Annotation Error in Public Databases ALEXANDRA SCHNOES UNIVERSITY OF CALIFORNIA, SAN FRANCISCO OCTOBER 25, 2010

Size: px
Start display at page:

Download "Annotation Error in Public Databases ALEXANDRA SCHNOES UNIVERSITY OF CALIFORNIA, SAN FRANCISCO OCTOBER 25, 2010"

Transcription

1 Annotation Error in Public Databases ALEXANDRA SCHNOES UNIVERSITY OF CALIFORNIA, SAN FRANCISCO OCTOBER 25,

2 New genomes (and metagenomes) sequenced every day... 2

3 3

4 3

5 3

6 3

7 3

8 3

9 3

10 3

11 3

12 Computational Function Prediction Needed Total Sequences Characterized Sequences 4

13 What about the error that results from large scale function prediction? 5

14 Our focus: commonly used protein sequence databases How prevalent is misannotation in common sequence databases? What can we learn about these annotation errors and annotation in general? 6

15 What is function? Many Possible Definitions Phenotype Enzymatic Reaction 7

16 What is function? Many Possible Definitions Phenotype Enzymatic Reaction 7

17 Concrete definition of function Substrate Product Chemical conversion Function can be mapped to specific residues Why use enzymes? 8

18 Functionally Diverse Enzyme Superfamilies 9

19 Functionally Diverse Enzyme Superfamilies Low % sequence ID Conserved mechanistic step Multifunctional 9

20 Functionally Diverse Enzyme Superfamilies Conserved mechanistic step Multifunctional Low % sequence ID Monofunctional Family Specific Residues % ID within families > % ID between families 9

21 What is needed for the misannotation analysis? Gold Standard Sequence Set Requirements Organized hierarchy & data Superfamily definitions Family definitions Sequences Sequence alignments Statistical models Functions are experimentally characterized Understand functional mechanism Structure Active site Functionally important residues Large set 10

22 What is needed for the misannotation analysis? Gold Standard Sequence Set Requirements Organized hierarchy & data Superfamily definitions Family definitions Sequences Sequence alignments Statistical models Functions are experimentally characterized 6 Superfamilies 5 Structural folds 37 Families 5/6 E.C. categories Genome Biol. 2006;7(1):R8. Understand functional mechanism Structure Active site Functionally important residues Large set 10

23 Sequence Models (HMMs) Evidence Codes Functionally Important Residues Hierarchically Organized Hand-Curated Sequence Alignments Gold Standard Sequence Set sfld.rbvi.ucsf.edu 11

24 Data Source: Commonly Used Sequence Databases NCBI Automated Large TrEMBL Automated Large KEGG Automated Swiss-Prot Curated Small 12

25 Analysis Question Given: A protein sequence annotated to a specific enzyme function Is that annotation correct? 13

26 General Process 14

27 15

28 15

29 15

30 15

31 Non-Family Members Family Members LC NC TC 15

32 16

33 16

34 Variable percent misannotation Manually curated Swiss- Prot is most accurate 17

35 Misannotation Problem is Getting Worse Number of Sequences Sequences Deposited by Year and the Fraction Predicted to be Misannotated (NR DB) Fraction Predicted Misannotated Year Incorrect Annotations Correct Annotations 18

36 What are the characteristics of these misannotations? 19

37 Sensitivity to threshold change 20

38 Non-Family Members LC Family Members NC TC TC Trusted Cutoff NC Noise Cutoff LC Lenient Cutoff Sensitivity to threshold change 20

39 Non-Family Members LC Family Members NC TC Non-Family Members LC Family Members Sensitivity to threshold change NC TC 20

40 21

41 NSA NSA No Superfamily Association 21

42 NSA SFA NSA No Superfamily Association SFA Superfamily Association Only 21

43 NSA SFA NSA No Superfamily Association SFA Superfamily Association Only MFR Missing Functionally Important Residues MFR 21

44 NSA SFA NSA No Superfamily Association SFA Superfamily Association Only MFR Missing Functionally Important Residues BTC Below Trusted Cutoff MFR BTC 21

45 Types of Misannotation MFR (6%) SFA (31%) NSA (9%) BTC (54%) NSA Misannotations due to overprediction Misannotations not due to overprediction NSA No Superfamily Association SFA Superfamily Association Only MFR Missing Functionally Important Residues BTC Below Trusted Cutoff SFA MFR BTC Biggest Problem Predicting function without sufficient evidence 21

46 Dipeptide Epimerase >gi pdb 1HZY A Chain A, High Resolution Structure Of The Zinc-Containing Phosphotriesterase From Pseudomonas 1Diminuta GDRINTVRGPITISEAGFTLTHEHICGSSAGFLRAWPEFFGSRKALAEKAVRGLRRARAAGVRTIVDVST FDIGRDVSLLAEVSRAADVHIVAATGLWFDPPLSMRLRSVEELTQFFLREIQYGIEDTGIRAGIIKVATT GKATPFQELVLKAAARASLATGVPVTTHTAASQRDGEQQAAIFESEGLSPSRVCIGHSDDTDDLSYLTAL AARGYLIGLDHIPHSAIGLEDNASASALLGIRSWQTRALLIKALIDQGYMKQILVSNDWLFGFSSYVTNI MDVMDRVNPDGMAFIPLRVIPFLREKGVPQETLAGITVTNPARFLSPTLRAS >gi sp P45548 PHP_ECOLI 2Phosphotriesterase homology protein MSFDPTGYTLAHEHLHIDLSGFKNNVDCRLDQYAFICQEMNDLMTRGVRNVIEMTNRYMGRNAQFMLDVM RETGINVVACTGYYQDAFFPEHVATRSVQELAQEMVDEIEQGIDGTELKAGIIAEIGTSEGKITPLEEKV FIAAALAHNQTGRPISTHTSFSTMGLEQLALLQAHGVDLSRVTVGHCDLKDNLDNILKMIDLGAYVQFDT IGKNSYYPDEKRIAMLHALRDRGLLNRVMLSMDITRRSHLKANGGYGYDYLLTTFIPQLRQSGFSQADVD VMLRENPSQFFQ Unknown Function Dipeptide Epimerase 1 = 2 Dipeptide Epimerase 1! Dipeptide 1 & 2 Epimerase INCORRECT! Error Propagation 22

