Animal structure and function. Invertebrates -Introduction

Size: px
Start display at page:

Download "Animal structure and function. Invertebrates -Introduction"

Transcription

1 Animal structure and function Invertebrates -Introduction

2 Lectures Introduction Organ systems Seminars Invertebrates Reproduction: November 8 Morphological adaptation: November 11 Lab seminars Laboratory practicals (print pdfs for Lab 1) Final exam November 21

3 What is an animal? Definition: Multicellular Heterotrophic eukaryotes: ingestion Lack cell wall: structural protein: collagen Nerve and muscle cells Most animals reproduce sexually Embryonic development: zygote to blastula to gastrula Regulatory genes: Hox gene

4 Animal classification Body plan Body symmetry Tissue organization Body cavities Early embryonic development

5 Classification by characteristics of body plan: symmetry PARAZOA (near animals, no tissue) asymmetry EUMETAZOA (true animals, tissue) radial symmetry =RADIATA bilateral symmetry =BILATERA

6 Three polarity axes

7 Bilateria: cephalization Evolutionary trend towards the concentration of sensory equipment on the anterior end.

8 Body symmetry - lifestyle

9 Classification by characteristics of body plan: Tissue organisation TISSUE: Collection of specialized cells isolated from other tissues by membranous layers

10 The embryo become layered through the process of gastrulation

11 Germ layers 1. Ectoderm -covering the surface of the embryo -gives rise to the outer covering of the animal -gives rise to central nervous system in some phyla 2. Endoderm -the innermost layer which lines the archenteron -gives rise to the lining of digestive tract -gives rise to the liver and lungs of vertebrates =DIPLOBLASTIC (Cnidaria) 3. Mesoderm -located between ectoderm and endoderm -forms muscles and most of the organs =TRIPLOBLASTIC (all bilaterians)

12 Triploblastic animals can be further classified into three basic plan of body cavities A. Coelomate- with a true body cavity (coelom) that is completely lined by tissues derived from mesoderm B. Pseudocoelomate-with a body cavity but is not completely lined by tissue derived from mesoderm C. Acoelomate-without a body cavity

13 Triploblastic animals (coelomates) can be divided into two distinct grades A. Protostomia B. Deuterostomia

14

15 Two views of animal phylogeny. Which is right? Both are useful? Tree based on morphological and developmental comparisons Tree based mainly on molecular data

16 Invertebrates

17 Life Without a Backbone Invertebrates Are animals that lack a backbone Account for 95% of known animal species >30 phyla Figure 33.1 Figures are mainly from the book Biology (ch 32&33) by Campbell & Reece Black&white figure are from Invertebrate zoology by Ruppert, Fox, & Barnes

18 Phylum Porifera (Phyla Calcarea and Silicea) Porifera, sponges (svampdjur) Non-moving (sessile) animals No nerves or muscles (no tissue differentiation) Mostly marine Most sponges are hermaphrodites.

19 Phylum Porifera Sponges are suspension feeders -Capturing food particles suspended in the water that passes through their body Choanocytes, flagellated collar cells -Generate a water current through the sponge and ingest suspended food pinacoderm Pinacoderm= epithelioid tissue Pinacocytes and porocytes Lab 1:I

20 Phylum Cnidaria corals, jellies, hydras, sea anemones (nässeldjur) One of the oldest groups in clade Eumetazoa Simple diploblastic epidermis gastrodermis mesoglea (gelatinous extracellular matrix) Radial symmetry

21 Phylum Cnidaria Both sessile and floating forms (Polyp or medusa form) One opening in the gastrovascular cavity serves as both mouth and anus.

22 Phylum Cnidaria Carnivores Phylum name comes from specialized cells called cnidocytes Cnidocytes are stinging cells used for defense and to capture prey Hydra

23

24 Phylum Cnidaria Polyp and medusa mainly medusa only as polyps Lab 1:II Hydrozoa & Anthozoa

25 Phylum Acoela Basal bilaterians A simple nervous system No body cavity (coelom) Lacks many organ systems Were classified with other flatworms in the phylum Platyhelminthes

26 Phylum Platyhelminthes tapeworms, flukes and flatworms (plattmaskar) Simple, sift, ribbon-like body Acoelomates with organ systems Inefficient gas exchange across body walls Gastrovascular cavity Asexual and sexual reproduction Marine, freshwater and damp terrestial Most free living but many parasites Eat microbes and invertebrates Tapeworm Planarians Lab 1:III

27 Phylum Mollusca snails, slugs, clams, oysters, squids, octopuses (Blötdjur) There are at least known species All molluscs have similar body plan Muscular foot Visceral mass with organs Mantle (that secretes the shell) The life cycle of many molluscs includes a ciliated larval stage called a trochophore Lab1:IV

28 Gastropods About three-quarters of all living species of molluscs Belong to class Gastropoda (a) A land snail Figure 33.18a, b (b) A sea slug. Nudibranchs, or sea slugs, lost their shell during their evolution.

29 The most distinctive characteristic of this class Is a developmental process known as torsion, which causes the animal s anus and mantle to end up above its head Anus Mantle cavity Stomach Intestine Mouth Figure 33.19

30 Cephalopods Class Cephalopoda includes squids and octopuses and nautiluses Carnivores with beak-like jaws surrounded by tentacles of their modified foot (a) Octopuses are considered among the most intelligent invertebrates. (b) Squids are speedy carnivores with beaklike jaws and welldeveloped eyes. (c) Chambered nautiluses are the only living cephalopods with an external shell.

