and theories regarding the origin and evolution of organisms so far

More information

Introduction to Quantitative Genetics. Introduction to Quantitative Genetics

Introduction to Quantitative Genetics. Introduction to Quantitative Genetics Introduction to Quantitative Genetics Historical Background Quantitative genetics is the study of continuous or quantitative traits and their underlying mechanisms. The main principals of quantitative

More information

REVIEW 6: EVOLUTION. 1. Define evolution: Was not the first to think of evolution, but he did figure out how it works (mostly).

REVIEW 6: EVOLUTION. 1. Define evolution: Was not the first to think of evolution, but he did figure out how it works (mostly). Name: REVIEW 6: EVOLUTION 1. Define evolution: 2. Modern Theory of Evolution: a. Charles Darwin: Was not the first to think of evolution, but he did figure out how it works (mostly). However, Darwin didn

More information

Chapter 2 Evolution: Constructing a Fundamental Scientific Theory

Chapter 2 Evolution: Constructing a Fundamental Scientific Theory Chapter 2 Evolution: Constructing a Fundamental Scientific Theory TRUE/FALSE 1. Organisms classified in two different biological orders can still belong to the same genus. 2. Before 1700, most Western

More information

Computer Simulations on Evolution BiologyLabs On-line. Laboratory 1 for Section B. Laboratory 2 for Section A

Computer Simulations on Evolution BiologyLabs On-line. Laboratory 1 for Section B. Laboratory 2 for Section A Computer Simulations on Evolution BiologyLabs On-line Laboratory 1 for Section B Laboratory 2 for Section A The following was taken from http://www.biologylabsonline.com/protected/evolutionlab/ Introduction

More information

Vocab. ! Evolution - change in a kind of organism over time; process by which modern organisms have descended from ancient organisms

Vocab. ! Evolution - change in a kind of organism over time; process by which modern organisms have descended from ancient organisms Vocab! Evolution - change in a kind of organism over time; process by which modern organisms have descended from ancient organisms! Theory - well-tested explanation that unifies a broad range of observations

More information

THE HISTORY OF THE THEORY. Darwin presented that happens and offered an of how it happens. Theory a broad that has been and

THE HISTORY OF THE THEORY. Darwin presented that happens and offered an of how it happens. Theory a broad that has been and Evolution Notes THE HISTORY OF THE THEORY Why is the evolutionary theory associated with Charles Darwin? Darwin presented that happens and offered an of how it happens. o Evolution the process by which

More information

Evolution. Just a few points

Evolution. Just a few points Evolution Just a few points Just What is a Species??? Species: a group of organisms that share similar characteristics can interbreed with one another produce fertile offspring Population: One species

More information

Full file at CHAPTER 2 Genetics

Full file at   CHAPTER 2 Genetics CHAPTER 2 Genetics MULTIPLE CHOICE 1. Chromosomes are a. small linear bodies. b. contained in cells. c. replicated during cell division. 2. A cross between true-breeding plants bearing yellow seeds produces

More information

A Summary of the Theory of Evolution

A Summary of the Theory of Evolution A Summary of the Theory of Evolution Raúl Esperante Geoscience Research Institute Loma Linda, California What is Evolution? What does the term evolution mean? The word has three meanings that are relevant

More information

The Revival of Darwinism after 1900

The Revival of Darwinism after 1900 Lecture 18 The Revival of Darwinism after 1900 Image courtesy of karindalzielon Flickr. CC-BY. Scopes Trial: Legacy What actually happened?? Who really won and lost? What actually happened? The trial attracted

More information

Reproduction and Evolution Practice Exam

Reproduction and Evolution Practice Exam Reproduction and Evolution Practice Exam Topics: Genetic concepts from the lecture notes including; o Mitosis and Meiosis, Homologous Chromosomes, Haploid vs Diploid cells Reproductive Strategies Heaviest

More information

Homework Assignment, Evolutionary Systems Biology, Spring Homework Part I: Phylogenetics:

