Central Dogma. DNA is the genetic material within the nucleus. The process of replication creates new copies of DNA.

Size: px
Start display at page:

Download "Central Dogma. DNA is the genetic material within the nucleus. The process of replication creates new copies of DNA."

Transcription

1 Protein Synthesis

2 Outline Central dogma Genetic code Ribosome Structure and Assembly Mechanics of Protein Synthesis Protein Synthesis in Eukaryotes Inhibitors of Protein Synthesis Postranslation modification of protein

3 DNA is the genetic material within the nucleus. Central Dogma The process of replication creates new copies of DNA. DNA Replication The process of transcription creates an RNA using DNA information. RNA Transcription Nucleus The process of translation creates a protein using RNA information. Protein Translation Cytoplasm

4 GENES A gene may consist of hundreds or thousands of nucleotides Genes are regulated by the degree of coiling Genes that are tightly coiled can not be activated to make proteins Prior to activation the DNA containing the gene of interest must unwind Once the molecule has unwound, the enzyme RNA polymerase can bind to the initial segment of the gene and protein synthesis can begin A gene does not build proteins directly, instead it dispatches instructions in the form of RNA which programs protein synthesis

5 The genetic code Virtually all organisms share the same genetic code All organisms use the same 20 amino acids Each codon specifies a particular amino acid Trp and Met have only 1 codon each All the rest have more than one AUG has a dual function 3 stop codons that code for termination of protein synthesis

6 The genetic code has always been believed to be universal All known organisms use the same genetic code. The same codons in the mrna signal for the same AAs in plants, bacteria, fish, frogs, monkeys and humans The genetic code is degenerate For most amino acids, there is more then 1 codon or triplet Because of this, the genetic code is said to be degenerate e.g. GGU, GGC, GGA, and GGG all encode glycine. The first two bases alone specify the amino acid

7 The genetic code is referred to as wobble The third position of the codon can contain any of the 4 normal bases (A, G, C, U) This relative nonspecificity of the third base of the genetic code is referred to as wobble Wobble occurs in the codons for many of the AAs. Genetic code is commaless, no punctual signal is required to indicate the end of the codon and the beginning of the text Genetic code is nonoverlaping, each base of the triplet is used only once for the corresponding polypeptide and the triplets do not overlap

8 Protein synthesis require the functioning of all three major classes of RNA. The directions are given by mrna with each three-base sequence serving as a codon for a single AA trna and the aminoacyl trna synthetases serve as the translator of the language of AAs and that of nucleotides Ribosome provide the enzymes and the structure on which the entire process takes place

9 MECHANISM OF PROTEIN SYNTHESIS Like RNA synthesis, protein synthesis or translation can be divided into stages: Activation (Preinitiation) Translation

10 ACTIVATION (PREINITIATION) The activation phase of protein synthesis involves the binding of AA to a specific RNA The reaction is catalyzed by enzymes called aminoacyl-trna synthetases These enzyme must recognize both - specific AA - its correponding trna and be very specific in their interaction Because there are 20 AAs that occur naturally in protein, there must be at least 20 different amino acyl trna synthetases

11 Aminoacyl-tRNA Synthetase one for each amino acid 2 step mechanism attachment AA to AMP transfer to 3 (or 2 and then rearrange) proofreading function can remove an AA incorrectly added to the trna

12 Preinitiation - Charging the trna In the first step of the activation reaction, the synthetase enzyme attaches the AA to the AMP portion of ATP with the hydrolysis of pyrophosphate to form aminoacyladenylate (aminoacyl-amp) In the second reaction, the AA is transferred to either the 2 or 3 -OH of the adenosine on the 3 end of appropriate trna This process is reffered as charging of the trna

13 Ribosome Structure and Assembly E. coli ribosome is 25 nm diameter, 2520 kd in mass, and consists of two unequal subunits that dissociate at < 1mM Mg 2+ 30S subunit is 930 kd with 21 proteins and a 16S rrna 50S subunit is 1590 kd with 31 proteins and two rrnas: 23S rrna and 5S rrna These ribosomes and others are roughly 2/3 RNA 20,000 ribosomes in a cell, 20% of cell's mass

14 Ribosome Assembly/Structure If individual proteins and rrnas are mixed, functional ribosomes will assemble Gross structures of large and small subunits are known see next figure A tunnel runs through the large subunit Growing peptide chain is thought to thread through the tunnel during protein synthesis

15

16

17 Eukaryotic Ribosomes Mitochondrial and chloroplast ribosomes are quite similar to prokaryotic ribosomes, reflecting their supposed prokaryotic origin Cytoplasmic ribosomes are larger and more complex, but many of the structural and functional properties are similar

18 Mechanics of Protein Synthesis All protein synthesis involves three phases: initiation, elongation, termination Initiation involves binding of mrna and initiator aminoacyl-trna to small subunit, followed by binding of large subunit Elongation: synthesis of all peptide bonds - with trnas bound to acceptor (A) and peptidyl (P) sites. Termination occurs when "stop codon" reached

19

20

21 Prokaryotic Initiation The initiator trna is one with a formylated methionine: f-met-trna f Met It is only used for initiation, and regular Met-tRNA m Met is used instead for Met addition N-formyl methionine is first aa of all E.coli proteins, but this is cleaved in about half A formyl transferase adds the formyl group