31 Phylum Annelida Segmented worms (Ringmaskar) Have bodies composed of a series of fused rings Divided into three classes: Oligocheata - has bristles of chitin (earth worm) Polychaeta - has paddlelike parapodia Hirudinea- blood sucking parasites (leeches) Marine, freshwater and terrestrial Asexual and sexual reproduction Parapodia Figure Figure Lab 1:III,IV & 3

32 Segmentation The annelid body is composed of three regions: Prostomium-brain and sense organs Truck-consists of a longitudinal series of similar body units- the segments. First segmentlike part= peristomium Growth zon: teloblast cells that divide and differentiate Pygidium- anus

33 Phylum Nematoda Roundworm (rundmask) small Marine, freshwater and terrestrial Nonsegmented pseudocoelomates Covered by a tough coat-cuticle Eat microbes, predaceous, or parasitic on plants/animals Encysted juveniles Muscle tissue 50 µm

34 Phylum Arthropoda crustaceans, spiders, insects (leddjur) Three sub-phyla: Chelicerata, Crustacea and Tracheata Hard exoskeleton, segmented bodies, jointed appendages Arthropods are the most successful of all animal phyla based on diversity, distribution, and numbers. More than one million species identified so far, mostly insects

35 Phylum Arthropoda crustaceans, spiders, insects (leddjur) The exoskeleton, or cuticle, is composed of protein and chitin. Molting of the cuticle is called ecdysis. Open circulatory systems in which a heart pumps hemolymph through short arteries and into open spaces (sinuses). A variety of organs specialized for gas exchange have evolved in arthropods Lab 1:III,IV, 2, 4, 5

36 Arthropod body-segmented Acron=anterior end (prostomium) First segment-mouth Growth zon Telson= posterior end (post anal) (pygidium)

37 Evolution of the arthropod body is characterised by tendencies to -tagmosis -heteronomy -fusion of segments -cephalization

38 Tagmosis Tagmosis: tendency to organize segments into region having similar structure. Three tagmata: Head, Thorax, Abdomen Secondary tagma: cephalothorax: some or all of the thoracic segments unite with head

39 Evolution of the arthropod head (cephalization) headancestor acron truck A L L L L L L Chelicerata 0 C P L L L L Crustacea Tracheata A1 A2 Mnd Mx1 Mx2 L L L L L A1 0 Mnd Mx1 Mx2 L L L L L A: antenna C:Chelicera chelicerer L:leg Mnd:mandible Mandibler, överkäkar Mx: maxilla Maxiller, underkäkar P: pedipalp maxillarpalper 0: lost segment Each higher taxon of modern arhropods has a characteristic set of head appendages Fig 16-3

40 Ecdysis (ömsning) Arthropoda and other animal taxa: Nematoda, Nematomorpha, Kinorhyncha, Loricifera and Priapulida have a cuticle that is molted under hormonal (ecdysone) control. Exoskeleton is incapable of stretching Intermolt Proecdysis Ecdysis Postecdysis new instar For Nematoda ecdysis see fig 22-9

41 Phylum Arthropoda Sub-phylum Classes Example Chelicerata Arachnida spiders, scorpions, mites, ticks Xiphosura horseshoe crab Pantopoda sea spiders Crustacea Remipedia elongated undersea caves crustaceans (10 species) Cephalocarida undifferentiated crustacean(9 species) Anostraca fairy & brine shrimps Phyllopoda water fleas, clam shrimps Malacostraca crabs, lobster, crayfishes, shrimps, krill Maxillopoda (SC) (8 classes Copepoda) small or micro crustaceans-krill Tracheata Myriapoda (SC) Chilipoda centipedes Diplopoda millipedes Pauropoda small soft-bodied nocturnal animals Symphyla small white elongated animals found in litter Hexapoda (SC) Insecta (C) (Entognatha (C)) insects

42 Sub-phyla Chelicerata Are named for clawlike feeding appendages called chelicerae Include spiders, ticks, mites, scorpions, and horseshoe crabs Figure 33.30

43 Class Arachnida 50 µm (a) Scorpions have pedipalps that are pincers specialized for defense and the capture of food. The tip of the tail bears a poisonous stinger. Figure 33.31a c (b) Dust mites are ubiquitous scavengers in (c) human dwellings but are harmless except to those people who are allergic to them (colorized SEM). Web-building spiders are generally most active during the daytime.

44 Arachnids have an abdomen and a cephalothorax Which has six pairs of appendages, the most anterior of which are the chelicerae Digestive gland Intestine Heart Stomach Brain Eyes Ovary Poison gland Anus Figure Spinnerets Silk gland Gonopore (exit for eggs) Book lung Sperm receptacle Chelicera Pedipalp

45 Sub-phyla Crustacea Most diverse arthropod group Head, thorax and abdomen-may fuse these parts 2 pairs of antennae, 1 pair of compound eyes, 3 pairs of mouthparts (1 pair of mandibles+ 2 pair of maxillae). Some breathe over body surface, but larger species have gills

46 Decapods are all relatively large crustaceans And include lobsters, crabs, crayfish, and shrimp Three basic body shapes Fig 19-24

47 Super-class Myriapoda (Tracheata) Millipedes, class Diplopoda Have a large number of legs Each trunk segment Has two pairs of legs dubbelfotingar Centipedes, class Chilopoda Are carnivores with jawlike mandibles Have one pair of legs per trunk segment enkelfotingar

48 Class Insecta (Hexapoda, Tracheata) Outnumber all other forms of animals. Flight was followed by an explosion of diversity. Coevolution of flowering plants and insects. Well-adapted terrestrial organisms Many orders of insects