47 Dipeptide Epimerase >gi pdb 1HZY A Chain A, High Resolution Structure Of The Zinc-Containing Phosphotriesterase From Pseudomonas 1Diminuta GDRINTVRGPITISEAGFTLTHEHICGSSAGFLRAWPEFFGSRKALAEKAVRGLRRARAAGVRTIVDVST FDIGRDVSLLAEVSRAADVHIVAATGLWFDPPLSMRLRSVEELTQFFLREIQYGIEDTGIRAGIIKVATT GKATPFQELVLKAAARASLATGVPVTTHTAASQRDGEQQAAIFESEGLSPSRVCIGHSDDTDDLSYLTAL AARGYLIGLDHIPHSAIGLEDNASASALLGIRSWQTRALLIKALIDQGYMKQILVSNDWLFGFSSYVTNI MDVMDRVNPDGMAFIPLRVIPFLREKGVPQETLAGITVTNPARFLSPTLRAS >gi sp P45548 PHP_ECOLI 2Phosphotriesterase homology protein MSFDPTGYTLAHEHLHIDLSGFKNNVDCRLDQYAFICQEMNDLMTRGVRNVIEMTNRYMGRNAQFMLDVM RETGINVVACTGYYQDAFFPEHVATRSVQELAQEMVDEIEQGIDGTELKAGIIAEIGTSEGKITPLEEKV FIAAALAHNQTGRPISTHTSFSTMGLEQLALLQAHGVDLSRVTVGHCDLKDNLDNILKMIDLGAYVQFDT IGKNSYYPDEKRIAMLHALRDRGLLNRVMLSMDITRRSHLKANGGYGYDYLLTTFIPQLRQSGFSQADVD VMLRENPSQFFQ Unknown Function Dipeptide Epimerase 1 = 2 Dipeptide Epimerase 1! Dipeptide 1 & 2 Epimerase INCORRECT! Error Propagation 22

48 BLAST sequence similarity network E-value or lower Distance between nodes reflects level of sequence similarity Sequence similarity Correct annotation Incorrect annotation 23

49 BLAST sequence similarity network E-value or lower Distance between nodes reflects level of sequence similarity Sequence similarity Correct annotation Incorrect annotation 23

50 Misannotations Cluster with each other Indication of error propagation BLAST sequence similarity network E-value or lower Distance between nodes reflects level of sequence similarity Sequence similarity Correct annotation Incorrect annotation 23

51 In Conclusion... Misannotation is a serious problem Automated databases Across multiple folds, functions and superfamilies Hard to predict misannotation a priori Manual curation delivers the highest quality Misannotation problem is getting worse Overprediction is a common problem Error propagation appears to be a common source of misannotation 24

52 Acknowledgements Patricia Babbitt & lab Shoshana Brown Igor Dodevski University of Zürich Tanja Kortemme & Lab Colin Smith Jim Wells Lab Emily Crawford $$ Howard Hughes Pre-Doctoral Fellowship NIH & NSF PLoS Comput Biol Dec;5(12):e Wiki Commons & Science Magazine for some images

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Fall 2017 Databases and Protein Structure Representation October 2, 2017 Molecular Biology as Information Science > 12, 000 genomes sequenced, mostly bacterial (2013) > 5x10 6 unique sequences available

More information

Gene Ontology and overrepresentation analysis

Gene Ontology and overrepresentation analysis Gene Ontology and overrepresentation analysis Kjell Petersen J Express Microarray analysis course Oslo December 2009 Presentation adapted from Endre Anderssen and Vidar Beisvåg NMC Trondheim Overview How

More information

Homology. and. Information Gathering and Domain Annotation for Proteins

Homology. and. Information Gathering and Domain Annotation for Proteins Homology and Information Gathering and Domain Annotation for Proteins Outline WHAT IS HOMOLOGY? HOW TO GATHER KNOWN PROTEIN INFORMATION? HOW TO ANNOTATE PROTEIN DOMAINS? EXAMPLES AND EXERCISES Homology

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison CMPS 6630: Introduction to Computational Biology and Bioinformatics Structure Comparison Protein Structure Comparison Motivation Understand sequence and structure variability Understand Domain architecture

More information

EBI web resources II: Ensembl and InterPro. Yanbin Yin Spring 2013

EBI web resources II: Ensembl and InterPro. Yanbin Yin Spring 2013 EBI web resources II: Ensembl and InterPro Yanbin Yin Spring 2013 1 Outline Intro to genome annotation Protein family/domain databases InterPro, Pfam, Superfamily etc. Genome browser Ensembl Hands on Practice

More information

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting.

