CHAPTER 32 INTRODUCTION TO ANIMAL EVOLUTION. Section A: What is an animal?

Size: px
Start display at page:

Download "CHAPTER 32 INTRODUCTION TO ANIMAL EVOLUTION. Section A: What is an animal?"

Transcription

1 CHAPTER 32 INTRODUCTION TO ANIMAL EVOLUTION Section A: What is an animal? 1. Structure, nutrition, and life history define animals 2. The animal kingdom probably evolved from a colonial, flagellated protist 3. Some animals can do some amazing things. And then this

2

3 1. Structure, nutrition and life history define animals Five criteria, when taken together, create a reasonable definition. (1) Animals are all multicellular, all heterotrophic eukaryotes.

4 (2) Animal cells lack cell walls that provide structural supports for plants and fungi. The multicellular bodies of animals are held together with extracellular proteins, especially collagen. In addition, other structural proteins create several types of intercellular junctions, including tight junctions, desmosomes, and gap junctions, that hold tissues together. (3) Animals have two unique types of tissues: nervous tissue for impulse conduction and muscle tissue for movement.

5 (4) Most animals reproduce sexually, with the diploid stage usually dominating the life cycle. In most species, a small flagellated sperm fertilizes a larger, nonmotile egg. The zygote undergoes cleavage, a succession of mitotic cell divisions, leading to the formation of a multicellular animal. Fig. 32.1

6 (5. Animals have Hox genes. What are they, again? Many of these Hox genes contain common modules of DNA sequences, called homeoboxes. Only animals possess genes that are both homeoboxcontaining in structure and homeotic in function. All animals, from sponges to the most complex insects and vertebrates have Hox genes, with the number of Hox genes correlated with complexity of the animal s anatomy. OK, then, how do you explain this????

7 2. Animals evolved from protists Most systematists now agree that the animal kingdom is monophyletic, meaning all animals have one common ancestor. That ancestor was most likely a colonial flagellated protist that lived over 700 million years ago in the Precambrian era. Evidence for multi-cellularity evolving?

8 One hypothesis for the origin of animals from a flagellated protist suggests that a colony of identical cells evolved into a hollow sphere. The cells of this sphere then specialized, creating two or more layers of cells. Fig. 32.3

9 Introduction Trying to classify animals is a mess. Different comparisons, like DNA vs. embryological development, suggest different versions of how the history of life has played out. Luckily for you, you can stay clear of the mess and just learn a few basics about the different solutions to the challenges of survival the evolutionary process has produced. Let s look at some of the big events in the adaptive radiation of animals from their protist ancestor.

10 Fig. 32.4

11 Fig. 32.5

12 Linked with bilateral symmetry is cephalization, the concentration of sensory equipment on the anterior end. Cephalization also includes the development of a central nervous system concentrated in the head and extending toward the tail as a longitudinal nerve cord. Animals that move actively are bilateral, such that the head end is usually first to encounter food, danger, and other stimuli. Usually this helps keep the animal out of harm s way, but no system is perfect

13

14 The basic organization of germ layers, concentric layers of embryonic tissue that form various tissues and organs, differs between radiata and bilateria. The radiata are said to be diploblastic because they have two germ layers. The ectoderm, covering the surface of the embryo, gives rise to the outer covering and the central nervous system. The endoderm, the innermost layer, lines the developing digestive tube, or archenteron, and gives rise to the lining of the digestive tract and the organs derived from it, such as the liver and lungs of vertebrates.

15 The bilateria are triploblastic. The third germ layer, the mesoderm lies between the endoderm and ectoderm. The mesoderm develops into the muscles and most other organs between the digestive tube and the outer covering of the animal.

16 (3) The Bilateria can be divided by the presence or absence of a body cavity (a fluid-filled space separating the digestive tract from the outer body wall) and by the structure of the body cavity. Acoelomates (the phylum Platyhelminthes) have a solid body and lack a body cavity. Fig. 32.6a

17 Coelomates are organisms with a true coelom, a fluid-filled body cavity completely lined by mesoderm. The inner and outer layers of tissue that surround the cavity connect dorsally and ventrally to form mesenteries, which suspend the internal organs. Fig. 32.6b

18 A body cavity has many adaptive functions. Its fluid cushions the internal organs, helping to prevent internal injury. The noncompressible fluid of the body cavity can function as a hydrostatic skeleton against which muscles can work. The presence of the cavity enables the internal organs to grow and move independently of the outer body wall.