49 The external anatomy of an insect Truck divided into thorax (prothorax, mesothorax, metathorax) and abdomen (9-11 segments) adults (imago) and usually immatures (juveniles) have 3 pairs of legs (6 parts) (hexapods) (on thorax) 2 pair of wings (forewings and hindwings on meso- and metathorax, respectively) 1 pair of antenna

50 The internal anatomy of an insect Includes several complex organ systems Figure The insect body has three regions: head, thorax, and abdomen. The segmentation of the thorax and abdomen are obvious, but the segments that form the head are fused. Abdomen Thorax Head Compound eye Antennae Heart. The insect heart drives hemolymph through an open circulatory system. Ovary Malpighian tubules. Anus Metabolic wastes are removed from the Vagina hemolymph by excretory organs called Malpighian tubules, which are outpocketings of the digestive tract. Tracheal tubes. Gas exchange in insects is Nerve cords. The insect accomplished by a tracheal system of branched, nervous system chitin-lined tubes that infiltrate the body and consists of a pair of carry oxygen directly to cells. The tracheal ventral nerve cords system opens to the outside of the body with several through spiracles, pores that can control air segmental ganglia. flow and water loss by opening or closing. Cerebral ganglion. The two nerve cords meet in the head, where the ganglia of several anterior segments are fused into a cerebral ganglion (brain). The antennae, eyes, and other sense organs are concentrated on the head. Dorsal artery Crop Insect mouthparts are formed from several pairs of modified appendages. The mouthparts include mandibles, which grasshoppers use for chewing. In other insects, mouthparts are specialized for lapping, piercing, or sucking.

51 Development Basic life stages are: egg, juvenile and adult Substages: instars-separated by molts Unually only one adult stage: imago (sexually mature, wings) Life cycle of many hexapods includes a diapause 4 basic developmental pattern: A. Ametabolous development: young are identical to adults except in size and sexual maturity. silverfish

52 Development B. Hemimetabolous development: aquatic juveniles (nymphs) have wing pads that gradually increase in size and become functional wings only with the final molt. Adults (aerial) have wings and are sexually mature. Mayfly dagslända

53 Development C. Paurometabolous development (gradual or incomplete metamorphosis): Similar to hemimetabolous development except that adults and juveniles (nymphs) are similar morphologically. The adult form is reach gradually through a series of molts. For ex. grasshopper, cockroaches, bugs Fig 21-13

54 Development D. Holometabolous development (complete metamorphosis): The life cycle incudes an additional stage-the pupa Imagos are winged, sexually mature and do not molt The wormlike juveniles (larvae, maggots, grubs, or caterpillar) do not resemble the adults. At the end of the sequence of larval instars, the juvenile becomes a nonfeeding pupa- larva undergoes metamorphosis: larval organs are destroyed and adult structures develop anew from clusters of embryonic reserve cells known as imaginal discs Fig Larva (a) (caterpillar) (b) Pupa (c) Pupa (d) Emerging adult Figure 33.6a e (e) Adult

55 Phylum Chordata vertebrater, lancettfiskar, manteldjur (urochordater) (ryggsträngsdjur) Consists of two subphyla of invertebrates, Cephalochordata and Tunicata (Urochordata), as well as the hagfishes (pirål) and the vertebrates. Shares many features of embryonic development with echinoderms having, at some time in their life cycle, A) a notochord korda (fexible londitudial axial rod), B) a hollow dorsal nerve cord, nervrör C) a filterfeeding pharynx with gill slit (organ for feeding and gas exchange) and an endostyle (mucous net cast) gältarm D) a post-anal tail. svans Vertebrata: the dorsal hollow nerve cord has been surrounded with cartilaginous or bony vertebrae Fig 29-1 Lab1:III

INVERTEBRATE DIVERSITY

INVERTEBRATE DIVERSITY INVERTEBRATE DIVERSITY 1 INVERTEBRATES Animals that lack a backbone Invertebrates 2 1 ANIMAL DEVELOPMENT Meiosis Egg Sperm Zygote Adult Blastula hollow ball of cells in a developing animal Gastrula Stage

More information

KINGDOM ANIMALIA CHARACTERISTICS

KINGDOM ANIMALIA CHARACTERISTICS KINGDOM ANIMALIA CHARACTERISTICS EUKARYOTIC MULTICELLULAR HETEROTROPHIC (by ingestion) MOVE AT SOME POINT IN LIFE (not all - sponges are sessile) DIGEST FOOD TO GET NUTRIENTS LACK CELL WALLS CHARACTERISTICS

More information

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 33 An Introduction to Invertebrates Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 33.UN08 Metazoa Eumetazoa

More information

BIOS1101 Lab Notes. Contents ANIMALS. Lab 1: Animal Diversity invertebrates. Lab 2: Animal Diversity 2 vertebrates

BIOS1101 Lab Notes. Contents ANIMALS. Lab 1: Animal Diversity invertebrates. Lab 2: Animal Diversity 2 vertebrates Contents ANIMALS Lab 1: Animal Diversity invertebrates Lab 2: Animal Diversity 2 vertebrates Lab 3: Animal Structure 1 Gross morphology Lab 4: Animal Structure 2 Histology Lab 5: The Nervous System & Sensory

More information

Animal Diversity. Features shared by all animals. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers

Animal Diversity. Features shared by all animals. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animal Diversity Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Nutritional mode Ingest food and use enzymes in the body to digest Cell structure and