Homework Assignment, Evolutionary Systems Biology, Spring Homework Part I: Phylogenetics: Homework Assignment, Evolutionary Systems Biology, Spring 2009. Homework Part I: Phylogenetics: Introduction. The objective of this assignment is to understand the basics of phylogenetic relationships

More information

Biological Anthropology

Biological Anthropology Biological Anthropology Sample Exam 1 Multiple-Choice Questions For each of the following questions, circle the answer that is most correct. Each question is worth two (2) points. 1. Which of the following

More information

Learning objectives. Evolution in Action. Chapter 8: Evolution and Natural Selection. By the end of today s topic students should be able to:

Learning objectives. Evolution in Action. Chapter 8: Evolution and Natural Selection. By the end of today s topic students should be able to: ANNOUNCEMENTS Thursday February 13, 2014 Chapter 8: Evolution and Natural Selection Dr. Traver returns next week. Movie on Tuesday afternoon What Darwin Never Knew. Midterm 2 is next week 2/20/2014 Use

More information

Genetic Changes Lesson 2 HW

Genetic Changes Lesson 2 HW Guiding Question What theory serves as the basis of what we believe about how evolutionary changes occur? 7 th GRADE SCIENCE Genetic Changes Lesson 2 HW # Name: Date: Homeroom: Jean-Baptiste Lamarck (1744-1829)

More information

14. A small change in gene frequencies to a population overtime is called a. Macroevolution b. Speciation c. Microevolution d.

14. A small change in gene frequencies to a population overtime is called a. Macroevolution b. Speciation c. Microevolution d. Section: Evolution Review Questions Section Title: Evolution Review Questions Name: Review of Old Information: Match the people listed below with the influential ideas they proposed: 1. Carolus Linneus

More information

Section 15 3 Darwin Presents His Case

Section 15 3 Darwin Presents His Case Section 15 3 Darwin Presents His Case (pages 378 386) Key Concepts How is natural variation used in artificial selection? How is natural selection related to a species fitness? What evidence of evolution

More information

Endowed with an Extra Sense : Mathematics and Evolution

Endowed with an Extra Sense : Mathematics and Evolution Endowed with an Extra Sense : Mathematics and Evolution Todd Parsons Laboratoire de Probabilités et Modèles Aléatoires - Université Pierre et Marie Curie Center for Interdisciplinary Research in Biology

More information

Review sheet for Mendelian genetics through human evolution. What organism did Mendel study? What characteristics of this organism did he examine?

Review sheet for Mendelian genetics through human evolution. What organism did Mendel study? What characteristics of this organism did he examine? Review sheet for Mendelian genetics through human evolution WARNING: I have tried to be complete, but I may have missed something. You are responsible for all the material discussed in class. This is only

More information

Natural Selection. Population Dynamics. The Origins of Genetic Variation. The Origins of Genetic Variation. Intergenerational Mutation Rate

Natural Selection. Population Dynamics. The Origins of Genetic Variation. The Origins of Genetic Variation. Intergenerational Mutation Rate Natural Selection Population Dynamics Humans, Sickle-cell Disease, and Malaria How does a population of humans become resistant to malaria? Overproduction Environmental pressure/competition Pre-existing

More information

Evolution and Epigenetics. Seminar: Social, Cognitive and Affective Neuroscience Speaker: Wolf-R. Brockhaus

Evolution and Epigenetics. Seminar: Social, Cognitive and Affective Neuroscience Speaker: Wolf-R. Brockhaus Evolution and Epigenetics Seminar: Social, Cognitive and Affective Neuroscience Speaker: Wolf-R. Brockhaus 1. History of evolutionary theory The history of evolutionary theory ~ 1800: Lamarck 1859: Darwin's

More information

Evolution and Natural Selection

Evolution and Natural Selection Evolution and Natural Selection What Evolution is NOT Change in a gene pool over time What Evolution IS Evolution unites all fields of biology! Cell biology Genetics/DNA Ecology Biodiversity/Taxonomy Carolus