19 Fig. 32.7

20 The third difference centers on the fate of the blastopore, the opening of the archenteron. In protostomes, the blastopore develops into the mouth and a second opening at the opposite end of the gastrula develops into the anus. Proto means First, and stome means the mouth. In deuterostomes, the blastopore usually develops into the anus and the mouth is derived from the secondary opening. Deutero means second. Let s watch gastrulation 1:00

21 1. Most animal phyla originated in a relatively brief span of geological time Data from molecular systematics suggest an animal origin about a billion years ago. Nearly all the major animal body plans appear in Cambrian rocks from 543 to 525 million years ago. During this relatively short time, a burst of animal origins, the Cambrian explosion, left a rich fossil assemblage. It includes the first animals with hard, mineralized skeletons

22 Much of the diversity in body form among animal phyla is associated with variations in the spatial and temporal expression of Hox genes within the embryo. A reasonable hypothesis is that the diversification of animals was associated with the evolution of the Hox regulatory genes, which led to variation in morphology during development. Biologists investigating evo-devo, the new synthesis of evolutionary biology and developmental biology, may provide insights into the Cambrian explosion.

23 Introduction All animals except sponges belong to the Eumetazoa, the animals with true tissues. The oldest eumetazoan clade is the Radiata, animals with radial symmetry and diploblastic (only ectoderm and endoderm) embryos. In fact, remember, this now is thought to be the oldest of all animal groups.

24 1. Phylum Cnidaria: Cnidarians have radial symmetry, a gastrovascular cavity, and cnidocytes The cnidarians (nigh-dare-ee-uns - hydras, jellies, sea anemones, and coral animals) have a relatively simple body construction. The basic cnidarian body plan is a sac with a central digestive compartment, the gastrovascular cavity.

25 This basic body plan has two variations: the sessile polyp and the floating medusa. The cylindrical polyps, such as hydras and sea anemones, adhere to the substratum by the aboral end and extend their tentacles, waiting for prey. Medusas (also called jellies) are flattened, mouth-down versions of polyps that move by drifting passively and by contacting their bell-shaped bodies. Fig. 33.4

26 Cnidarians are carnivores that use tentacles arranged in a ring around the mouth to capture prey and push the food into the gastrovascular chamber for digestion. Batteries of cells called cnidocytes on the tentacles defend the animal or capture prey. The cnidocytes have organelles called nematocysts evert a thread that can inject poison into the prey, or stick to or entangle the target. Watch 1:00

27 Fig. 33.5

28 Muscles and nerves exist in their simplest forms in cnidarians. Cells of the epidermis and gastrodermis have bundles of microfilaments arranged into contractile fibers. True muscle tissue appears first in triploblastic animals. When the animal closes its mouth, the gastrovascular cavity acts as a hydrostatic skeleton against which the contractile cells can work. Movements are controlled by a noncentralized nerve net associated with simple sensory receptors that are distributed radially around the body.

29 The three cnidarian classes show variations on the same body theme of polyp and medusa. Fig. 33.6

30 For one jelly, this is truly a cycle. See this amazing discovery:

31 Anemones and corals belong to the class Anthozoa. They occur only as polyps. Coral animals live as solitary or colonial forms and secrete a hard external skeleton of calcium carbonate. Each polyp generation builds on the skeletal remains of earlier generations to form skeletons that we call coral. In tropical seas, coral reefs provide habitat for a great diversity of invertebrates and fishes. Coral reefs in many parts of the world are currently being damaged by environmental changes - global warming is one suspect. Watch here 3:00 Great example of how environmental change can affect the distribution of organisms.