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting. Genome Annotation Bioinformatics and Computational Biology Genome Annotation Frank Oliver Glöckner 1 Genome Analysis Roadmap Genome sequencing Assembly Gene prediction Protein targeting trna prediction

More information

Week 10: Homology Modelling (II) - HHpred

Week 10: Homology Modelling (II) - HHpred Week 10: Homology Modelling (II) - HHpred Course: Tools for Structural Biology Fabian Glaser BKU - Technion 1 2 Identify and align related structures by sequence methods is not an easy task All comparative

More information

Sequence and Structure Alignment Z. Luthey-Schulten, UIUC Pittsburgh, 2006 VMD 1.8.5

Sequence and Structure Alignment Z. Luthey-Schulten, UIUC Pittsburgh, 2006 VMD 1.8.5 Sequence and Structure Alignment Z. Luthey-Schulten, UIUC Pittsburgh, 2006 VMD 1.8.5 Why Look at More Than One Sequence? 1. Multiple Sequence Alignment shows patterns of conservation 2. What and how many

More information

Protein Similarity Networks (PSNs)

Protein Similarity Networks (PSNs) Protein Similarity Networks (PSNs) Basics Using PSNs Challenges for Interpretation Pennsylvania State Bioinorganic Workshop Patsy Babbitt & Shoshana Brown babbitt@cgl.ucsf.edu June 2016 Most protein superfamilies

More information

BLAST. Varieties of BLAST

BLAST. Varieties of BLAST BLAST Basic Local Alignment Search Tool (1990) Altschul, Gish, Miller, Myers, & Lipman Uses short-cuts or heuristics to improve search speed Like speed-reading, does not examine every nucleotide of database

More information

The CATH Database provides insights into protein structure/function relationships

The CATH Database provides insights into protein structure/function relationships 1999 Oxford University Press Nucleic Acids Research, 1999, Vol. 27, No. 1 275 279 The CATH Database provides insights into protein structure/function relationships C. A. Orengo, F. M. G. Pearl, J. E. Bray,

More information

Lecture 2. The Blast2GO annotation framework

Lecture 2. The Blast2GO annotation framework Lecture 2 The Blast2GO annotation framework Annotation steps Modulation of annotation intensity Export/Import Functions Sequence Selection Additional Tools Functional assignment Annotation Transference

More information

Molecular Modeling. Prediction of Protein 3D Structure from Sequence. Vimalkumar Velayudhan. May 21, 2007

Molecular Modeling. Prediction of Protein 3D Structure from Sequence. Vimalkumar Velayudhan. May 21, 2007 Molecular Modeling Prediction of Protein 3D Structure from Sequence Vimalkumar Velayudhan Jain Institute of Vocational and Advanced Studies May 21, 2007 Vimalkumar Velayudhan Molecular Modeling 1/23 Outline

More information

DATA ACQUISITION FROM BIO-DATABASES AND BLAST. Natapol Pornputtapong 18 January 2018

DATA ACQUISITION FROM BIO-DATABASES AND BLAST. Natapol Pornputtapong 18 January 2018 DATA ACQUISITION FROM BIO-DATABASES AND BLAST Natapol Pornputtapong 18 January 2018 DATABASE Collections of data To share multi-user interface To prevent data loss To make sure to get the right things

More information

Prediction of protein function from sequence analysis

Prediction of protein function from sequence analysis Prediction of protein function from sequence analysis Rita Casadio BIOCOMPUTING GROUP University of Bologna, Italy The omic era Genome Sequencing Projects: Archaea: 74 species In Progress:52 Bacteria:

More information

Chapter 5. Proteomics and the analysis of protein sequence Ⅱ

Chapter 5. Proteomics and the analysis of protein sequence Ⅱ Proteomics Chapter 5. Proteomics and the analysis of protein sequence Ⅱ 1 Pairwise similarity searching (1) Figure 5.5: manual alignment One of the amino acids in the top sequence has no equivalent and

More information

2MHR. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity.

2MHR. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity. A global picture of the protein universe will help us to understand

More information

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha Neural Networks for Protein Structure Prediction Brown, JMB 1999 CS 466 Saurabh Sinha Outline Goal is to predict secondary structure of a protein from its sequence Artificial Neural Network used for this

More information

Introduction to Evolutionary Concepts

Introduction to Evolutionary Concepts Introduction to Evolutionary Concepts and VMD/MultiSeq - Part I Zaida (Zan) Luthey-Schulten Dept. Chemistry, Beckman Institute, Biophysics, Institute of Genomics Biology, & Physics NIH Workshop 2009 VMD/MultiSeq

More information

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB)

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB) Protein structure databases; visualization; and classifications 1. Introduction to Protein Data Bank (PDB) 2. Free graphic software for 3D structure visualization 3. Hierarchical classification of protein

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary information S1 (box). Supplementary Methods description. Prokaryotic Genome Database Archaeal and bacterial genome sequences were downloaded from the NCBI FTP site (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/)

More information

EBI web resources II: Ensembl and InterPro

EBI web resources II: Ensembl and InterPro EBI web resources II: Ensembl and InterPro Yanbin Yin http://www.ebi.ac.uk/training/online/course/ 1 Homework 3 Go to http://www.ebi.ac.uk/interpro/training.htmland finish the second online training course

More information

A Protein Ontology from Large-scale Textmining?