More information

NOTES CH 17 Evolution of. Populations

NOTES CH 17 Evolution of. Populations NOTES CH 17 Evolution of Vocabulary Fitness Genetic Drift Punctuated Equilibrium Gene flow Adaptive radiation Divergent evolution Convergent evolution Gradualism Populations 17.1 Genes & Variation Darwin

More information

1. T/F: Genetic variation leads to evolution. 2. What is genetic equilibrium? 3. What is speciation? How does it occur?

1. T/F: Genetic variation leads to evolution. 2. What is genetic equilibrium? 3. What is speciation? How does it occur? 1. T/F: Genetic variation leads to evolution. 2. What is genetic equilibrium? 3. What is speciation? How does it occur? Warm UP Notes on Environmental Factor Concept Map Brief 6 questions and Concept Map

More information

Unit 2 Lesson 4 - Heredity. 7 th Grade Cells and Heredity (Mod A) Unit 2 Lesson 4 - Heredity

Unit 2 Lesson 4 - Heredity. 7 th Grade Cells and Heredity (Mod A) Unit 2 Lesson 4 - Heredity Unit 2 Lesson 4 - Heredity 7 th Grade Cells and Heredity (Mod A) Unit 2 Lesson 4 - Heredity Give Peas a Chance What is heredity? Traits, such as hair color, result from the information stored in genetic

More information

EVOLUTION change in populations over time

EVOLUTION change in populations over time EVOLUTION change in populations over time HISTORY ideas that shaped the current theory James Hutton (1785) proposes that Earth is shaped by geological forces that took place over extremely long periods

More information

EVOLUTION UNIT. 3. Unlike his predecessors, Darwin proposed a mechanism by which evolution could occur called.

EVOLUTION UNIT. 3. Unlike his predecessors, Darwin proposed a mechanism by which evolution could occur called. EVOLUTION UNIT Name Read Chapters 1.3, 20, 21, 22, 24.1 and 35.9 and complete the following. Chapter 1.3 Review from The Science of Biology 1. Discuss the influences, experiences and observations that

More information

Biology Slide 1 of 41

Biology Slide 1 of 41 Biology 1 of 41 15-3 Darwin Presents His Case 2 of 41 15-3 Darwin Presents His Case Publication of On the Origin of Species Publication of On the Origin of Species Darwin filled notebooks with his ideas

More information

Biology. Slide 1 of 41. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 41. End Show. Copyright Pearson Prentice Hall Biology 1 of 41 15-3 Darwin Presents His Case 2 of 41 Publication of On the Origin of Species Publication of On the Origin of Species Darwin filled notebooks with his ideas about species diversity and

More information

Quantitative Genetics & Evolutionary Genetics

Quantitative Genetics & Evolutionary Genetics Quantitative Genetics & Evolutionary Genetics (CHAPTER 24 & 26- Brooker Text) May 14, 2007 BIO 184 Dr. Tom Peavy Quantitative genetics (the study of traits that can be described numerically) is important

More information

Publication of On the Origin of Species Darwin Presents His Case

Publication of On the Origin of Species Darwin Presents His Case Publication of On the Origin of Species Publication of On the Origin of Species Darwin filled notebooks with his ideas about species diversity and the evolution process. Darwin was stunned and disturbed

More information

Thursday, March 21, 13. Evolution

Thursday, March 21, 13. Evolution Evolution What is Evolution? Evolution involves inheritable changes in a population of organisms through time Fundamental to biology and paleontology Paleontology is the study of life history as revealed

More information

11.1 Traits. Studying traits

11.1 Traits. Studying traits 11.1 Traits Tyler has free earlobes like his father. His mother has attached earlobes. Why does Tyler have earlobes like his father? In this section you will learn about traits and how they are passed

More information

EVOLUTION change in populations over time

EVOLUTION change in populations over time EVOLUTION change in populations over time HISTORY ideas that shaped the current theory James Hutton & Charles Lyell proposes that Earth is shaped by geological forces that took place over extremely long

More information

Population Genetics I. Bio

Population Genetics I. Bio Population Genetics I. Bio5488-2018 Don Conrad dconrad@genetics.wustl.edu Why study population genetics? Functional Inference Demographic inference: History of mankind is written in our DNA. We can learn

More information

#Evolution. Nothing in Biology makes sense except in the light of evolution.