32 1. Phylum Platyhelminthes: Flatworms are acoelomates with gastrovascular cavities There are about 20,000 species of flatworms living in marine, freshwater, and damp terrestrial habitats. They also include many parasitic species, such as the flukes and tapeworms. Flatworms have thin bodies, ranging in size from nearly microscopic to tapeworms over 20 m long. Flatworms and other bilaterians are triploblastic, with a middle embryonic tissue layer, mesoderm, which contributes to more complex organs and organs systems and to true muscle tissue.

33 While flatworms are structurally more complex than cnidarians or ctenophores, they are simpler than other bilaterans. Like cnidarians and ctenophores, flatworms have a gastrovascular cavity with only one opening (and tapeworms lack a digestive system entirely and absorb nutrients across their body surface). Unlike other bilaterians, flatworms lack a coelom.

34 Planarians and other flatworms lack organs specialized for gas exchange and circulation. Their flat shape places all cells close to the surrounding water, and the digestive system is highly branched to distribute food throughout the animal. Nitrogenous wastes are removed by diffusion and simple ciliated flame cells help maintain osmotic balance. Fig

35 A planarian has a head with a pair of eyespots to detect light and lateral flaps that function mainly for smell. The planarian nervous system is more complex and centralized than the nerve net of cnidarians. Planarians can learn to modify their responses to stimuli.

36 Planarians can reproduce asexually through regeneration. The parent constricts in the middle, and each half regenerates the missing end. Watch :30 Planarians can also reproduce sexually. These hermaphrodites crossfertilize.

37 The blood fluke Schistosoma infects 200 million people, leading to body pains, anemia, and dysentery. Fig

38 Tapeworms (class Cestoidea) are also parasitic. The adults live mostly in vertebrates, including humans. Suckers and hooks on the head or scolex anchor the worm in the digestive tract of the host. A long series of proglottids, sacs of sex organs, lie posterior to the scolex. Tapeworms absorb food particles from their hosts; no need for a digestive system. Watch 2:00 Fig

39

40 5. Phylum Mollusca The phylum Mollusca includes snails and slugs, oysters and clams, and octopuses and squids. Most mollusks are marine, though some inhabit fresh water, and some snails and slugs live on land. Mollusks are soft-bodied animals, but most are protected by a hard shell of calcium carbonate. Slugs, squids, and octopuses have reduced or lost their shells completely during their evolution.

41 Many mollusks feed by using a straplike rasping organ, a radula, to scrape up food. Watch :35 The visceral mass includes a complete, one-way digestive tract (gut) (alimentary canal), unlike sponges, cnidarians and platyhelminthes.

42 Most gastropods use their radula to graze on algae or plant material. Some species are predators. In these species, the radula is modified to bore holes in the shells of other organisms or to tear apart tough animal tissues. Seen shells with holes in them?? In the tropical marine cone snails, teeth on the radula form separate poison darts, which penetrate and stun their prey, including fishes. See here and here.

43 Lightning whelk eating a scallop

44 The class Bivalvia includes clams, oysters, mussels, and scallops. Bivalves have shells divided into two halves. The two parts are hinged at the mid-dorsal line, and powerful adductor muscles close the shell tightly to protect the animal. When the shell is open, the bivalve may extend its hatchet-shaped foot for digging or anchoring. Fig

45 Watch these scallops respond to an environmental stimulus predator juice!! Neat stuff from FSU Marine Lab.

46 Cephalopods use rapid movements to dart toward their prey which they capture with several long tentacles. Water from the excurrent siphon provides the propulsion. Squids and octopuses use beaklike jaws to bite their prey and then inject poison to immobilize the victim. A mantle covers the visceral mass, but the shell is reduced and internal in squids, missing in many octopuses, and exists externally only in nautiluses. Fig

47 Cephalopods have an active, predaceous lifestyle. Unique among mollusks, cephalopods have a closed circulatory system to facilitate the movements of gases, fuels, and wastes through the body. They have a well-developed nervous system with a complex brain and welldeveloped sense organs. This supports learning and complex behavior. Cool 1:00 and cooler 2:30

48 6. Phylum Annelida: Annelids are segmented worms All annelids ( little rings ) have segmented bodies. There are about 15,000 species ranging in length from less than 1 mm to 3 m for the giant Australian earthworm. Annelids live in the sea, most freshwater habitats, and damp soil. They are protostomes, like the mollusks.