A Protein Ontology from Large-scale Textmining? A Protein Ontology from Large-scale Textmining? Protege-Workshop Manchester, 07-07-2003 Kai Kumpf, Juliane Fluck and Martin Hofmann Instructive mistakes: a narrative Aim: Protein ontology that supports

More information

CISC 889 Bioinformatics (Spring 2004) Sequence pairwise alignment (I)

CISC 889 Bioinformatics (Spring 2004) Sequence pairwise alignment (I) CISC 889 Bioinformatics (Spring 2004) Sequence pairwise alignment (I) Contents Alignment algorithms Needleman-Wunsch (global alignment) Smith-Waterman (local alignment) Heuristic algorithms FASTA BLAST

More information

Similarity searching summary (2)

Similarity searching summary (2) Similarity searching / sequence alignment summary Biol4230 Thurs, February 22, 2016 Bill Pearson wrp@virginia.edu 4-2818 Pinn 6-057 What have we covered? Homology excess similiarity but no excess similarity

More information

Bioinformatics. Proteins II. - Pattern, Profile, & Structure Database Searching. Robert Latek, Ph.D. Bioinformatics, Biocomputing

Bioinformatics. Proteins II. - Pattern, Profile, & Structure Database Searching. Robert Latek, Ph.D. Bioinformatics, Biocomputing Bioinformatics Proteins II. - Pattern, Profile, & Structure Database Searching Robert Latek, Ph.D. Bioinformatics, Biocomputing WIBR Bioinformatics Course, Whitehead Institute, 2002 1 Proteins I.-III.

More information

Improving Protein Function Prediction using the Hierarchical Structure of the Gene Ontology

Improving Protein Function Prediction using the Hierarchical Structure of the Gene Ontology Improving Protein Function Prediction using the Hierarchical Structure of the Gene Ontology Roman Eisner, Brett Poulin, Duane Szafron, Paul Lu, Russ Greiner Department of Computing Science University of

More information

ATLAS of Biochemistry

ATLAS of Biochemistry ATLAS of Biochemistry USER GUIDE http://lcsb-databases.epfl.ch/atlas/ CONTENT 1 2 3 GET STARTED Create your user account NAVIGATE Curated KEGG reactions ATLAS reactions Pathways Maps USE IT! Fill a gap

More information

Understanding Sequence, Structure and Function Relationships and the Resulting Redundancy

Understanding Sequence, Structure and Function Relationships and the Resulting Redundancy Understanding Sequence, Structure and Function Relationships and the Resulting Redundancy many slides by Philip E. Bourne Department of Pharmacology, UCSD Agenda Understand the relationship between sequence,

More information

SABIO-RK Integration and Curation of Reaction Kinetics Data Ulrike Wittig

SABIO-RK Integration and Curation of Reaction Kinetics Data  Ulrike Wittig SABIO-RK Integration and Curation of Reaction Kinetics Data http://sabio.villa-bosch.de/sabiork Ulrike Wittig Overview Introduction /Motivation Database content /User interface Data integration Curation

More information

Homology and Information Gathering and Domain Annotation for Proteins

Homology and Information Gathering and Domain Annotation for Proteins Homology and Information Gathering and Domain Annotation for Proteins Outline Homology Information Gathering for Proteins Domain Annotation for Proteins Examples and exercises The concept of homology The

More information

CSCE555 Bioinformatics. Protein Function Annotation

CSCE555 Bioinformatics. Protein Function Annotation CSCE555 Bioinformatics Protein Function Annotation Why we need to do function annotation? Fig from: Network-based prediction of protein function. Molecular Systems Biology 3:88. 2007 What s function? The

More information

BIOINFORMATICS: An Introduction

BIOINFORMATICS: An Introduction BIOINFORMATICS: An Introduction What is Bioinformatics? The term was first coined in 1988 by Dr. Hwa Lim The original definition was : a collective term for data compilation, organisation, analysis and

More information

Procheck output. Bond angles (Procheck) Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics.

Procheck output. Bond angles (Procheck) Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics. Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics Iosif Vaisman Email: ivaisman@gmu.edu ----------------------------------------------------------------- Bond

More information

Protein structure analysis. Risto Laakso 10th January 2005

Protein structure analysis. Risto Laakso 10th January 2005 Protein structure analysis Risto Laakso risto.laakso@hut.fi 10th January 2005 1 1 Summary Various methods of protein structure analysis were examined. Two proteins, 1HLB (Sea cucumber hemoglobin) and 1HLM

More information

TrAnsFuSE refines the search for protein function: oxidoreductaseswz

TrAnsFuSE refines the search for protein function: oxidoreductaseswz Integrative Biology View Online / Journal Homepage Dynamic Article Links Cite this: DOI: 10.1039/c2ib00131d www.rsc.org/ibiology PAPER TrAnsFuSE refines the search for protein function: oxidoreductaseswz

More information

Structure to Function. Molecular Bioinformatics, X3, 2006

Structure to Function. Molecular Bioinformatics, X3, 2006 Structure to Function Molecular Bioinformatics, X3, 2006 Structural GeNOMICS Structural Genomics project aims at determination of 3D structures of all proteins: - organize known proteins into families

More information

CISC 636 Computational Biology & Bioinformatics (Fall 2016)

CISC 636 Computational Biology & Bioinformatics (Fall 2016) CISC 636 Computational Biology & Bioinformatics (Fall 2016) Predicting Protein-Protein Interactions CISC636, F16, Lec22, Liao 1 Background Proteins do not function as isolated entities. Protein-Protein