More information

Arthropoda ARTHRO JOINTED PODA FEET

Arthropoda ARTHRO JOINTED PODA FEET Arthropoda ARTHRO JOINTED PODA FEET The arthropods are a group of animals which has attained the greatest biological success largest number of species and individuals and occupy the greatest number of

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Chapter 32 Introduction to Animal Diversity. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Chapter 32 Introduction to Animal Diversity. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Chapter 32 Introduction to Animal Diversity Welcome to Your Kingdom The animal kingdom extends far beyond humans and other animals we may encounter 1.3 million living species of animals have been identified

More information

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny BIOSC 041 Overview of Animal Diversity: Animal Body Plans Reference: Chapter 32 Outline v Definition and major characteristics of animals v Dividing animals into groups based on: Body symmetry Tissues

More information

Introduction to Animal Kingdom. Invertebrates and Vertebrates

Introduction to Animal Kingdom. Invertebrates and Vertebrates Introduction to Animal Kingdom Invertebrates and Vertebrates Introduction To Animals Vertebrate animal with a backbone. Invertebrate animal without a backbone; includes more than 95% of all animal species

More information

Invertebrate Diversity

Invertebrate Diversity CHAPTER 23 Invertebrate Diversity Summary of Key Concepts Concept 23.1 Diverse animals share several key characteristics. (pp. 494 496) More than a million living species of animals are organized into

More information

Life Science 7 th NOTES: Ch Animals Invertebrates

Life Science 7 th NOTES: Ch Animals Invertebrates Life Science 7 th NOTES: Ch 10-11 Animals Invertebrates Write the correct word in the blanks to show directions on an animal body: ** Word Bank (Posterior, Ventral, Dorsal, Anterior) top surface front

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Moving Forward Quizlet Each section we cover, 1 group will go to our class on Quizlet and create 20 flash cards on the topic (/5mks) If I warn you about talking while I m talking,

More information

Arthropods. Ch. 13, pg

Arthropods. Ch. 13, pg Arthropods Ch. 13, pg. 374-382 382 Arthropods Insects Arachnids Centipedes and Millipedes Crustaceans Characteristics of Arthropods Arthropods have jointed appendages and include legs, antennae, claws,

More information

Marine Invertebrates

Marine Invertebrates Name: Date: Period: Marine Invertebrates Porifera Annelida Cnidaria Mollusca Platyhelminthes Arthropoda Nematoda Echinodermata Name Class Date Section 26 2 Sponges (pages 664 667) This section explains

More information

Invertebrate Survey Lab

Invertebrate Survey Lab Answer these questions before lab. 1. What kingdom do all animals fall into? a. Protist b. Animalia c. Eukarya 2. How many phyla of invertebrates are in appendix E on pages 1074-1076? a. 9 b. 7 c. 8 3.

More information

v Scientists have identified 1.3 million living species of animals v The definition of an animal

v Scientists have identified 1.3 million living species of animals v The definition of an animal Biosc 41 9/10 Announcements BIOSC 041 v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: Welcome to Your Kingdom The animal kingdom

More information

Eukaryote Phylogeny. Glycogen. Kingdom Animalia. Amoebozoa Animalia. Plantae. Chromalveolata Rhizaria. Fungi. Excavata

Eukaryote Phylogeny. Glycogen. Kingdom Animalia. Amoebozoa Animalia. Plantae. Chromalveolata Rhizaria. Fungi. Excavata Eukaryote Phylogeny most protozoans, brown algae, & water molds Excavata Chromalveolata Rhizaria Plantae Amoebozoa Animalia Fungi cpsts. w/ 2 memb. chitin, hyphae glycogen eukaryotic cells (nucleus, etc.)

More information

Kingdom Animalia. Special Features: Advanced nervous systems means cephalization (faces), brains, and efficient mobility (walk/run/swim/grab)

Kingdom Animalia. Special Features: Advanced nervous systems means cephalization (faces), brains, and efficient mobility (walk/run/swim/grab) Kingdom Animalia Kingdom Animalia Cell Number: Multicellular with extensive specialization Cell Type: Eukaryotic Animal Cells (no cell wall) Food: Heterotrophic Carnivore (meat), Herbivore (plants), Omnivore

More information

8/23/2014. Introduction to Animal Diversity

8/23/2014. Introduction to Animal Diversity Introduction to Animal Diversity Chapter 32 Objectives List the characteristics that combine to define animals Summarize key events of the Paleozoic, Mesozoic, and Cenozoic eras Distinguish between the

More information

Brief Introduction to the Animal Kingdom

Brief Introduction to the Animal Kingdom Brief Introduction to the Animal Kingdom Vocabulary Vertebrate Invertebrate Detritivore Asymmetry Bilateral symmetry Radial symmetry Cephalization Coelum Pseudocoelum Acoelomates Blastula Blastophore Protosome

More information

Biosc 41 9/10 Announcements

Biosc 41 9/10 Announcements Biosc 41 9/10 Announcements v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal Body Plans

More information

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges.