22

23 More Initiation Correct registration of mrna on ribosome requires alignment of a pyrimidine-rich sequence on 3'-end of 16S RNA with a purine-rich part of 5'-end of mrna The purine-rich segment - the ribosomebinding site - is known as the Shine- Dalgarno sequence Initiation factor proteins, GTP, N-formyl-MettRNAfMet, mrna and 30S ribosome form the 30S initiation complex

24

25 Events of Initiation 30S subunit with IF-1 and IF-3 binds mrna, IF-2, GTP and f-met-trna f Met IF-2 delivers the initiator trna in a GTPdependent process Loss of the initiation factors leads to binding of 50S subunit Note that the "acceptor site" is now poised to accept an incoming aminoacyl-trna

26

27 The Elongation Cycle The elongation factors are vital to cell function, so they are present in significant quantities (EF- Tu is 5% of total protein in E. coli EF-Tu binds aminoacyl-trna and GTP Aminoacyl-tRNA binds to A site of ribosome as a complex with 2EF-Tu and 2GTP GTP is then hydrolyzed and EF-Tu:GDP complexes dissociate EF-Ts recycles EF-Tu by exchanging GTP for GDP

28

29

30 Peptidyl Transferase This is the central reaction of protein synthesis 23S rrna is the peptidyl transferase! The "reaction center" of 23S rrna is shown in next Figure - these bases are among the most highly conserved in all of biology. Translocation of peptidyl-trna from the A site to the P site follows

31 The Role of GTP Hydrolysis Three GTPs are hydrolyzed for each amino acid incorporated into peptide. Hydrolysis drives essential conformation changes Total of five high-energy phosphate bonds are expended per amino acid residue added - three GTP here and two in amino acid activation via aminoacyl-trna synthesis

32

33 Peptide Chain Termination Proteins known as "release factors" recognize the stop codon at the A site Presence of release factors with a nonsense codon at A site transforms the peptidyl transferase into a hydrolase, which cleaves the peptidyl chain from the trna carrier

34

35

36 Eukaryotic Protein Synthesis Note the 5'-methyl-GTP cap and the poly A tail Initiation of protein synthesis in eukaryotes involves a family of at least 11 eukaryotic initiation factors The initiator trna is a special one that carries only Met and functions only in initiation - it is called trna i Met but it is not formylated

37

38 Eukaryotic Initiation Begins with formation of ternary complex of eif-2, GTP and Met-tRNA i Met This binds to 40S ribosomal subunit:eif-3:eif4c complex to form the 40S preinitiation complex Note no mrna yet, so no codon association with Met-tRNA i Met mrna then adds with several other factors, forming the initiation complex Note that ATP is required! Proteins of the initiation complex apparently scan to find the first AUG (start) codon

39

40

41 Regulation of Initiation Phosphorylation is the key, as usual At least two proteins involved in initiation (Ribosomal protein S6 and eif-4f) are activated by phosphorylation But phosphorylation of eif-2a causes it to bind all available eif-2b and sequesters it

42

43 Inhibitors of Protein Synthesis Two important purposes to biochemists These inhibitors have helped unravel the mechanism of protein synthesis Those that affect prokaryotic but not eukaryotic protein synthesis are effective antibiotics Streptomycin - an aminoglycoside antibiotic - induces mrna misreading. Resulting mutant proteins slow the rate of bacterial growth Puromycin - binds at the A site of both prokaryotic and eukaryotic ribosomes, accepting the peptide chain from the P site, and terminating protein synthesis

44 Diphtheria Toxin An NAD + -dependent ADP ribosylase One target of this enzyme is EF-2 EF-2 has a diphthamide Toxin-mediated ADP-ribosylation of EF-2 allows it to bind GTP but makes it inactive in protein synthesis One toxin molecule ADP-ribosylates many EF-2s, so just a little is lethal!

45 Ricin from Ricinus communis (castor bean) One of the most deadly substances known A glycoprotein that is a disulfide-linked heterodimer of 30 kd subunits The B subunit is a lectin (a class of proteins that binds specifically to glycoproteins & glycolipids) Endocytosis followed by disulfide reduction releases A subunit, which catalytically inactivates the large subunit of ribosomes

46 Ricin A subunit mechanism Ricin A chain specifically attacks a single, highly conserved adenosine near position 4324 in eukaryotic 28S RNA N-glycosidase activity of A chain removes the adenosine base Removal of this A (without cleaving the RNA chain) inactivates the large subunit of the ribosome One ricin molecules can inactivate 50,000 ribosomes, killing the eukaryotic cell!

47

48 CO-TRANSLATION MODIFICATION OF PROTEIN Occurs during synthesis of polypeptide chain. It includes: 1. Proteolytic cleavage - splitting of Met (+ few more AAs eventually) by aminopeptidase 2. Tertiary structure formation 3. Disulfide bond formation 4. Group addition glycosylation, hydroxylation, phosphorylation of the side chains

49 FOLDING OF PROTEINS Includes formation of tertiary and quarternary structure Proceeds in many steps 1. Small segments with secondary structure ( -helix or -structure of pleeted sheet) are formed, - account for 8-15 AAs residues. They function like crystallization centers 2. Growing of segments up to 200 AAs residues 3. Coiling of chains and arrangment to corresponding structure 4. Formation of final conformation. "In vivo" chapperones are involved in this process Chapperones are proteins, they can be divided in Hsp 70 Hsp 60 Hsp 70 - recognizes hydrophobic part of nascent protein, then binds to this structure and prevents unproper polypetide chain association. Maintances polypetide chain association only partly folden Hsp 60 - inside of its structure is vacuole where folding process is completed