#Evolution. Nothing in Biology makes sense except in the light of evolution. #Evolution Nothing in Biology makes sense except in the light of evolution. The Theory of Evolution Change over time. People used to think that species did not change. DARWIN WAS NOT THE PERSON TO COME

More information

EQ: How are genetic variations caused and how do they lead to natural selection?

EQ: How are genetic variations caused and how do they lead to natural selection? EQ: How are genetic variations caused and how do they lead to natural selection? What is natural selection Individuals that have physical or behavioral traits that better suit their environment are more

More information

1.A- Natural Selection

1.A- Natural Selection 1.A- Natural Selection Big Idea 1: The process of evolution drives the diversity and unity of life. EU 1.A- Evolution is change in the genetic makeup of a population over time. EU 1.B- Organisms are linked

More information

The Evolutionary Synthesis

The Evolutionary Synthesis The Evolutionary Synthesis Nothing in biology makes sense except in the light of evolution. Dobzhansky, 1973, American Biology Teacher The Seeming Impotence of Natural Selection Selection can only eliminate

More information

1. they are influenced by many genetic loci. 2. they exhibit variation due to both genetic and environmental effects.

1. they are influenced by many genetic loci. 2. they exhibit variation due to both genetic and environmental effects. October 23, 2009 Bioe 109 Fall 2009 Lecture 13 Selection on quantitative traits Selection on quantitative traits - From Darwin's time onward, it has been widely recognized that natural populations harbor

More information

Febuary 1 st, 2010 Bioe 109 Winter 2010 Lecture 11 Molecular evolution. Classical vs. balanced views of genome structure

Febuary 1 st, 2010 Bioe 109 Winter 2010 Lecture 11 Molecular evolution. Classical vs. balanced views of genome structure Febuary 1 st, 2010 Bioe 109 Winter 2010 Lecture 11 Molecular evolution Classical vs. balanced views of genome structure - the proposal of the neutral theory by Kimura in 1968 led to the so-called neutralist-selectionist

More information

UNIT 4: EVOLUTION Chapter 10: Principles of Evolution

UNIT 4: EVOLUTION Chapter 10: Principles of Evolution CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

EVOLUTION. HISTORY: Ideas that shaped the current evolutionary theory. Evolution change in populations over time.

EVOLUTION. HISTORY: Ideas that shaped the current evolutionary theory. Evolution change in populations over time. EVOLUTION HISTORY: Ideas that shaped the current evolutionary theory. Evolution change in populations over time. James Hutton & Charles Lyell proposes that Earth is shaped by geological forces that took

More information

WHAT IS EVOLUTION? Change over time. evolution 1

WHAT IS EVOLUTION? Change over time. evolution 1 WHAT IS EVOLUTION? Change over time. evolution 1 WHAT IS BIOLOGICAL EVOLUTON? Changes in the genetic makeup of a population of organisms over time! evolution 2 A FACT Biological organisms evolve evolution

More information

Evolution. Chapters 16 & 17

Evolution. Chapters 16 & 17 Evolution Chapters 16 & 17 Darwin s Voyage Chapter 16 Change over time Evolution Charles Darwin Developed a scientific theory that explains how modern organisms evolved over long periods of time through

More information

Evolution and the Genetics of Structured populations. Charles Goodnight Department of Biology University of Vermont

Evolution and the Genetics of Structured populations. Charles Goodnight Department of Biology University of Vermont Evolution and the Genetics of Structured populations Charles Goodnight Department of Biology University of Vermont Outline What is Evolution Evolution and the Reductionist Approach Fisher/Wright Controversy