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges. College Biology - Problem Drill 15: The Evolution of Animal Diversity Question No. 1 of 10 1. Which is not a feature of the phyla porifera- sponges? Question #01 (A) Most are marine animals. (B) They have

More information

Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1)

Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1) Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1) A) They are multicellular eukaryotes. B) They are heterotrophs. C) Their cells are supported

More information

Unit 12 ~ Learning Guide

Unit 12 ~ Learning Guide Unit 12 ~ Learning Guide Name: INSTRUCTIONS Complete the following notes and questions as you work through the related lessons. You are required to have this package completed BEFORE you write your unit

More information

Chapter 33: Invertebrates

Chapter 33: Invertebrates Name Period Chapters 31, 32, and 33 should be considered as a single unit, and you should try to put all of them together in a single conceptual framework. Due to the scope of our course, you are likely

More information

Animals. Chapters Exam November 22, 2011

Animals. Chapters Exam November 22, 2011 Animals Chapters 32-35 Exam November 22, 2011 Overview of Animals Chapter 32 General Features of Animals and Evolution of the Body Plan General Features of Animals Heterotrophs Multicellular No Cell Walls

More information

Animals are in Domain Eukarya

Animals are in Domain Eukarya The Diversity of Animals 1: invertebrates Chapter 23 Animals are in Domain Eukarya Immediate ancestors are a type of Protista Key features Multicellular Kingdom Animalia Heterotrophic: gain energy by consuming

More information

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University The Evolution of Animal Diversity Dr. Stephen J. Salek Biology 130 Fayetteville State University Create your own animal? Start with a basic plant. Make the plant into a simple animal such as a worm. Consider:

More information

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017 Animal Diversity Chapter 32 Which of these organisms are animals? Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animals share the same: Nutritional

More information

*Add to Science Notebook Name 1

*Add to Science Notebook Name 1 *Add to Science Notebook Name 1 Arthropods, Ch. 13, pg. 374-382 Characteristics of Arthropods *Arthropods are the largest group of animals. *Arthropods have jointed and include,,, and. *Arthropod appendages

More information

Today: Animal Body Plans. Animal Body Plans: The Gut. The Animal Kingdom- General Characteristics: Animal Body Plans: Symmetry

Today: Animal Body Plans. Animal Body Plans: The Gut. The Animal Kingdom- General Characteristics: Animal Body Plans: Symmetry Today: Exploring the Animal Kingdom Introduction to Ecology The Animal Kingdom- General Characteristics: Multicellular Heterotrophic (via ingestion) Eukaryotes Require Oxygen for aerobic respiration Reproduce

More information

Characteristics of Animals

Characteristics of Animals Characteristics of Animals Multicellular Cellular Organization What is this? Heterotrophic Adaptations CHAPTER 9 Cellular Organization 4 Major Functions of Animals Obtain food and water Sustain metabolism

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Characteristics of Animals multicellular Except for sponges, animal cells are arranged into tissues. Tissues are necessary to produce organs and organ systems. Tissues, organs,

More information

Biology 11. The Kingdom Animalia

Biology 11. The Kingdom Animalia Biology 11 The Kingdom Animalia Objectives By the end of the lesson you should be able to: Describe the 5 ways we classify animals Symmetry Germ layers Body plan Segmentation Animal Evolution Hank Video

More information

Biology 211 (1) Exam 2 Worksheet!

Biology 211 (1) Exam 2 Worksheet! Biology 211 (1) Exam 2 Worksheet Chapter 33 Introduction to Animal Diversity Kingdom Animalia: 1. Approximately how many different animal species are alive on Earth currently. How many those species have

More information

Sponges. What is the sponge s habitat. What level of organization do sponges have? Type of symmetry?

Sponges. What is the sponge s habitat. What level of organization do sponges have? Type of symmetry? Sponges What is the sponge s habitat Marine (few freshwater species) What level of organization do sponges have? Cell level Type of symmetry? None Type of digestive system (none, complete or incomplete)?

More information

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification?

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? Animals What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? What synapomorphies unite Animals Multicellular Heterotrophs (Metazoans)?

More information

BIOLOGY. An Introduction to Animal Diversity CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Animal Diversity CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 32 An Introduction to Animal Diversity Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick A Kingdom of Consumers

More information

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya Classification The three-domains Bacteria Archaea Eukarya The six-kingdom system Bacteria Archaea Protista Plantae Fungi Animalia The traditional five-kingdom system Monera Protista Plantae Fungi Animalia

More information

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved.

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved. Chapter Presentation Visual Concepts Transparencies Standardized Test Prep Introduction to Animals Table of Contents Section 2 Animal Body Systems Objectives Identify the features that animals have in

More information

Kingdom Animalia. Zoology the study of animals

Kingdom Animalia. Zoology the study of animals Kingdom Animalia Zoology the study of animals Summary Animals are multicellular and eukaryotic. consume and digest organic materials thereby being heterotrophs. Most are motile at some time in their lives.

More information

23.1 Animal Characteristics EQ Although diverse, what common characteristics do all animal share?

23.1 Animal Characteristics EQ Although diverse, what common characteristics do all animal share? 23.1 Animal Characteristics EQ Although diverse, what common characteristics do all animal share? Sea Slug 23.1 Animal Characteristics Animals are the most physically diverse kingdom of organisms and all

More information

Chapter 18. The Evolution of Invertebrate Diversity. Lecture by Joan Sharp

Chapter 18. The Evolution of Invertebrate Diversity. Lecture by Joan Sharp Chapter 18 The Evolution of Invertebrate Diversity PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc.