50

51 Levels of protein structure Primary structure Secondary structure Tertiary structure Quaternary structure sequence of amino acids shapes formed with regions of the protein (helices, coil, sheets) shape of entire folded protein due to interactions between particular peptides structures formed by interaction of several proteins together e.g. Functional hemoglobin is 2 -hemoglobin proteins and 2 -hemoglobin proteins

52 Post-translational Modifications Follows after protein synthesis termination, when polypeptide chain is released from ribosome. It includes: Partial hydrolysis from hormone-inactive proinsulin after hydrolysis link-peptide C insulin

53 Specific hydrolysis by specific proteinases Some proteins are synthesized as a segments of polyproteins. Polyprotein in its own molecule contains sequence of 2-or more proteins. Such way are synthesized many peptide hormone, neurotransmitters (enkefalins, endorfins), proteins of viruses that are responsible for AIDS

54 Glycosylation Many proteins in ER and Golgi are linked to oligosaccharides to form glycoproteins In ER proceeds "basic glycosylation" - attachment of oligosaccharides to Ser or Thr of protein by O-glycosidic bond In Golgi follows "termination of glycosylation", glycosylation is completed to different part of cells Glycosylation - solubility in water - prevents against hydrolysis by proteinases Example: Immunoglobulins

55 Phosphorylation catalyzed by protein kinase The phosphate groups are bound to the -OH of Ser, Thr, Tyr in mammals 1000 : 10 : 1 ATP + protein phosphoprotein + ADP (Casein of milk, histones, many regulatory enzymes) Methylation undergo Lys, His, Arg of muscle protein + histones monomethyllysine dimethyllysine occur in cytochrome "C" trimethyllysine occurs in calmodulin

56 Acylation Occurs mostly in histones, but also in other proteins. The amino-terminal bond of protein Acetyl CoA + H 2 N-protein Acetyl-NH-protein + CoA (donor of acetyl-group) 14- C myristoyl CoA + H 2 N-protein (GAG, (donor of 14 C atoms) pol proteins of HIV 1) Prenylation Is transfer of 15 C from farnesyl-p-p } or 20 C from geranyl-geranyl-p-p } to proteins farnesyl-p-p Transducin (G-protein) geranyl-geranyl-p-p -subunit of G-protein

57 Sulphation Sulphate group is covalently bound to -OH group of Tyrosine. The reaction occur in "Golgi". As a donor of sulphate group serves PAPS.

58 Iodation Biosynthesis of thyroid hormones T 4 -tyroxine and T 3 ocurs as iodation of tyrosyl residues of thyreoglobulin (not by iodation of free Tyr residue and then followed condensation). Thyreoglobulin then undergoes degradation by catepsins in lysosomes releasing free T 4 and T 3.

Molecular Biology (9)

Molecular Biology (9) Molecular Biology (9) Translation Mamoun Ahram, PhD Second semester, 2017-2018 1 Resources This lecture Cooper, Ch. 8 (297-319) 2 General information Protein synthesis involves interactions between three

More information

Degeneracy. Two types of degeneracy:

Degeneracy. Two types of degeneracy: Degeneracy The occurrence of more than one codon for an amino acid (AA). Most differ in only the 3 rd (3 ) base, with the 1 st and 2 nd being most important for distinguishing the AA. Two types of degeneracy:

More information

9 The Process of Translation

9 The Process of Translation 9 The Process of Translation 9.1 Stages of Translation Process We are familiar with the genetic code, we can begin to study the mechanism by which amino acids are assembled into proteins. Because more

More information

Advanced Topics in RNA and DNA. DNA Microarrays Aptamers

Advanced Topics in RNA and DNA. DNA Microarrays Aptamers Quiz 1 Advanced Topics in RNA and DNA DNA Microarrays Aptamers 2 Quantifying mrna levels to asses protein expression 3 The DNA Microarray Experiment 4 Application of DNA Microarrays 5 Some applications

More information

BCH 4054 Spring 2001 Chapter 33 Lecture Notes

BCH 4054 Spring 2001 Chapter 33 Lecture Notes BCH 4054 Spring 2001 Chapter 33 Lecture Notes Slide 1 The chapter covers degradation of proteins as well. We will not have time to get into that subject. Chapter 33 Protein Synthesis Slide 2 Prokaryotic

More information

Biochemistry Prokaryotic translation

Biochemistry Prokaryotic translation 1 Description of Module Subject Name Paper Name Module Name/Title Dr. Vijaya Khader Dr. MC Varadaraj 2 1. Objectives 2. Understand the concept of genetic code 3. Understand the concept of wobble hypothesis

More information

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

GENETICS - CLUTCH CH.11 TRANSLATION.

GENETICS - CLUTCH CH.11 TRANSLATION. !! www.clutchprep.com CONCEPT: GENETIC CODE Nucleotides and amino acids are translated in a 1 to 1 method The triplet code states that three nucleotides codes for one amino acid - A codon is a term for

More information

CHAPTER4 Translation

CHAPTER4 Translation CHAPTER4 Translation 4.1 Outline of Translation 4.2 Genetic Code 4.3 trna and Anticodon 4.4 Ribosome 4.5 Protein Synthesis 4.6 Posttranslational Events 4.1 Outline of Translation From mrna to protein

More information

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus:

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: m Eukaryotic mrna processing Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: Cap structure a modified guanine base is added to the 5 end. Poly-A tail

More information

Section 7. Junaid Malek, M.D.

Section 7. Junaid Malek, M.D. Section 7 Junaid Malek, M.D. RNA Processing and Nomenclature For the purposes of this class, please do not refer to anything as mrna that has not been completely processed (spliced, capped, tailed) RNAs

More information

What is the central dogma of biology?