49 The coelom of the earthworm, a typical annelid, is partitioned by septa, but the digestive tract, longitudinal blood vessels, and nerve cords penetrate the septa and run the animal s length. Fig

50 The digestive system consists of a pharynx, an esophagus, crop, gizzard, and intestine. The closed circulatory system carries blood with oxygen-carrying hemoglobin through dorsal and ventral vessels connected by segmental vessels. The dorsal vessel and five pairs of esophageal vessels act as muscular pumps to distribute blood. In each segment is a pair of excretory tubes, metanephridia, that remove wastes from the blood and coelomic fluid. Analagous to? Wastes are discharged through exterior pores.

51 A brainlike pair of cerebral ganglia lie above and in front of the pharynx. Earthworms are cross-fertilizing hermaphrodites. Two earthworms exchange sperm and then separate. The received sperm are stored while a special organ, the clitellum, secretes a mucus cocoon. As the cocoon slides along the body, it picks up eggs and stored sperm and slides off the body into the soil. Some earthworms can also reproduce asexually by fragmentation followed by regeneration.

52 The majority of leeches inhabit fresh water, but land leeches move through moist vegetation. Many leeches feed on other invertebrates, but some bloodsucking parasites feed by attaching temporarily to other animals, including humans.

53 Until this century, leeches were frequently used by physicians for bloodletting. Leeches are still used for treating bruised tissues and for stimulating the circulation of blood to fingers or toes that have been sewn back to hands or feet after accidents. Watch 2:45 Fig d

54 Introduction The primary evidence for defining the clade Ecdysozoa is data from molecular systematics. All members of this group share the phenomenon of ecdysis, the shedding of an exoskeleton outgrown by the animal. These are Nematodes and Arthropods

55 1. Phylum Nematoda Roundworms are found in most aquatic habitats, wet soil, moist tissues of plants, and the body fluids and tissues of animals. They range in length from less than 1 mm to more than a meter.

56 The cylindrical bodies of roundworms are covered with a tough exoskeleton, the cuticle. As the worm grows, it periodically sheds its old cuticle and secretes a new, larger one. Ecdysis. They have a complete digestive tract and use the fluid in their pseudocoelom to transport nutrients since they lack a circulatory system. Fig d

57 The nematodes also include many species that are important plant pests that attack roots. Other species parasitize animals. 2:10 Over 50 nematode species, including various pinworms and hookworms, parasitize humans. Trichinella spiralis causes trichinosis when the nematode worms encyst in a variety of human organs, including skeletal muscle. They are acquired by eating undercooked meat that has juvenile worms encysted in the muscle tissue. Fig b

58 2. Arthropods are segmented coelomates with exoskeletons and jointed appendages The world arthropod population has been estimated at a billion billion (10 18 ) individuals. Nearly a million arthropod species have been described - two out of every three organisms known are arthropods. This phylum is represented in nearly all habitats in the biosphere. On the criteria of species diversity, distribution, and sheer numbers, arthropods must be regarded as the most successful animal phylum.

59 The diversity and success of arthropods is largely due to three features: body segmentation, a hard exoskeleton, and jointed appendages. Groups of segments and their appendages have become specialized for a variety of functions, permitting efficient division of labor among regions. Fig

60 The body of an arthropod is completely covered by the cuticle, an exoskeleton constructed from layers of protein and chitin. The exoskeleton protects the animal and provides points of attachment for the muscles that move appendages. The exoskeleton of arthropods is strong and relatively impermeable to water. In order to grow, and mate, an arthropod must molt (ecdysis) its old exoskeleton and secrete a larger one, a process that leaves the animal temporarily vulnerable to predators and other dangers. Watch the blue crab 2:15

61 Arthropods have well-developed sense organs, including eyes for vision, olfactory receptors for smell, and antennae for touch and smell. Most sense organs are located at the anterior end of the animal, showing extensive cephalization. Arthropods have an open circulatory system in which hemolymph fluid is propelled by a heart through short arteries into sinuses (the hemocoel) surrounding tissues and organs. Hemolymph returns to the heart through valved pores. The true coelom is much reduced in most species.