More information

What is an animal? Introduction to Animals. Germ Layers. Tissues and Organs. Structural Support. Types of Symmetry 11/3/2015

What is an animal? Introduction to Animals. Germ Layers. Tissues and Organs. Structural Support. Types of Symmetry 11/3/2015 What is an animal? Introduction to Animals Multicellular chemoorganoheterotrophs Eukaryotes that lack cell walls and chloroplasts Have mitochondria Are motile at some point in their lives Contain collagen

More information

3. Choanoflagellates resemble what? What is the significance of this resemblance?

3. Choanoflagellates resemble what? What is the significance of this resemblance? I. Animal Diversity 1. What are some basic characteristics of the animal kingdom? What characteristics make them different from plants? - Eukaryotic, heterotrophic (we don t make our own food), we store

More information

Learning Objectives. The Animal Kingdom: An Introduction to Animal Diversity. Sexual Reproduction

Learning Objectives. The Animal Kingdom: An Introduction to Animal Diversity. Sexual Reproduction Learning Objectives The Animal Kingdom: An Introduction to Animal Diversity Chapter 29 What characters are common to most animals? Advantages and disadvantages of different environments Searching for relationships

More information

2/17/2017. Lecture 10: Chapter 31 Protostome Diversity

2/17/2017. Lecture 10: Chapter 31 Protostome Diversity 1 Lecture 10: Chapter 31 Protostome Diversity 2 3 Protostomes: one of two monophyletic groups of bilaterally symmetrical, coelomate animals The other group is the Deuterostomes Differ in pattern of early

More information

Revision Based on Chapter 25 Grade 11

Revision Based on Chapter 25 Grade 11 Revision Based on Chapter 25 Grade 11 Biology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A cell that contains a nucleus and membrane-bound organelles

More information

Classification. Grouping & Identifying Living Things

Classification. Grouping & Identifying Living Things Classification Grouping & Identifying Living Things Classifying Living Things We put livings things into three Domains Eukarya Bacteria Archaea Which are divided into 6 Kingdoms Plant Animal Fungi Protist

More information

Chapter 32 Introduction to Animal Diversity

Chapter 32 Introduction to Animal Diversity Chapter 32 Introduction to Animal Diversity Review: Biology 101 There are 3 domains: They are Archaea Bacteria Protista! Eukarya Endosymbiosis (proposed by Lynn Margulis) is a relationship between two

More information

Section 4 Professor Donald McFarlane

Section 4 Professor Donald McFarlane Characteristics Section 4 Professor Donald McFarlane Lecture 11 Animals: Origins and Bauplans Multicellular heterotroph Cells lack cell walls Most have nerves, muscles, capacity to move at some point in

More information

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen What Is an Animal? Section 25.1 Typical Animal Characteristics Biology II Mrs. Michaelsen I. Characteristics of Animals A. All animals are eukaryotic, multicellular, have ways of moving to reproduce, obtain

More information

BIOLOGY - CLUTCH CH.32 - OVERVIEW OF ANIMALS.

BIOLOGY - CLUTCH CH.32 - OVERVIEW OF ANIMALS. !! www.clutchprep.com Animals are multicellular, heterotrophic eukaryotes that feed by ingesting their food Most animals are diploid, and produce gametes produced directly by meiosis Animals lack cell

More information

BIOLOGY. Chapter 27 Introduction to Animal Diversity

BIOLOGY. Chapter 27 Introduction to Animal Diversity BIOLOGY Chapter 27 Introduction to Animal Diversity Fig. 32-1 An Overview of Animal Diversity Multicellular Nutrition mode: Heterotrophic (ingestion) Cell structure & specialization Tissues develop from

More information

Name Class Date. After you read this section, you should be able to answer these questions:

Name Class Date. After you read this section, you should be able to answer these questions: CHAPTER 14 3 Invertebrates SECTION Introduction to Animals BEFORE YOU READ After you read this section, you should be able to answer these questions: What structures and systems perform basic life functions

More information

Embryonic Development. Chapters 32-34: Animal Diversity AP Biology Fig Zygote Cleavage Blastocoel. Cleavage.

Embryonic Development. Chapters 32-34: Animal Diversity AP Biology Fig Zygote Cleavage Blastocoel. Cleavage. Chapters 32-34: Animal Diversity AP Biology 2012 1 Animal Characteristics Heterotrophs Multicellular Eukaryotes Cells lack cell walls Bodies held together by structural proteins like collagen Contain nervous

More information

Chps : Animals. Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs

Chps : Animals. Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs Chps 23-26: Animals Chps. 23-27: Animals Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs Animal Characteristics Forms of symmetry: Radial Bilateral

More information

Name Class Date. Matching On the lines provided, write the letter of the description that best matches each term on the left. 1.

Name Class Date. Matching On the lines provided, write the letter of the description that best matches each term on the left. 1. Chapter 28 Arthropods and Echinoderms Chapter Vocabulary Review Matching On the lines provided, write the letter of the description that best matches each term on the left. 1. thorax a. shedding of the

More information

Animals contain specialized cells

Animals contain specialized cells What is an Animal? Kingdom Animalia Main Characteristics Members of the Animal Kingdom are: Eukaryotic Multicellular Heterotrophic Have cells with membranes BUT NO cell wall Animals contain specialized

More information

Chapter 32: An Introduction to Animal Diversity

Chapter 32: An Introduction to Animal Diversity Chapter 32: An Introduction to Animal Diversity Chapter 32: An Introduction to Animal Diversity Name Period Concept 32.1 Animals are multicellular, heterotrophic eukaryotes with tissues that develop from

More information

What defines the zygote, the blastula, and the gastrula? Draw pictures.

What defines the zygote, the blastula, and the gastrula? Draw pictures. What makes a multicellular organism multicellular? a) Multiple cells b) Multiple cells that work together c) Specialized cells d) Multiple specialized cells that work together What defines the zygote,

More information

Biology: Get out your packet from yesterday! If you would like to use gloves on Mon and Tues for Dissection PLEASE BRING THEM!!!