What is the central dogma of biology? Bellringer What is the central dogma of biology? A. RNA DNA Protein B. DNA Protein Gene C. DNA Gene RNA D. DNA RNA Protein Review of DNA processes Replication (7.1) Transcription(7.2) Translation(7.3)

More information

From Gene to Protein

From Gene to Protein From Gene to Protein Gene Expression Process by which DNA directs the synthesis of a protein 2 stages transcription translation All organisms One gene one protein 1. Transcription of DNA Gene Composed

More information

-14. -Abdulrahman Al-Hanbali. -Shahd Alqudah. -Dr Ma mon Ahram. 1 P a g e

-14. -Abdulrahman Al-Hanbali. -Shahd Alqudah. -Dr Ma mon Ahram. 1 P a g e -14 -Abdulrahman Al-Hanbali -Shahd Alqudah -Dr Ma mon Ahram 1 P a g e In this lecture we will talk about the last stage in the synthesis of proteins from DNA which is translation. Translation is the process

More information

Protein synthesis II Biochemistry 302. Bob Kelm February 25, 2004

Protein synthesis II Biochemistry 302. Bob Kelm February 25, 2004 Protein synthesis II Biochemistry 302 Bob Kelm February 25, 2004 Two idealized views of the 70S ribosomal complex during translation 70S cavity Fig. 27.25 50S tunnel View with 30S subunit in front, 50S

More information

From gene to protein. Premedical biology

From gene to protein. Premedical biology From gene to protein Premedical biology Central dogma of Biology, Molecular Biology, Genetics transcription replication reverse transcription translation DNA RNA Protein RNA chemically similar to DNA,

More information

Gene Expression: Translation. transmission of information from mrna to proteins Chapter 5 slide 1

Gene Expression: Translation. transmission of information from mrna to proteins Chapter 5 slide 1 Gene Expression: Translation transmission of information from mrna to proteins 601 20000 Chapter 5 slide 1 Fig. 6.1 General structural formula for an amino acid Peter J. Russell, igenetics: Copyright Pearson

More information

Information Content in Genetics:

Information Content in Genetics: Information Content in Genetics: DNA, RNA and protein mrna translation into protein (protein synthesis) Francis Crick, 1958 [Crick, F. H. C. in Symp. Soc. Exp. Biol., The Biological Replication of Macromolecules,

More information

ومن أحياها Translation 2. Translation 2. DONE BY :Nisreen Obeidat

ومن أحياها Translation 2. Translation 2. DONE BY :Nisreen Obeidat Translation 2 DONE BY :Nisreen Obeidat Page 0 Prokaryotes - Shine-Dalgarno Sequence (2:18) What we're seeing here are different portions of sequences of mrna of different promoters from different bacterial

More information

Protein synthesis I Biochemistry 302. February 17, 2006

Protein synthesis I Biochemistry 302. February 17, 2006 Protein synthesis I Biochemistry 302 February 17, 2006 Key features and components involved in protein biosynthesis High energy cost (essential metabolic activity of cell Consumes 90% of the chemical energy

More information

Chapter 19 Overview. Protein Synthesis. for amino acid. n Protein Synthesis genetic info encoded in nucleic acids translated into standard amino acids

Chapter 19 Overview. Protein Synthesis. for amino acid. n Protein Synthesis genetic info encoded in nucleic acids translated into standard amino acids Chapter 19 Overview Protein Synthesis n Protein Synthesis genetic info encoded in nucleic acids translated into standard amino acids n Genetic code dictionary defining meaning for base sequence n Codon

More information

Lecture 25: Protein Synthesis Key learning goals: Be able to explain the main stuctural features of ribosomes, and know (roughly) how many DNA and

Lecture 25: Protein Synthesis Key learning goals: Be able to explain the main stuctural features of ribosomes, and know (roughly) how many DNA and Lecture 25: Protein Synthesis Key learning goals: Be able to explain the main stuctural features of ribosomes, and know (roughly) how many DNA and protein subunits they contain. Understand the main functions

More information

Chapter

Chapter Chapter 17 17.4-17.6 Molecular Components of Translation A cell interprets a genetic message and builds a polypeptide The message is a series of codons on mrna The interpreter is called transfer (trna)

More information

Laith AL-Mustafa. Protein synthesis. Nabil Bashir 10\28\ First

Laith AL-Mustafa. Protein synthesis. Nabil Bashir 10\28\ First Laith AL-Mustafa Protein synthesis Nabil Bashir 10\28\2015 http://1drv.ms/1gigdnv 01 First 0 Protein synthesis In previous lectures we started talking about DNA Replication (DNA synthesis) and we covered

More information

Molecular Biology - Translation of RNA to make Protein *

Molecular Biology - Translation of RNA to make Protein * OpenStax-CNX module: m49485 1 Molecular Biology - Translation of RNA to make Protein * Jerey Mahr Based on Translation by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative

More information

Translation and the Genetic Code

Translation and the Genetic Code Chapter 11. Translation and the Genetic Code 1. Protein Structure 2. Components required for Protein Synthesis 3. Properties of the Genetic Code: An Overview 4. A Degenerate and Ordered Code 1 Sickle-Cell

More information

Types of RNA. 1. Messenger RNA(mRNA): 1. Represents only 5% of the total RNA in the cell.