More information

Homology Modeling (Comparative Structure Modeling) GBCB 5874: Problem Solving in GBCB

Homology Modeling (Comparative Structure Modeling) GBCB 5874: Problem Solving in GBCB Homology Modeling (Comparative Structure Modeling) Aims of Structural Genomics High-throughput 3D structure determination and analysis To determine or predict the 3D structures of all the proteins encoded

More information

Advanced practical course in genome bioinformatics DAY 6: Functional annotation. Petri Törönen Earlier version Patrik Koskinen

Advanced practical course in genome bioinformatics DAY 6: Functional annotation. Petri Törönen Earlier version Patrik Koskinen Advanced practical course in genome bioinformatics DAY 6: Functional annotation Petri Törönen Earlier version Patrik Koskinen Genome project roadmap After experimental design and preparations a genome

More information

Cluster Analysis of Gene Expression Microarray Data. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 8, 2002

Cluster Analysis of Gene Expression Microarray Data. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 8, 2002 Cluster Analysis of Gene Expression Microarray Data BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 8, 2002 1 Data representations Data are relative measurements log 2 ( red

More information

Mitochondrial Genome Annotation

Mitochondrial Genome Annotation Protein Genes 1,2 1 Institute of Bioinformatics University of Leipzig 2 Department of Bioinformatics Lebanese University TBI Bled 2015 Outline Introduction Mitochondrial DNA Problem Tools Training Annotation

More information

Bioinformatics. Dept. of Computational Biology & Bioinformatics

Bioinformatics. Dept. of Computational Biology & Bioinformatics Bioinformatics Dept. of Computational Biology & Bioinformatics 3 Bioinformatics - play with sequences & structures Dept. of Computational Biology & Bioinformatics 4 ORGANIZATION OF LIFE ROLE OF BIOINFORMATICS

More information

Motifs, Profiles and Domains. Michael Tress Protein Design Group Centro Nacional de Biotecnología, CSIC

Motifs, Profiles and Domains. Michael Tress Protein Design Group Centro Nacional de Biotecnología, CSIC Motifs, Profiles and Domains Michael Tress Protein Design Group Centro Nacional de Biotecnología, CSIC Comparing Two Proteins Sequence Alignment Determining the pattern of evolution and identifying conserved

More information

Mathangi Thiagarajan Rice Genome Annotation Workshop May 23rd, 2007

Mathangi Thiagarajan Rice Genome Annotation Workshop May 23rd, 2007 -2 Transcript Alignment Assembly and Automated Gene Structure Improvements Using PASA-2 Mathangi Thiagarajan mathangi@jcvi.org Rice Genome Annotation Workshop May 23rd, 2007 About PASA PASA is an open

More information

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD Department of Computer Science University of Missouri 2008 Free for Academic

More information

A Network Filtration Protocol for Elucidating. Relationships between Families in a Protein

A Network Filtration Protocol for Elucidating. Relationships between Families in a Protein A Network Filtration Protocol for Elucidating Relationships between Families in a Protein Similarity Network Leonard Apeltsin Abstract Motivation: The study of diverse enzyme superfamilies can provide

More information

Title 代謝経路からの酵素反応連続パターンの検出 京都大学化学研究所スーパーコンピュータシステム研究成果報告書 (2013), 2013:

Title 代謝経路からの酵素反応連続パターンの検出 京都大学化学研究所スーパーコンピュータシステム研究成果報告書 (2013), 2013: Title 代謝経路からの酵素反応連続パターンの検出 Author(s) 武藤, 愛 Citation 京都大学化学研究所スーパーコンピュータシステム研究成果報告書 (2013), 2013: 63-66 Issue Date 2013 URL http://hdl.handle.net/2433/173977 Right Type Article Textversion publisher Kyoto

More information

Identifying Signaling Pathways

Identifying Signaling Pathways These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by Anthony Gitter, Mark Craven, Colin Dewey Identifying Signaling Pathways BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2018

More information

Protein Structure and Function Prediction using Kernel Methods.

Protein Structure and Function Prediction using Kernel Methods. Protein Structure and Function Prediction using Kernel Methods. A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Huzefa Rangwala IN PARTIAL FULFILLMENT OF THE

More information

Variable-Length Protein Sequence Motif Extraction Using Hierarchically-Clustered Hidden Markov Models

Variable-Length Protein Sequence Motif Extraction Using Hierarchically-Clustered Hidden Markov Models 2013 12th International Conference on Machine Learning and Applications Variable-Length Protein Sequence Motif Extraction Using Hierarchically-Clustered Hidden Markov Models Cody Hudson, Bernard Chen Department

More information

ProtoNet 4.0: A hierarchical classification of one million protein sequences

ProtoNet 4.0: A hierarchical classification of one million protein sequences ProtoNet 4.0: A hierarchical classification of one million protein sequences Noam Kaplan 1*, Ori Sasson 2, Uri Inbar 2, Moriah Friedlich 2, Menachem Fromer 2, Hillel Fleischer 2, Elon Portugaly 2, Nathan

More information

Bioinformatics. Macromolecular structure

Bioinformatics. Macromolecular structure Bioinformatics Macromolecular structure Contents Determination of protein structure Structure databases Secondary structure elements (SSE) Tertiary structure Structure analysis Structure alignment Domain

More information

Sifting through genomes with iterative-sequence clustering produces a large, phylogenetically diverse protein-family resource