Biology: Get out your packet from yesterday! If you would like to use gloves on Mon and Tues for Dissection PLEASE BRING THEM!!! Biology: Get out your packet from yesterday! Today: 5/15/2014 Learning Objectives: *Discuss answers from yesterday Describe the characteristics of animals that belong to the Phylum Arthropoda *Arthropod

More information

Porifera Sponges Features:

Porifera Sponges Features: Porifera Sponges The Phylum Porifera consists only of sponges, which is unique since these animals are entirely aquatic; with 98% found only in marine environments and a small percentage found in freshwater

More information

Tuesday February 26, 2013 Invertebrate Animals Animals: Multicellular, no cell wall or chlorophyll, eukaryotic, heterotrophs

Tuesday February 26, 2013 Invertebrate Animals Animals: Multicellular, no cell wall or chlorophyll, eukaryotic, heterotrophs Name: Class: Biology Weekly Packet February 25 th - March 1 st, 2013 Monday February 25, 2013 Catalyst Tuesday February 26, 2013 Invertebrate Animals Animals: Multicellular, no cell wall or chlorophyll,

More information

BIOLOGY. An Overview of Animal Diversity CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Overview of Animal Diversity CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 32 An Overview of Animal Diversity Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 32.1: Animals are

More information

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida 1 Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida Objectives: Be able to distinguish radial symmetry from bilateral symmetry. Be able to identify which of the phyla

More information

Introduction to Animal Diversity Lecture 7 Winter 2014

Introduction to Animal Diversity Lecture 7 Winter 2014 Introduction to Animal Diversity Lecture 7 Winter 2014 Evolution of Animals 1 Prokaryotes Eukaryotes Prokaryotes No nucleus Nucleoid region Simple No membrane bound organelles Smaller (1-5 nm) Evolutionarily

More information

Chapter 18 ANIMAL EVOLUTION AND DIVERSITY. Introduction What is an animal? The Evolution of Invertebrate Diversity

Chapter 18 ANIMAL EVOLUTION AND DIVERSITY. Introduction What is an animal? The Evolution of Invertebrate Diversity Chapter 18 The Evolution of Invertebrate Diversity Introduction Most octopuses rely on nonaggressive defense mechanisms such as camouflage. The blue-ringed octopus is an exception, with a toxin 10,000

More information

1. General Features of Animals

1. General Features of Animals Chapter 32: An Overview of Animal Diversity 1. General Features of Animals 2. The History of Animals 1. General Features of Animals General Characteristics of Animals animals are multicellular eukaryotic

More information

Invertebrates. Chapter 33. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Invertebrates. Chapter 33. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 33 Invertebrates PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Fig.

More information

An Overview of Animal Diversity

An Overview of Animal Diversity Figure 32.1 CAMPBELL BIOLOGY Figure 32.1a A Kingdom of Consumers TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson! Most animals are mobile and use traits such as strength, speed, toxins, or camouflage

More information

Unit 10: Animals Guided Reading Questions (80 pts total)

Unit 10: Animals Guided Reading Questions (80 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 32 An Introduction to Animal Diversity 1. Define the following

More information

ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS

ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS GENERAL FEATURES OF ANIMALS Heterotrophy - obtain energy and organic molecules by ingesting other organisms Multicellularity - Many have complex bodies

More information

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals Introduction to Animals Table of Contents Objectives Identify four important characteristics of animals. List two kinds of tissues found only in animals. Explain how the first animals may have evolved

More information

Kingdom: Animals. Domain Archaea. Domain Eukarya. Domain Bacteria. Common ancestor

Kingdom: Animals. Domain Archaea. Domain Eukarya. Domain Bacteria. Common ancestor Kingdom: Animals Domain Eukarya Domain Bacteria Domain Archaea Domain Eukarya Common ancestor 1 Animal Characteristics Heterotrophs must ingest others for nutrients Multicellular complex bodies No cell

More information

INVERTEBRATES. The Earth and Living Things. Carme Font Casanovas 1

INVERTEBRATES. The Earth and Living Things. Carme Font Casanovas 1 INVERTEBRATES Living Things. Carme Font Casanovas 1 How many animals can you see? ant rose coral snake anemone fish grass bee Living Things. Carme Font Casanovas 2 Invertebrates There are animals without

More information

Intro to Animals. Chapter 32

Intro to Animals. Chapter 32 Intro to Animals Chapter 32 1) Multicellular Organization (Different cells have different functions) Specialization: adaptation of a cell for a particular function Remember: cells tissues organs organ

More information

Are these organisms. animals or not?

Are these organisms. animals or not? 1 2 3 4 5 Are these organisms 6 7 8 animals or not? 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 Typical Animal Characteristics Eukaryotic Multicellular Ability to move Reproduce Obtain food (heterotrophic)

More information

Chapter 8-9 Intro to Animals. Image from:

Chapter 8-9 Intro to Animals. Image from: Chapter 8-9 Intro to Animals Image from: http://animaldiversity.ummz.umich.edu/index.html Zoology Definition: the scientific study of the behavior, structure, physiology, classification, and distribution

More information

Features of the Animal

Features of the Animal Features of the Animal Kingdom Bởi: OpenStaxCollege Even though members of the animal kingdom are incredibly diverse, animals share common features that distinguish them from organisms in other kingdoms.