62 The move onto land by several groups of arthropods (insects, millipedes, centipedes, some chelicerates, and few crustaceans) was made possible, in part, by the exoskeleton. While it initially evolved for protection and locomotion, on land the exoskeleton also solved problems of water loss because the cuticle is relatively impermeable to water, helping prevent desiccation. The firm exoskeleton also provided support when arthropods left the relative buoyancy of water.

63 Several hypotheses have been proposed for the evolution of wings. In one hypothesis, wings first evolved as extensions of the cuticle that helped the insect absorb heat and were later modified for flight. A second hypothesis argues that wings allowed animals to glide from vegetation to the ground. Alternatively, wings may have served as gills in aquatic insects. Still another hypothesis proposes that insect wings functioned for swimming before they functioned for flight.

64 The internal anatomy of an insect includes several complex organ systems. Metabolic wastes are removed from the hemolymph by Malpighian tubules, outpockets of the digestive tract. Respiration is accomplished by a branched, chitin-lined tracheal system that carries O 2 from the spiracles (openings) directly to the cells. Let s watch the Insect DVD. Regulating the spiracles (similar to how a plant does its stomata) helps control breathing and drying out.

65 Fig

66 Metamorphosis is central to insect development. In incomplete metamorphosis (seen in grasshoppers and some other orders), the young resemble adults but are smaller and have different body proportions. Through a series of molts, the young look more and more like adults until it reaches full size. In complete metamorphosis, larval stages specialized for eating and growing change morphology completely during the pupal stage and emerge as adults. Fig

67 Introduction At first glance, sea stars and other echinoderms would seem to have little in common with the phylum Chordata, which includes the vertebrates. However, these animals share the deuterostome characteristics of radial cleavage, development of the coelom from the archenteron, and the formation of the anus from the blastopore. These developmental features that define the Deuterostomia are supported by molecular systematics.

68 1. Phylum Echinodermata: Echinoderms have a water vascular system and secondary radial symmetry Sea stars and most other echinoderms are sessile, or slow-moving animals with pentaradial symmetry. The internal and external parts of the animal radiate from the center, often as five spokes. A thin skin covers an endoskeleton of hard calcareous plates. Most echinoderms are prickly from skeletal bumps and spines that have various functions.

69 Unique to echinoderms is the water vascular system, a network of hydraulic canals branching into extensions called tube feet. These function in locomotion, feeding, and gas exchange.

70 Sea stars (class Asteroidea) have five arms (sometimes more) radiating from a central disk. The undersides of arms have rows of tube feet. Each can act like a suction disk that is controlled by hydraulic and muscular action. Fig

71 Sea stars and some other echinoderms can regenerate lost arms and, in a few cases, even regrow an entire body from a single arm. Fig a

72 And so how about a tribute To David Attenborough

Invertebrate Diversity

Invertebrate Diversity CHAPTER 23 Invertebrate Diversity Summary of Key Concepts Concept 23.1 Diverse animals share several key characteristics. (pp. 494 496) More than a million living species of animals are organized into

More information

KINGDOM ANIMALIA CHARACTERISTICS

KINGDOM ANIMALIA CHARACTERISTICS KINGDOM ANIMALIA CHARACTERISTICS EUKARYOTIC MULTICELLULAR HETEROTROPHIC (by ingestion) MOVE AT SOME POINT IN LIFE (not all - sponges are sessile) DIGEST FOOD TO GET NUTRIENTS LACK CELL WALLS CHARACTERISTICS

More information

INVERTEBRATE DIVERSITY

INVERTEBRATE DIVERSITY INVERTEBRATE DIVERSITY 1 INVERTEBRATES Animals that lack a backbone Invertebrates 2 1 ANIMAL DEVELOPMENT Meiosis Egg Sperm Zygote Adult Blastula hollow ball of cells in a developing animal Gastrula Stage

More information

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 33 An Introduction to Invertebrates Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 33.UN08 Metazoa Eumetazoa