Types of RNA. 1. Messenger RNA(mRNA): 1. Represents only 5% of the total RNA in the cell. RNAs L.Os. Know the different types of RNA & their relative concentration Know the structure of each RNA Understand their functions Know their locations in the cell Understand the differences between prokaryotic

More information

Chapter 17. From Gene to Protein. Biology Kevin Dees

Chapter 17. From Gene to Protein. Biology Kevin Dees Chapter 17 From Gene to Protein DNA The information molecule Sequences of bases is a code DNA organized in to chromosomes Chromosomes are organized into genes What do the genes actually say??? Reflecting

More information

Translation. A ribosome, mrna, and trna.

Translation. A ribosome, mrna, and trna. Translation The basic processes of translation are conserved among prokaryotes and eukaryotes. Prokaryotic Translation A ribosome, mrna, and trna. In the initiation of translation in prokaryotes, the Shine-Dalgarno

More information

Translation. Genetic code

Translation. Genetic code Translation Genetic code If genes are segments of DNA and if DNA is just a string of nucleotide pairs, then how does the sequence of nucleotide pairs dictate the sequence of amino acids in proteins? Simple

More information

Chapter 12. Genes: Expression and Regulation

Chapter 12. Genes: Expression and Regulation Chapter 12 Genes: Expression and Regulation 1 DNA Transcription or RNA Synthesis produces three types of RNA trna carries amino acids during protein synthesis rrna component of ribosomes mrna directs protein

More information

BCMB Chapters 39 & 40 Translation (protein synthesis)

BCMB Chapters 39 & 40 Translation (protein synthesis) BCMB 3100 - Chapters 39 & 40 Translation (protein synthesis) Translation Genetic code trna Amino acyl trna Ribosomes Initiation Elongation Termination How is the nucleotide code translated into a protein

More information

BCMB Chapters 39 & 40 Translation (protein synthesis)

BCMB Chapters 39 & 40 Translation (protein synthesis) BCMB 3100 - Chapters 39 & 40 Translation (protein synthesis) Translation Genetic code trna Amino acyl trna Ribosomes Initiation Elongation Termination How is the nucleotide code translated into a protein

More information

1. In most cases, genes code for and it is that

1. In most cases, genes code for and it is that Name Chapter 10 Reading Guide From DNA to Protein: Gene Expression Concept 10.1 Genetics Shows That Genes Code for Proteins 1. In most cases, genes code for and it is that determine. 2. Describe what Garrod

More information

L I F E S C I E N C E S

L I F E S C I E N C E S 1a L I F E S C I E N C E S 5 -UUA AUA UUC GAA AGC UGC AUC GAA AAC UGU GAA UCA-3 5 -TTA ATA TTC GAA AGC TGC ATC GAA AAC TGT GAA TCA-3 3 -AAT TAT AAG CTT TCG ACG TAG CTT TTG ACA CTT AGT-5 NOVEMBER 7, 2006

More information

Lecture 9 Translation.

Lecture 9 Translation. 1 Translation Summary of important events in translation. 2 Translation Reactions involved in peptide bond formation. Lecture 9 3 Genetic code Three types of RNA molecules perform different but complementary

More information

Translation Part 2 of Protein Synthesis

Translation Part 2 of Protein Synthesis Translation Part 2 of Protein Synthesis IN: How is transcription like making a jello mold? (be specific) What process does this diagram represent? A. Mutation B. Replication C.Transcription D.Translation

More information

Molecular Biology of the Cell

Molecular Biology of the Cell Alberts Johnson Lewis Morgan Raff Roberts Walter Molecular Biology of the Cell Sixth Edition Chapter 6 (pp. 333-368) How Cells Read the Genome: From DNA to Protein Copyright Garland Science 2015 Genetic

More information

NO!!!!! BCMB Chapters 39 & 40 Translation (protein synthesis) BCMB Chapters 39 & 40 Translation (protein synthesis)

NO!!!!! BCMB Chapters 39 & 40 Translation (protein synthesis) BCMB Chapters 39 & 40 Translation (protein synthesis) BCMB 3100 - Chapters 39 & 40 Translation How is the nucleotide code translated into a protein code? translation DNA RNA protein transcription 5 UCA 3 NH 2 Ser COO -????? Adapter Molecule Hypothesis (Crick,

More information

Introduction to the Ribosome Overview of protein synthesis on the ribosome Prof. Anders Liljas

Introduction to the Ribosome Overview of protein synthesis on the ribosome Prof. Anders Liljas Introduction to the Ribosome Molecular Biophysics Lund University 1 A B C D E F G H I J Genome Protein aa1 aa2 aa3 aa4 aa5 aa6 aa7 aa10 aa9 aa8 aa11 aa12 aa13 a a 14 How is a polypeptide synthesized? 2

More information

Protein synthesis I Biochemistry 302. Bob Kelm February 23, 2004

Protein synthesis I Biochemistry 302. Bob Kelm February 23, 2004 Protein synthesis I Biochemistry 302 Bob Kelm February 23, 2004 Key features of protein synthesis Energy glutton Essential metabolic activity of the cell. Consumes 90% of the chemical energy (ATP,GTP).