More information

Lecture XII Origin of Animals Dr. Kopeny

Lecture XII Origin of Animals Dr. Kopeny Delivered 2/20 and 2/22 Lecture XII Origin of Animals Dr. Kopeny Origin of Animals and Diversification of Body Plans Phylogeny of animals based on morphology Porifera Cnidaria Ctenophora Platyhelminthes

More information

An Introduction to the Invertebrates (part 4?!) Annelida & Nematoda. Reference: Chapter 33.3, 33.4

An Introduction to the Invertebrates (part 4?!) Annelida & Nematoda. Reference: Chapter 33.3, 33.4 An Introduction to the Invertebrates (part 4?!) Annelida & Nematoda Reference: Chapter 33.3, 33.4 More Relationships Slime molds Tubulinids Entamoebas Nucleariids Fungi Choanoflagellates Animals Excavata

More information

Chapter 7. Marine Animals Without a Backbone

Chapter 7. Marine Animals Without a Backbone Chapter 7 Marine Animals Without a Backbone General Characteristics of Animals Multicellular, diploid organisms with tissues, organs or organ systems in most Heterotrophic Require oxygen for aerobic

More information

CHAPTER 32 INTRODUCTION TO ANIMAL EVOLUTION. Section A: What is an animal?

CHAPTER 32 INTRODUCTION TO ANIMAL EVOLUTION. Section A: What is an animal? CHAPTER 32 INTRODUCTION TO ANIMAL EVOLUTION Section A: What is an animal? 1. Structure, nutrition, and life history define animals 2. The animal kingdom probably evolved from a colonial, flagellated protist

More information

Evolution and Biodiversity Laboratory Identifying Microorganisms in Aquatic Samples

Evolution and Biodiversity Laboratory Identifying Microorganisms in Aquatic Samples Evolution and Biodiversity Laboratory Identifying Microorganisms in Aquatic Samples Being able to identify organisms is important if you wish to discover what is already known about their natural history,

More information

Animal Origins and Evolution

Animal Origins and Evolution Animal Origins and Evolution Common Features of Animals multicellular heterotrophic motile Sexual reproduction, embryo Evolution of Animals All animals are multicellular and heterotrophic, which means

More information

- found in bryozoans (moss animals), brachiopods (lamp shells) and phoronids (horseshoe worms)

- found in bryozoans (moss animals), brachiopods (lamp shells) and phoronids (horseshoe worms) Chapter 33 Protostome Animals - insects the phylum Arthropoda include the insects, crusraceans and myriapods and make up 40% of the total mass of organisms present 33.1 An Overview of Protostome Evolution

More information

Chapter 24 Introduction to Animals

Chapter 24 Introduction to Animals 1 Chapter 24 Introduction to Animals I. Animal characteristics A. General Animal Features Multicellular B. Feeding and Digestion a. acquire nutrients from various sources obtaining nutrients unique to

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity Lecture Outline Overview: Welcome to Your Kingdom Biologists have identified 1.3 million living species of animals. Estimates of the total number of animal

More information

Biology 1030 Winter 2009

Biology 1030 Winter 2009 Animal Diversity Chapters 32, 33 and 34 (select pages) Living Organisms Three Domains of life Bacteria Archaea Eukarya True nucleus True organelles Heterotrophic Animals Fungi Protists Autotrophic Plants

More information

Protists. Simple Eukaryotes. Regents Biology Common ancestor. Domain Archaebacteria. Domain Eukaryotes. Domain Bacteria

Protists. Simple Eukaryotes. Regents Biology Common ancestor. Domain Archaebacteria. Domain Eukaryotes. Domain Bacteria Protists Simple Eukaryotes Domain Bacteria Domain Archaebacteria Domain Eukaryotes Regents Biology 2006-2007 Common ancestor General characteristics Classification criteria eukaryotes not animal, plant

More information

Introduction to Animal Diversity. Chapter 23.1, 23.2 and additional

Introduction to Animal Diversity. Chapter 23.1, 23.2 and additional Introduction to Animal Diversity Chapter 23.1, 23.2 and additional 1 Think of an Animal... Does your choice have hair or fur? Does it have a skeleton? Over a million species of animals described 95% have

More information

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, and Lophotrochozoa

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, and Lophotrochozoa 1 Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, and Lophotrochozoa Objectives: Be able to distinguish radial symmetry from bilateral symmetry. Be able to identify which of the phyla

More information

Fern: 2. Fern spores are produced in structures known as a) antheridia. b) archegonia. c) sporangia d) seeds

Fern: 2. Fern spores are produced in structures known as a) antheridia. b) archegonia. c) sporangia d) seeds 1. The structures in Bryophytes that penetrate the ground to anchor the plant are: a) xylem. b) phloem. c) rhizomes. d) rhizoids. 2. Fern spores are produced in structures known as a) antheridia. b) archegonia.

More information

DO NOT OPEN EXAM UNTIL INSTRUCTED TO DO SO

DO NOT OPEN EXAM UNTIL INSTRUCTED TO DO SO Name: Last KEY First ID# Lab. Date and Time Lab. TA Biological Sciences 1B Dr. Herrlinger Summer Sessions I 2000 Midterm 2 July 21, 2000 DO NOT OPEN EXAM UNTIL INSTRUCTED TO DO SO Multiple Choice Questions

More information

The Animals, or Metazoa. Approximate proportions of animal species presently known; The true diversity of animals may be more than 90% Arthropods

The Animals, or Metazoa. Approximate proportions of animal species presently known; The true diversity of animals may be more than 90% Arthropods The Animals, or Metazoa Are some of the best-studied organisms Comprise over a million known species Originated c. the Cambrian (~550 MYA) Most animal phyla are marine; however, due to the diversity of

More information