More information

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny BIOSC 041 Overview of Animal Diversity: Animal Body Plans Reference: Chapter 32 Outline v Definition and major characteristics of animals v Dividing animals into groups based on: Body symmetry Tissues

More information

Eukaryote Phylogeny. Glycogen. Kingdom Animalia. Amoebozoa Animalia. Plantae. Chromalveolata Rhizaria. Fungi. Excavata

Eukaryote Phylogeny. Glycogen. Kingdom Animalia. Amoebozoa Animalia. Plantae. Chromalveolata Rhizaria. Fungi. Excavata Eukaryote Phylogeny most protozoans, brown algae, & water molds Excavata Chromalveolata Rhizaria Plantae Amoebozoa Animalia Fungi cpsts. w/ 2 memb. chitin, hyphae glycogen eukaryotic cells (nucleus, etc.)

More information

8/23/2014. Introduction to Animal Diversity

8/23/2014. Introduction to Animal Diversity Introduction to Animal Diversity Chapter 32 Objectives List the characteristics that combine to define animals Summarize key events of the Paleozoic, Mesozoic, and Cenozoic eras Distinguish between the

More information

Animal Diversity. Features shared by all animals. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers

Animal Diversity. Features shared by all animals. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animal Diversity Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Nutritional mode Ingest food and use enzymes in the body to digest Cell structure and

More information

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges.

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges. College Biology - Problem Drill 15: The Evolution of Animal Diversity Question No. 1 of 10 1. Which is not a feature of the phyla porifera- sponges? Question #01 (A) Most are marine animals. (B) They have

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Moving Forward Quizlet Each section we cover, 1 group will go to our class on Quizlet and create 20 flash cards on the topic (/5mks) If I warn you about talking while I m talking,

More information

Introduction to Animal Kingdom. Invertebrates and Vertebrates

Introduction to Animal Kingdom. Invertebrates and Vertebrates Introduction to Animal Kingdom Invertebrates and Vertebrates Introduction To Animals Vertebrate animal with a backbone. Invertebrate animal without a backbone; includes more than 95% of all animal species

More information

v Scientists have identified 1.3 million living species of animals v The definition of an animal

v Scientists have identified 1.3 million living species of animals v The definition of an animal Biosc 41 9/10 Announcements BIOSC 041 v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal

More information

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017 Animal Diversity Chapter 32 Which of these organisms are animals? Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animals share the same: Nutritional

More information

Biosc 41 9/10 Announcements

Biosc 41 9/10 Announcements Biosc 41 9/10 Announcements v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal Body Plans

More information

Life Science 7 th NOTES: Ch Animals Invertebrates

Life Science 7 th NOTES: Ch Animals Invertebrates Life Science 7 th NOTES: Ch 10-11 Animals Invertebrates Write the correct word in the blanks to show directions on an animal body: ** Word Bank (Posterior, Ventral, Dorsal, Anterior) top surface front

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Characteristics of Animals multicellular Except for sponges, animal cells are arranged into tissues. Tissues are necessary to produce organs and organ systems. Tissues, organs,

More information

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved.

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved. Chapter Presentation Visual Concepts Transparencies Standardized Test Prep Introduction to Animals Table of Contents Section 2 Animal Body Systems Objectives Identify the features that animals have in

More information

Animals contain specialized cells

Animals contain specialized cells What is an Animal? Kingdom Animalia Main Characteristics Members of the Animal Kingdom are: Eukaryotic Multicellular Heterotrophic Have cells with membranes BUT NO cell wall Animals contain specialized

More information

Kingdom Animalia. Zoology the study of animals

Kingdom Animalia. Zoology the study of animals Kingdom Animalia Zoology the study of animals Summary Animals are multicellular and eukaryotic. consume and digest organic materials thereby being heterotrophs. Most are motile at some time in their lives.