Sifting through genomes with iterative-sequence clustering produces a large, phylogenetically diverse protein-family resource Sharpton et al. BMC Bioinformatics 2012, 13:264 RESEARCH ARTICLE Open Access Sifting through genomes with iterative-sequence clustering produces a large, phylogenetically diverse protein-family resource

More information

Some Problems from Enzyme Families

Some Problems from Enzyme Families Some Problems from Enzyme Families Greg Butler Department of Computer Science Concordia University, Montreal www.cs.concordia.ca/~faculty/gregb gregb@cs.concordia.ca Abstract I will discuss some problems

More information

Multiple Mapping Method: A Novel Approach to the Sequence-to-Structure Alignment Problem in Comparative Protein Structure Modeling

Multiple Mapping Method: A Novel Approach to the Sequence-to-Structure Alignment Problem in Comparative Protein Structure Modeling 63:644 661 (2006) Multiple Mapping Method: A Novel Approach to the Sequence-to-Structure Alignment Problem in Comparative Protein Structure Modeling Brajesh K. Rai and András Fiser* Department of Biochemistry

More information

Comparative Network Analysis

Comparative Network Analysis Comparative Network Analysis BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2016 Anthony Gitter gitter@biostat.wisc.edu These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by

More information

Homology Modeling. Roberto Lins EPFL - summer semester 2005

Homology Modeling. Roberto Lins EPFL - summer semester 2005 Homology Modeling Roberto Lins EPFL - summer semester 2005 Disclaimer: course material is mainly taken from: P.E. Bourne & H Weissig, Structural Bioinformatics; C.A. Orengo, D.T. Jones & J.M. Thornton,

More information

Metabolic modelling. Metabolic networks, reconstruction and analysis. Esa Pitkänen Computational Methods for Systems Biology 1 December 2009

Metabolic modelling. Metabolic networks, reconstruction and analysis. Esa Pitkänen Computational Methods for Systems Biology 1 December 2009 Metabolic modelling Metabolic networks, reconstruction and analysis Esa Pitkänen Computational Methods for Systems Biology 1 December 2009 Department of Computer Science, University of Helsinki Metabolic

More information

Biology Tutorial. Aarti Balasubramani Anusha Bharadwaj Massa Shoura Stefan Giovan

Biology Tutorial. Aarti Balasubramani Anusha Bharadwaj Massa Shoura Stefan Giovan Biology Tutorial Aarti Balasubramani Anusha Bharadwaj Massa Shoura Stefan Giovan Viruses A T4 bacteriophage injecting DNA into a cell. Influenza A virus Electron micrograph of HIV. Cone-shaped cores are

More information

Comprehensive genome analysis of 203 genomes provides structural genomics with new insights into protein family space

Comprehensive genome analysis of 203 genomes provides structural genomics with new insights into protein family space Published online February 15, 26 166 18 Nucleic Acids Research, 26, Vol. 34, No. 3 doi:1.193/nar/gkj494 Comprehensive genome analysis of 23 genomes provides structural genomics with new insights into protein

More information

Large-Scale Genomic Surveys

Large-Scale Genomic Surveys Bioinformatics Subtopics Fold Recognition Secondary Structure Prediction Docking & Drug Design Protein Geometry Protein Flexibility Homology Modeling Sequence Alignment Structure Classification Gene Prediction

More information

Project Manual Bio3055. Apoptosis: Caspase-1

Project Manual Bio3055. Apoptosis: Caspase-1 Project Manual Bio3055 Apoptosis: Caspase-1 Bednarski 2003 Funded by HHMI Apoptosis: Caspase-1 Introduction: Apoptosis is another name for programmed cell death. It is a series of events in a cell that

More information

BLAST Database Searching. BME 110: CompBio Tools Todd Lowe April 8, 2010

BLAST Database Searching. BME 110: CompBio Tools Todd Lowe April 8, 2010 BLAST Database Searching BME 110: CompBio Tools Todd Lowe April 8, 2010 Admin Reading: Read chapter 7, and the NCBI Blast Guide and tutorial http://www.ncbi.nlm.nih.gov/blast/why.shtml Read Chapter 8 for

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. Schematic pipeline for single-cell genome assembly, cleaning and annotation. a. The assembly process was optimized to account for multiple cells putatively

More information

Protein Structure: Data Bases and Classification Ingo Ruczinski

Protein Structure: Data Bases and Classification Ingo Ruczinski Protein Structure: Data Bases and Classification Ingo Ruczinski Department of Biostatistics, Johns Hopkins University Reference Bourne and Weissig Structural Bioinformatics Wiley, 2003 More References

More information

2 GENE FUNCTIONAL SIMILARITY. 2.1 Semantic values of GO terms

2 GENE FUNCTIONAL SIMILARITY. 2.1 Semantic values of GO terms Bioinformatics Advance Access published March 7, 2007 The Author (2007). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

More information

CS 229 Project: A Machine Learning Framework for Biochemical Reaction Matching

CS 229 Project: A Machine Learning Framework for Biochemical Reaction Matching CS 229 Project: A Machine Learning Framework for Biochemical Reaction Matching Tomer Altman 1,2, Eric Burkhart 1, Irene M. Kaplow 1, and Ryan Thompson 1 1 Stanford University, 2 SRI International Biochemical

More information

Protein Science (1997), 6: Cambridge University Press. Printed in the USA. Copyright 1997 The Protein Society

Protein Science (1997), 6: Cambridge University Press. Printed in the USA. Copyright 1997 The Protein Society 1 of 5 1/30/00 8:08 PM Protein Science (1997), 6: 246-248. Cambridge University Press. Printed in the USA. Copyright 1997 The Protein Society FOR THE RECORD LPFC: An Internet library of protein family