More information

2. the variants differ with respect to their expected abilities to survive and reproduce in the present environment (S 0), then

2. the variants differ with respect to their expected abilities to survive and reproduce in the present environment (S 0), then Key ideas from lecture 1. Evolution by Natural Selection as a syllogism* (Endler 1986) 1. If there is heritable variation (h 2 >0), and 2. the variants differ with respect to their expected abilities to

More information

Outline for today s lecture (Ch. 14, Part I)

Outline for today s lecture (Ch. 14, Part I) Outline for today s lecture (Ch. 14, Part I) Ploidy vs. DNA content The basis of heredity ca. 1850s Mendel s Experiments and Theory Law of Segregation Law of Independent Assortment Introduction to Probability

More information

BIO 1130FF. An introduction to Organismal biology Midterm examination Worth either 15% or 20% of your final grade. Saturday, October 5, 2013

BIO 1130FF. An introduction to Organismal biology Midterm examination Worth either 15% or 20% of your final grade. Saturday, October 5, 2013 BIO 1130FF An introduction to Organismal biology Midterm examination Worth either 15% or 20% of your final grade Saturday, October 5, 2013 Part A: Multiple choice questions 20 points (1 point/question)

More information

Chapter 17: Population Genetics and Speciation

Chapter 17: Population Genetics and Speciation Chapter 17: Population Genetics and Speciation Section 1: Genetic Variation Population Genetics: Normal Distribution: a line graph showing the general trends in a set of data of which most values are near

More information

1 of 5 9/17/08 4:47 PM

1 of 5 9/17/08 4:47 PM Displaying 1-81 of 81 responses > Jump To: 1 Go >> Comment Text 1. artificial selection as an example of evolution driven by man; how it resembles natural selection phylogeny of animals:

More information

Meiosis -> Inheritance. How do the events of Meiosis predict patterns of heritable variation?

Meiosis -> Inheritance. How do the events of Meiosis predict patterns of heritable variation? Meiosis -> Inheritance How do the events of Meiosis predict patterns of heritable variation? Mendel s peas 1. Genes determine appearance (phenotype) 2. Genes vary and they are inherited 3. Their behavior

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME LIFE SCIENCES GRADE 12 SESSION 4 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME LIFE SCIENCES GRADE 12 SESSION 4 (LEARNER NOTES) TOPIC 2: THEORIES OF EVOLUTION (PART 1) Learner Note: Evolution is a theory. Evolution is change over time. Diversity is the RESULT of this change over time. If a trait is good, the organism survives and

More information

Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature )

Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature ) Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature ) Chapter 2 Section 2: how traits are passed from the parents

More information

Biology 20 Evolution

Biology 20 Evolution Biology 20 Evolution Evolution: Modern synthesis: Individuals: Lamarck: Use and disuse: Inheritance of Acquired Traits: Darwin: Travelled: Galapagos Islands: What was the name of Darwin s book, which he

More information

Introduction to Evolution

Introduction to Evolution Introduction to Evolution What is evolution? A basic definition of evolution evolution can be precisely defined as any change in the frequency of alleles within a gene pool from one generation to the

More information

EvolutionIntro.notebook. May 13, Do Now LE 1: Copy Now. May 13 12:28 PM. Apr 21 6:33 AM. May 13 7:22 AM. May 13 7:00 AM.

EvolutionIntro.notebook. May 13, Do Now LE 1: Copy Now. May 13 12:28 PM. Apr 21 6:33 AM. May 13 7:22 AM. May 13 7:00 AM. Different interpretations of cetacean evolutionary history 4/19/10 Aim: What is Evolution by Natural Selection Do Now: How do we know all life on earth is related? Homework Read pp. 375 379 p. 379 # 1,2,3

More information

Biology 3201 Unit 4 Evolution Ch Introducing Evolution (part 1) What is Evolution?