More information

RNA & PROTEIN SYNTHESIS. Making Proteins Using Directions From DNA

RNA & PROTEIN SYNTHESIS. Making Proteins Using Directions From DNA RNA & PROTEIN SYNTHESIS Making Proteins Using Directions From DNA RNA & Protein Synthesis v Nitrogenous bases in DNA contain information that directs protein synthesis v DNA remains in nucleus v in order

More information

ومن أحياها Translation 1. Translation 1. DONE BY :Maen Faoury

ومن أحياها Translation 1. Translation 1. DONE BY :Maen Faoury Translation 1 DONE BY :Maen Faoury 0 1 ومن أحياها Translation 1 2 ومن أحياها Translation 1 In this lecture and the coming lectures you are going to see how the genetic information is transferred into proteins

More information

ATP. P i. trna. 3 Appropriate trna covalently bonds to amino acid, displacing AMP. Computer model Hydrogen bonds

ATP. P i. trna. 3 Appropriate trna covalently bonds to amino acid, displacing AMP. Computer model Hydrogen bonds mino acid attachment site nticodon Hydrogen bonds mino acid T i denosine i i denosine minoacyl-trn synthetase (enzyme) trn 1 ctive site binds the amino acid and T. 2 T loses two groups and bonds to the

More information

UNIT 5. Protein Synthesis 11/22/16

UNIT 5. Protein Synthesis 11/22/16 UNIT 5 Protein Synthesis IV. Transcription (8.4) A. RNA carries DNA s instruction 1. Francis Crick defined the central dogma of molecular biology a. Replication copies DNA b. Transcription converts DNA

More information

Biophysics Lectures Three and Four

Biophysics Lectures Three and Four Biophysics Lectures Three and Four Kevin Cahill cahill@unm.edu http://dna.phys.unm.edu/ 1 The Atoms and Molecules of Life Cells are mostly made from the most abundant chemical elements, H, C, O, N, Ca,

More information

Translation and Operons

Translation and Operons Translation and Operons You Should Be Able To 1. Describe the three stages translation. including the movement of trna molecules through the ribosome. 2. Compare and contrast the roles of three different

More information

Lecture 13: PROTEIN SYNTHESIS II- TRANSLATION

Lecture 13: PROTEIN SYNTHESIS II- TRANSLATION http://smtom.lecture.ub.ac.id/ Password: https://syukur16tom.wordpress.com/ Password: Lecture 13: PROTEIN SYNTHESIS II- TRANSLATION http://hyperphysics.phy-astr.gsu.edu/hbase/organic/imgorg/translation2.gif

More information

GCD3033:Cell Biology. Transcription

GCD3033:Cell Biology. Transcription Transcription Transcription: DNA to RNA A) production of complementary strand of DNA B) RNA types C) transcription start/stop signals D) Initiation of eukaryotic gene expression E) transcription factors

More information

Biomolecules. Energetics in biology. Biomolecules inside the cell

Biomolecules. Energetics in biology. Biomolecules inside the cell Biomolecules Energetics in biology Biomolecules inside the cell Energetics in biology The production of energy, its storage, and its use are central to the economy of the cell. Energy may be defined as

More information

Conceptofcolinearity: a continuous sequence of nucleotides in DNA encodes a continuous sequence of amino acids in a protein

Conceptofcolinearity: a continuous sequence of nucleotides in DNA encodes a continuous sequence of amino acids in a protein Translation Conceptofcolinearity: a continuous sequence of nucleotides in DNA encodes a continuous sequence of amino acids in a protein Para além do fenómeno do wobble, há que considerar Desvios ao código

More information

GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications

GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications 1 GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications 2 DNA Promoter Gene A Gene B Termination Signal Transcription

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

Introduction. Gene expression is the combined process of :

Introduction. Gene expression is the combined process of : 1 To know and explain: Regulation of Bacterial Gene Expression Constitutive ( house keeping) vs. Controllable genes OPERON structure and its role in gene regulation Regulation of Eukaryotic Gene Expression

More information

TRANSLATION: How to make proteins?

TRANSLATION: How to make proteins? TRANSLATION: How to make proteins? EUKARYOTIC mrna CBP80 NUCLEUS SPLICEOSOME 5 UTR INTRON 3 UTR m 7 GpppG AUG UAA 5 ss 3 ss CBP20 PABP2 AAAAAAAAAAAAA 50-200 nts CYTOPLASM eif3 EJC PABP1 5 UTR 3 UTR m 7

More information

9/2/17. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes

9/2/17. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes Molecular and Cellular Biology Animal Cell ((eukaryotic cell) -----> compare with prokaryotic cell) ENDOPLASMIC RETICULUM (ER) Rough ER Smooth ER Flagellum Nuclear envelope Nucleolus NUCLEUS Chromatin

More information

Quiz answers. Allele. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA)

Quiz answers. Allele. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA) BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA) http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Quiz answers Kinase: An enzyme

More information

Controlling Gene Expression

Controlling Gene Expression Controlling Gene Expression Control Mechanisms Gene regulation involves turning on or off specific genes as required by the cell Determine when to make more proteins and when to stop making more Housekeeping

More information

9/11/18. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes

9/11/18. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes Molecular and Cellular Biology Animal Cell ((eukaryotic cell) -----> compare with prokaryotic cell) ENDOPLASMIC RETICULUM (ER) Rough ER Smooth ER Flagellum Nuclear envelope Nucleolus NUCLEUS Chromatin

More information

Chapter 17 The Mechanism of Translation I: Initiation

Chapter 17 The Mechanism of Translation I: Initiation Chapter 17 The Mechanism of Translation I: Initiation Focus only on experiments discussed in class. Completely skip Figure 17.36 Read pg 521-527 up to the sentence that begins "In 1969, Joan Steitz..."