More information

Multiple sequence alignment

Multiple sequence alignment Multiple sequence alignment Multiple sequence alignment: today s goals to define what a multiple sequence alignment is and how it is generated; to describe profile HMMs to introduce databases of multiple

More information

PROTEIN FUNCTION PREDICTION WITH AMINO ACID SEQUENCE AND SECONDARY STRUCTURE ALIGNMENT SCORES

PROTEIN FUNCTION PREDICTION WITH AMINO ACID SEQUENCE AND SECONDARY STRUCTURE ALIGNMENT SCORES PROTEIN FUNCTION PREDICTION WITH AMINO ACID SEQUENCE AND SECONDARY STRUCTURE ALIGNMENT SCORES Eser Aygün 1, Caner Kömürlü 2, Zafer Aydin 3 and Zehra Çataltepe 1 1 Computer Engineering Department and 2

More information

Protein function prediction based on sequence analysis

Protein function prediction based on sequence analysis Performing sequence searches Post-Blast analysis, Using profiles and pattern-matching Protein function prediction based on sequence analysis Slides from a lecture on MOL204 - Applied Bioinformatics 18-Oct-2005

More information

Computational methods for predicting protein-protein interactions

Computational methods for predicting protein-protein interactions Computational methods for predicting protein-protein interactions Tomi Peltola T-61.6070 Special course in bioinformatics I 3.4.2008 Outline Biological background Protein-protein interactions Computational

More information

Implications of Structural Genomics Target Selection Strategies: Pfam5000, Whole Genome, and Random Approaches

Implications of Structural Genomics Target Selection Strategies: Pfam5000, Whole Genome, and Random Approaches PROTEINS: Structure, Function, and Bioinformatics 58:166 179 (2005) Implications of Structural Genomics Target Selection Strategies: Pfam5000, Whole Genome, and Random Approaches John-Marc Chandonia 1

More information

Building a Homology Model of the Transmembrane Domain of the Human Glycine α-1 Receptor

Building a Homology Model of the Transmembrane Domain of the Human Glycine α-1 Receptor Building a Homology Model of the Transmembrane Domain of the Human Glycine α-1 Receptor Presented by Stephanie Lee Research Mentor: Dr. Rob Coalson Glycine Alpha 1 Receptor (GlyRa1) Member of the superfamily

More information

V14 extreme pathways

V14 extreme pathways V14 extreme pathways A torch is directed at an open door and shines into a dark room... What area is lighted? Instead of marking all lighted points individually, it would be sufficient to characterize

More information

IMMERSIVE GRAPH-BASED VISUALIZATION AND EXPLORATION OF BIOLOGICAL DATA RELATIONSHIPS

IMMERSIVE GRAPH-BASED VISUALIZATION AND EXPLORATION OF BIOLOGICAL DATA RELATIONSHIPS Data Science Journal, Volume 4, 31 December 2005 189 IMMERSIVE GRAPH-BASED VISUALIZATION AND EXPLORATION OF BIOLOGICAL DATA RELATIONSHIPS N Férey, PE Gros, J Hérisson, R Gherbi* *Bioinformatics team, Human-Computer

More information

NetAffx GPCR annotation database summary December 12, 2001

NetAffx GPCR annotation database summary December 12, 2001 NetAffx GPCR annotation database summary December 12, 2001 Introduction Only approximately 51% of the human proteome can be annotated by the standard motif-based recognition systems [1]. These systems,

More information

Wataru Nemoto 1,2* and Hiroyuki Toh 1

Wataru Nemoto 1,2* and Hiroyuki Toh 1 Nemoto and Toh BMC Structural Biology 2012, 12:11 RESEARCH ARTICLE Open Access Functional region prediction with a set of appropriate homologous sequences-an index for sequence selection by integrating

More information

METABOLIC PATHWAY PREDICTION/ALIGNMENT

METABOLIC PATHWAY PREDICTION/ALIGNMENT COMPUTATIONAL SYSTEMIC BIOLOGY METABOLIC PATHWAY PREDICTION/ALIGNMENT Hofestaedt R*, Chen M Bioinformatics / Medical Informatics, Technische Fakultaet, Universitaet Bielefeld Postfach 10 01 31, D-33501

More information

V19 Metabolic Networks - Overview

V19 Metabolic Networks - Overview V19 Metabolic Networks - Overview There exist different levels of computational methods for describing metabolic networks: - stoichiometry/kinetics of classical biochemical pathways (glycolysis, TCA cycle,...

More information

Computational Molecular Biology (

Computational Molecular Biology ( Computational Molecular Biology (http://cmgm cmgm.stanford.edu/biochem218/) Biochemistry 218/Medical Information Sciences 231 Douglas L. Brutlag, Lee Kozar Jimmy Huang, Josh Silverman Lecture Syllabus

More information

Lecture Notes for Fall Network Modeling. Ernest Fraenkel

Lecture Notes for Fall Network Modeling. Ernest Fraenkel Lecture Notes for 20.320 Fall 2012 Network Modeling Ernest Fraenkel In this lecture we will explore ways in which network models can help us to understand better biological data. We will explore how networks

More information

Machine-learning scoring functions for docking

Machine-learning scoring functions for docking Machine-learning scoring functions for docking Dr Pedro J Ballester MRC Methodology Research Fellow EMBL-EBI, Cambridge, United Kingdom EBI is an Outstation of the European Molecular Biology Laboratory.