Biology 3201 Unit 4 Evolution Ch Introducing Evolution (part 1) What is Evolution? Biology 3201 Unit 4 Evolution Ch. 19 - Introducing Evolution (part 1) What is Evolution? Evolution: the relative change in the characteristics of a population over successive generations A population is

More information

Concepts of Evolution

Concepts of Evolution Concepts of Evolution Isn t Evolution Just A Theory? How does the scientific meaning of a term like theory differ from the way it is used in everyday life? Can the facts of science change over time? If

More information

CHAPTER 2--THE DEVELOPMENT OF EVOLUTIONARY THEORY

CHAPTER 2--THE DEVELOPMENT OF EVOLUTIONARY THEORY CHAPTER 2--THE DEVELOPMENT OF EVOLUTIONARY THEORY Student: 1. In Europe during the Middle Ages, it was believed that. A. all species had evolved from a common ancestor B. evolution was the result of natural

More information

AGENDA Go Over DUT; offer REDO opportunity Notes on Intro to Evolution Cartoon Activity

AGENDA Go Over DUT; offer REDO opportunity Notes on Intro to Evolution Cartoon Activity Date: Number your notebook and label the top the following: EVEN Pages-LEFT SIDE Page 176- Concept Map Page 178- Sequence Page 180- Vocabulary Page 182- Warm Ups Page 184- Cartoon Questions HN- Natural

More information

Natural Selection and Evolution

Natural Selection and Evolution Natural Selection and Evolution Our plant has been evolving from its simplest beginnings into a vast range of organisms present today This has happened by natural selection Natural Selection and Evolution

More information

FYI Green text has info we DID NOT cover in class. Rest should be good review! Darwin and DNA: How genetics spurred the evolution of a theory

FYI Green text has info we DID NOT cover in class. Rest should be good review! Darwin and DNA: How genetics spurred the evolution of a theory FYI Green text has info we DID NOT cover in class. Rest should be good review! Darwin and DNA: How genetics spurred the evolution of a theory 24 August 2016 https://www.newscientist.com/article/mg23130880-400-the-odd-couple-how-evolution-and-genetics-finallygot-together/

More information

Theory a well supported testable explanation of phenomenon occurring in the natural world.

Theory a well supported testable explanation of phenomenon occurring in the natural world. Evolution Theory of Evolution Theory a well supported testable explanation of phenomenon occurring in the natural world. Evolution the process by which modern organisms changed over time from ancient common

More information

Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse

Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse Tutorial Outline Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse exams. Biology Tutorials offer targeted instruction,

More information

NOTES Ch 17: Genes and. Variation

NOTES Ch 17: Genes and. Variation NOTES Ch 17: Genes and Vocabulary Fitness Genetic Drift Punctuated Equilibrium Gene flow Adaptive radiation Divergent evolution Convergent evolution Gradualism Variation 17.1 Genes & Variation Darwin developed

More information

Reproduction- passing genetic information to the next generation

Reproduction- passing genetic information to the next generation 166 166 Essential Question: How has biological evolution led to the diversity of life? B-5 Natural Selection Traits that make an organism more or less likely to survive in an environment and reproduce

More information

The Wright Fisher Controversy. Charles Goodnight Department of Biology University of Vermont

The Wright Fisher Controversy. Charles Goodnight Department of Biology University of Vermont The Wright Fisher Controversy Charles Goodnight Department of Biology University of Vermont Outline Evolution and the Reductionist Approach Adding complexity to Evolution Implications Williams Principle

More information

Lab 2A--Life on Earth

Lab 2A--Life on Earth Lab 2A--Life on Earth Geology 1402 Chapters 3 & 7 in the textbook 1 A comment Many people including professional scientist are skeptical of evolution or outright reject it. I am not attempting to change

More information

Darwin s Observations & Conclusions The Struggle for Existence

Darwin s Observations & Conclusions The Struggle for Existence Darwin s Observations & Conclusions The Struggle for Existence 1 Voyage of the Beagle During His Travels, Darwin Made Numerous Observations And Collected Evidence That Led Him To Propose A Revolutionary

More information

Understanding Natural Selection

Understanding Natural Selection Understanding Natural Selection Charles Darwin (1809-1882) Sailed around the world 1831-1836 What did Darwin s Travels reveal The diversity of living species was far greater than anyone had previously

More information

full file at

full file at Chapter 1 1. Genetics contribute to advances in: Answer: E A. agriculture. B. pharmaceuticals. C. medicine. D. modern biology. E. All of the above. 2. Genetic information can be carried in which of the

More information

Charles Darwin became a naturalist, a scientist who studies nature, during a voyage on the British ship HMS Beagle.