More information

From DNA to protein, i.e. the central dogma

From DNA to protein, i.e. the central dogma From DNA to protein, i.e. the central dogma DNA RNA Protein Biochemistry, chapters1 5 and Chapters 29 31. Chapters 2 5 and 29 31 will be covered more in detail in other lectures. ph, chapter 1, will be

More information

Energy and Cellular Metabolism

Energy and Cellular Metabolism 1 Chapter 4 About This Chapter Energy and Cellular Metabolism 2 Energy in biological systems Chemical reactions Enzymes Metabolism Figure 4.1 Energy transfer in the environment Table 4.1 Properties of

More information

GENE REGULATION AND PROBLEMS OF DEVELOPMENT

GENE REGULATION AND PROBLEMS OF DEVELOPMENT GENE REGULATION AND PROBLEMS OF DEVELOPMENT By Surinder Kaur DIET Ropar Surinder_1998@ yahoo.in Mob No 9988530775 GENE REGULATION Gene is a segment of DNA that codes for a unit of function (polypeptide,

More information

mrna and Genetic code standard

mrna and Genetic code standard Synthesis and Processing of the Proteome. (mrna and Genetic code: standard and variations; codon anti codon interactions), The role of trna in protein synthesis, Role of Ribosome in Protein synthesis (Ribosome

More information

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation.

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Protein Synthesis Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Types of RNA Messenger RNA (mrna) makes a copy of DNA, carries instructions for making proteins,

More information

Molecular Genetics Principles of Gene Expression: Translation

Molecular Genetics Principles of Gene Expression: Translation Paper No. : 16 Module : 13 Principles of gene expression: Translation Development Team Principal Investigator: Prof. Neeta Sehgal Head, Department of Zoology, University of Delhi Paper Coordinator: Prof.

More information

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 REVIEW: Signals that Start and Stop Transcription and Translation BUT, HOW DO CELLS CONTROL WHICH GENES ARE EXPRESSED AND WHEN? First of

More information

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline CHAPTER 3 Cell Structure and Genetic Control Chapter 3 Outline Plasma Membrane Cytoplasm and Its Organelles Cell Nucleus and Gene Expression Protein Synthesis and Secretion DNA Synthesis and Cell Division

More information

Regulation of gene expression. Premedical - Biology

Regulation of gene expression. Premedical - Biology Regulation of gene expression Premedical - Biology Regulation of gene expression in prokaryotic cell Operon units system of negative feedback positive and negative regulation in eukaryotic cell - at any

More information

Translational Initiation

Translational Initiation Translational Initiation Lecture Outline 1. Process of Initiation. Alternative mechanisms of Initiation 3. Key Experiments on Initiation 4. Regulation of Initiation Translation is a process with three

More information

Videos. Bozeman, transcription and translation: https://youtu.be/h3b9arupxzg Crashcourse: Transcription and Translation - https://youtu.

Videos. Bozeman, transcription and translation: https://youtu.be/h3b9arupxzg Crashcourse: Transcription and Translation - https://youtu. Translation Translation Videos Bozeman, transcription and translation: https://youtu.be/h3b9arupxzg Crashcourse: Transcription and Translation - https://youtu.be/itsb2sqr-r0 Translation Translation The

More information

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on Regulation and signaling Overview Cells need to regulate the amounts of different proteins they express, depending on cell development (skin vs liver cell) cell stage environmental conditions (food, temperature,

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Name Period Words to Know: nucleotides, DNA, complementary base pairing, replication, genes, proteins, mrna, rrna, trna, transcription, translation, codon,

More information

Name: SBI 4U. Gene Expression Quiz. Overall Expectation:

Name: SBI 4U. Gene Expression Quiz. Overall Expectation: Gene Expression Quiz Overall Expectation: - Demonstrate an understanding of concepts related to molecular genetics, and how genetic modification is applied in industry and agriculture Specific Expectation(s):

More information

15.2 Prokaryotic Transcription *

15.2 Prokaryotic Transcription * OpenStax-CNX module: m52697 1 15.2 Prokaryotic Transcription * Shannon McDermott Based on Prokaryotic Transcription by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

Computational Biology: Basics & Interesting Problems

Computational Biology: Basics & Interesting Problems Computational Biology: Basics & Interesting Problems Summary Sources of information Biological concepts: structure & terminology Sequencing Gene finding Protein structure prediction Sources of information

More information

Organic Chemistry Option II: Chemical Biology

Organic Chemistry Option II: Chemical Biology Organic Chemistry Option II: Chemical Biology Recommended books: Dr Stuart Conway Department of Chemistry, Chemistry Research Laboratory, University of Oxford email: stuart.conway@chem.ox.ac.uk Teaching

More information

Lesson Overview. Ribosomes and Protein Synthesis 13.2

Lesson Overview. Ribosomes and Protein Synthesis 13.2 13.2 The Genetic Code The first step in decoding genetic messages is to transcribe a nucleotide base sequence from DNA to mrna. This transcribed information contains a code for making proteins. The Genetic

More information

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid.

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid. 1. A change that makes a polypeptide defective has been discovered in its amino acid sequence. The normal and defective amino acid sequences are shown below. Researchers are attempting to reproduce the

More information

Multiple Choice Review- Eukaryotic Gene Expression

Multiple Choice Review- Eukaryotic Gene Expression Multiple Choice Review- Eukaryotic Gene Expression 1. Which of the following is the Central Dogma of cell biology? a. DNA Nucleic Acid Protein Amino Acid b. Prokaryote Bacteria - Eukaryote c. Atom Molecule

More information

protein synthesis and the ribosome

protein synthesis and the ribosome protein synthesis and the ribosome Central dogma of biology DNA codes for DNA DNA codes for RNA RNA codes for proteins not surprisingly, many points for regulation of the process RNA codes for proteins

More information

Tutorial 4 Protein Biochemistry 2 Genes to proteins: Protein synthesis, transport, targeting, and degradation

Tutorial 4 Protein Biochemistry 2 Genes to proteins: Protein synthesis, transport, targeting, and degradation IPAM Cells and Materials: At the Interface between Mathematics, Biology and Engineering Tutorial 4 Protein Biochemistry 2 Genes to proteins: Protein synthesis, transport, targeting, and degradation Dr.