More information

Multiple Alignment using Hydrophobic Clusters : a tool to align and identify distantly related proteins

Multiple Alignment using Hydrophobic Clusters : a tool to align and identify distantly related proteins Multiple Alignment using Hydrophobic Clusters : a tool to align and identify distantly related proteins J. Baussand, C. Deremble, A. Carbone Analytical Genomics Laboratoire d Immuno-Biologie Cellulaire

More information

Identification of Representative Protein Sequence and Secondary Structure Prediction Using SVM Approach

Identification of Representative Protein Sequence and Secondary Structure Prediction Using SVM Approach Identification of Representative Protein Sequence and Secondary Structure Prediction Using SVM Approach Prof. Dr. M. A. Mottalib, Md. Rahat Hossain Department of Computer Science and Information Technology

More information

Francisco M. Couto Mário J. Silva Pedro Coutinho

Francisco M. Couto Mário J. Silva Pedro Coutinho Francisco M. Couto Mário J. Silva Pedro Coutinho DI FCUL TR 03 29 Departamento de Informática Faculdade de Ciências da Universidade de Lisboa Campo Grande, 1749 016 Lisboa Portugal Technical reports are

More information

Gene function annotation

Gene function annotation Gene function annotation Paul D. Thomas, Ph.D. University of Southern California What is function annotation? The formal answer to the question: what does this gene do? The association between: a description

More information

Robert Edgar. Independent scientist

Robert Edgar. Independent scientist Robert Edgar Independent scientist robert@drive5.com www.drive5.com "Bacterial taxonomy is a hornets nest that no one, really, wants to get into." Referee #1, UTAX paper Assume prokaryotic species meaningful

More information

ALGORITHMS FOR BIOLOGICAL NETWORK ALIGNMENT

ALGORITHMS FOR BIOLOGICAL NETWORK ALIGNMENT ALGORITHMS FOR BIOLOGICAL NETWORK ALIGNMENT A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

DATE A DAtabase of TIM Barrel Enzymes

DATE A DAtabase of TIM Barrel Enzymes DATE A DAtabase of TIM Barrel Enzymes 2 2.1 Introduction.. 2.2 Objective and salient features of the database 2.2.1 Choice of the dataset.. 2.3 Statistical information on the database.. 2.4 Features....

More information

A profile-based protein sequence alignment algorithm for a domain clustering database

A profile-based protein sequence alignment algorithm for a domain clustering database A profile-based protein sequence alignment algorithm for a domain clustering database Lin Xu,2 Fa Zhang and Zhiyong Liu 3, Key Laboratory of Computer System and architecture, the Institute of Computing

More information

Alignment principles and homology searching using (PSI-)BLAST. Jaap Heringa Centre for Integrative Bioinformatics VU (IBIVU)

Alignment principles and homology searching using (PSI-)BLAST. Jaap Heringa Centre for Integrative Bioinformatics VU (IBIVU) Alignment principles and homology searching using (PSI-)BLAST Jaap Heringa Centre for Integrative Bioinformatics VU (IBIVU) http://ibivu.cs.vu.nl Bioinformatics Nothing in Biology makes sense except in

More information

Mining and classification of repeat protein structures

Mining and classification of repeat protein structures Mining and classification of repeat protein structures Ian Walsh Ph.D. BioComputing UP, Department of Biology, University of Padova, Italy URL: http://protein.bio.unipd.it/ Repeat proteins Why are they

More information

Functional Annotation

Functional Annotation Functional Annotation Outline Introduction Strategy Pipeline Databases Now, what s next? Functional Annotation Adding the layers of analysis and interpretation necessary to extract its biological significance

More information

Computational Protein Function Prediction: Framework and Challenges

Computational Protein Function Prediction: Framework and Challenges Computational Protein Function Prediction: Framework and Challenges Meghana Chitale and Daisuke Kihara Abstract Large scale genome sequencing technologies are increasing the abundance of experimental data

More information

Cross Discipline Analysis made possible with Data Pipelining. J.R. Tozer SciTegic

Cross Discipline Analysis made possible with Data Pipelining. J.R. Tozer SciTegic Cross Discipline Analysis made possible with Data Pipelining J.R. Tozer SciTegic System Genesis Pipelining tool created to automate data processing in cheminformatics Modular system built with generic

More information

Homology modeling of Ferredoxin-nitrite reductase from Arabidopsis thaliana

Homology modeling of Ferredoxin-nitrite reductase from Arabidopsis thaliana www.bioinformation.net Hypothesis Volume 6(3) Homology modeling of Ferredoxin-nitrite reductase from Arabidopsis thaliana Karim Kherraz*, Khaled Kherraz, Abdelkrim Kameli Biology department, Ecole Normale

More information

-max_target_seqs: maximum number of targets to report

-max_target_seqs: maximum number of targets to report Review of exercise 1 tblastn -num_threads 2 -db contig -query DH10B.fasta -out blastout.xls -evalue 1e-10 -outfmt "6 qseqid sseqid qstart qend sstart send length nident pident evalue" Other options: -max_target_seqs:

More information

Detection of Protein Binding Sites II

Detection of Protein Binding Sites II Detection of Protein Binding Sites II Goal: Given a protein structure, predict where a ligand might bind Thomas Funkhouser Princeton University CS597A, Fall 2007 1hld Geometric, chemical, evolutionary

More information