Charles Darwin became a naturalist, a scientist who studies nature, during a voyage on the British ship HMS Beagle. Theory of Evolution Darwin s Voyage What did Darwin observe? Charles Darwin became a naturalist, a scientist who studies nature, during a voyage on the British ship HMS Beagle. On his journey, Darwin observed

More information

Name: Period Study Guide 17-1 and 17-2

Name: Period Study Guide 17-1 and 17-2 Name: Period Study Guide 17-1 and 17-2 17-1 The Fossil Record (pgs. 417-422) 1. What is the fossil record? 2. What evidence does the fossil record provide? 1. 2. 3. List the 2 techniques paleontologists

More information

Introduction to population genetics & evolution

Introduction to population genetics & evolution Introduction to population genetics & evolution Course Organization Exam dates: Feb 19 March 1st Has everybody registered? Did you get the email with the exam schedule Summer seminar: Hot topics in Bioinformatics

More information

There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page.

There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page. EVOLUTIONARY BIOLOGY EXAM #1 Fall 2017 There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page. Part I. True (T) or False (F) (2 points each). Circle

More information

Slide 1. Slide 2. Slide 3. Concepts of Evolution. Isn t Evolution Just A Theory? Evolution

Slide 1. Slide 2. Slide 3. Concepts of Evolution. Isn t Evolution Just A Theory? Evolution Slide 1 Concepts of Evolution Slide 2 Isn t Evolution Just A Theory? How does the scientific meaning of a term like theory differ from the way it is used in everyday life? Can the facts of science change

More information

Darwin s Theory of Evolution. The Puzzle of Life s Diversity

Darwin s Theory of Evolution. The Puzzle of Life s Diversity Darwin s Theory of Evolution The Puzzle of Life s Diversity Evolutionary Theory A scientific explanation that can illustrate the diversity of life on Earth Theory A well-supported, testable explanation

More information

Lesson 1 Syllabus Reference

Lesson 1 Syllabus Reference Lesson 1 Syllabus Reference Outcomes A student Explains how biological understanding has advanced through scientific discoveries, technological developments and the needs of society. Content The theory

More information

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population The Evolution of Populations What is Evolution? A change over time in the genetic composition of a population Human evolution The gene pool Is the total aggregate of genes for a particular trait in a population

More information

It all depends on barriers that prevent members of two species from producing viable, fertile hybrids.

It all depends on barriers that prevent members of two species from producing viable, fertile hybrids. Name: Date: Theory of Evolution Evolution: Change in a over a period of time Explains the great of organisms Major points of Origin of Species Descent with Modification o All organisms are related through

More information

Unit 7: Evolution Guided Reading Questions (80 pts total)

Unit 7: Evolution Guided Reading Questions (80 pts total) AP Biology Biology, Campbell and Reece, 10th Edition Adapted from chapter reading guides originally created by Lynn Miriello Name: Unit 7: Evolution Guided Reading Questions (80 pts total) Chapter 22 Descent

More information

The Origin of Species

The Origin of Species The Origin of Species A. Macroevolution: Up to this point we have discussed changes in alleles or microevolution, with evolution this is the evolution of new. is the origin of a new species. There are

More information

Evolution Test Review

Evolution Test Review Name Evolution Test Review Period 1) A group of interbreeding organisms (a species) living in a given area is called population 2) Give an example of a species. Ex. One wolf Give an example of a population.

More information