More information

RNA Synthesis and Processing

RNA Synthesis and Processing RNA Synthesis and Processing Introduction Regulation of gene expression allows cells to adapt to environmental changes and is responsible for the distinct activities of the differentiated cell types that

More information

MOLECULAR CELL BIOLOGY

MOLECULAR CELL BIOLOGY 1 Lodish Berk Kaiser Krieger scott Bretscher Ploegh Matsudaira MOLECULAR CELL BIOLOGY SEVENTH EDITION CHAPTER 13 Moving Proteins into Membranes and Organelles Copyright 2013 by W. H. Freeman and Company

More information

Student Learning Outcomes: Nucleus distinguishes Eukaryotes from Prokaryotes

Student Learning Outcomes: Nucleus distinguishes Eukaryotes from Prokaryotes 9 The Nucleus Student Learning Outcomes: Nucleus distinguishes Eukaryotes from Prokaryotes Explain general structures of Nuclear Envelope, Nuclear Lamina, Nuclear Pore Complex Explain movement of proteins

More information

32 Gene regulation, continued Lecture Outline 11/21/05

32 Gene regulation, continued Lecture Outline 11/21/05 32 Gene regulation, continued Lecture Outline 11/21/05 Review the operon concept Repressible operons (e.g. trp) Inducible operons (e.g. lac) Positive regulation of lac () Practice applying the operon concept

More information

Name Period The Control of Gene Expression in Prokaryotes Notes

Name Period The Control of Gene Expression in Prokaryotes Notes Bacterial DNA contains genes that encode for many different proteins (enzymes) so that many processes have the ability to occur -not all processes are carried out at any one time -what allows expression

More information

TRANSLATION: How to make proteins?

TRANSLATION: How to make proteins? TRANSLATION: How to make proteins? EUKARYOTIC mrna CBP80 NUCLEUS SPLICEOSOME 5 UTR INTRON 3 UTR m 7 GpppG AUG UAA 5 ss 3 ss CBP20 PABP2 AAAAAAAAAAAAA 50-200 nts CYTOPLASM eif3 EJC PABP1 5 UTR 3 UTR m 7

More information

Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p

Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p.110-114 Arrangement of information in DNA----- requirements for RNA Common arrangement of protein-coding genes in prokaryotes=

More information

Ribosome readthrough

Ribosome readthrough Ribosome readthrough Starting from the base PROTEIN SYNTHESIS Eukaryotic translation can be divided into four stages: Initiation, Elongation, Termination and Recycling During translation, the ribosome

More information

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation.

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Protein Synthesis Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Protein Synthesis: Protein synthesis uses the information in genes to make proteins. 2 Steps

More information

Regulation of Transcription in Eukaryotes

Regulation of Transcription in Eukaryotes Regulation of Transcription in Eukaryotes Leucine zipper and helix-loop-helix proteins contain DNA-binding domains formed by dimerization of two polypeptide chains. Different members of each family can

More information

Biomolecules: lecture 9

Biomolecules: lecture 9 Biomolecules: lecture 9 - understanding further why amino acids are the building block for proteins - understanding the chemical properties amino acids bring to proteins - realizing that many proteins

More information

PROTEIN SYNTHESIS: TRANSLATION AND THE GENETIC CODE

PROTEIN SYNTHESIS: TRANSLATION AND THE GENETIC CODE PROTEIN SYNTHESIS: TRANSLATION AND THE GENETIC CODE HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University 1 Nucleic Acids are important for their roles

More information

Molecular Biology of the Cell

Molecular Biology of the Cell Alberts Johnson Lewis Raff Roberts Walter Molecular Biology of the Cell Fifth Edition Chapter 6 How Cells Read the Genome: From DNA to Protein Copyright Garland Science 2008 Figure 6-1 Molecular Biology

More information

Review. Membrane proteins. Membrane transport

Review. Membrane proteins. Membrane transport Quiz 1 For problem set 11 Q1, you need the equation for the average lateral distance transversed (s) of a molecule in the membrane with respect to the diffusion constant (D) and time (t). s = (4 D t) 1/2

More information

Part IV => DNA and RNA. 4.6 RNA Translation 4.6a Genetic Code 4.6b Translational Machinery

Part IV => DNA and RNA. 4.6 RNA Translation 4.6a Genetic Code 4.6b Translational Machinery Part IV => DNA and RNA 4.6 RNA Translation 4.6a Genetic Code 4.6b Translational Machinery Section 4.6a: Genetic Code Synopsis 4.6a - In order to translate the genetic information (or genetic code) carried

More information

Old FINAL EXAM BIO409/509 NAME. Please number your answers and write them on the attached, lined paper.

Old FINAL EXAM BIO409/509 NAME. Please number your answers and write them on the attached, lined paper. Old FINAL EXAM BIO409/509 NAME Please number your answers and write them on the attached, lined paper. Gene expression can be regulated at several steps. Describe one example for each of the following:

More information