More information

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen What Is an Animal? Section 25.1 Typical Animal Characteristics Biology II Mrs. Michaelsen I. Characteristics of Animals A. All animals are eukaryotic, multicellular, have ways of moving to reproduce, obtain

More information

Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1)

Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1) Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1) A) They are multicellular eukaryotes. B) They are heterotrophs. C) Their cells are supported

More information

Characteristics of Animals

Characteristics of Animals Characteristics of Animals Multicellular Cellular Organization What is this? Heterotrophic Adaptations CHAPTER 9 Cellular Organization 4 Major Functions of Animals Obtain food and water Sustain metabolism

More information

Chapter 33: Invertebrates

Chapter 33: Invertebrates Name Period Chapters 31, 32, and 33 should be considered as a single unit, and you should try to put all of them together in a single conceptual framework. Due to the scope of our course, you are likely

More information

BIOS1101 Lab Notes. Contents ANIMALS. Lab 1: Animal Diversity invertebrates. Lab 2: Animal Diversity 2 vertebrates

BIOS1101 Lab Notes. Contents ANIMALS. Lab 1: Animal Diversity invertebrates. Lab 2: Animal Diversity 2 vertebrates Contents ANIMALS Lab 1: Animal Diversity invertebrates Lab 2: Animal Diversity 2 vertebrates Lab 3: Animal Structure 1 Gross morphology Lab 4: Animal Structure 2 Histology Lab 5: The Nervous System & Sensory

More information

Chapter 32 Introduction to Animal Diversity. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Chapter 32 Introduction to Animal Diversity. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Chapter 32 Introduction to Animal Diversity Welcome to Your Kingdom The animal kingdom extends far beyond humans and other animals we may encounter 1.3 million living species of animals have been identified

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya Classification The three-domains Bacteria Archaea Eukarya The six-kingdom system Bacteria Archaea Protista Plantae Fungi Animalia The traditional five-kingdom system Monera Protista Plantae Fungi Animalia

More information

Classification. Grouping & Identifying Living Things

Classification. Grouping & Identifying Living Things Classification Grouping & Identifying Living Things Classifying Living Things We put livings things into three Domains Eukarya Bacteria Archaea Which are divided into 6 Kingdoms Plant Animal Fungi Protist

More information

Brief Introduction to the Animal Kingdom

Brief Introduction to the Animal Kingdom Brief Introduction to the Animal Kingdom Vocabulary Vertebrate Invertebrate Detritivore Asymmetry Bilateral symmetry Radial symmetry Cephalization Coelum Pseudocoelum Acoelomates Blastula Blastophore Protosome

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: Welcome to Your Kingdom The animal kingdom

More information

Introduction to Animal Diversity Lecture 7 Winter 2014

Introduction to Animal Diversity Lecture 7 Winter 2014 Introduction to Animal Diversity Lecture 7 Winter 2014 Evolution of Animals 1 Prokaryotes Eukaryotes Prokaryotes No nucleus Nucleoid region Simple No membrane bound organelles Smaller (1-5 nm) Evolutionarily

More information

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda Animal Body Plans Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod Sponges Cnidaria, Ctenophora, Platyhelminthes Acoelomate -Eucoelomate Annelid Mollusca Arthropoda Size Constraints

More information

Chapter 8-9 Intro to Animals. Image from:

Chapter 8-9 Intro to Animals. Image from: Chapter 8-9 Intro to Animals Image from: http://animaldiversity.ummz.umich.edu/index.html Zoology Definition: the scientific study of the behavior, structure, physiology, classification, and distribution

More information

An Introduction to the Invertebrates (part 4?!) Annelida & Nematoda. Reference: Chapter 33.3, 33.4

An Introduction to the Invertebrates (part 4?!) Annelida & Nematoda. Reference: Chapter 33.3, 33.4 An Introduction to the Invertebrates (part 4?!) Annelida & Nematoda Reference: Chapter 33.3, 33.4 More Relationships Slime molds Tubulinids Entamoebas Nucleariids Fungi Choanoflagellates Animals Excavata

More information

Revision Based on Chapter 25 Grade 11

Revision Based on Chapter 25 Grade 11 Revision Based on Chapter 25 Grade 11 Biology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A cell that contains a nucleus and membrane-bound organelles

More information

Biology 11. The Kingdom Animalia

Biology 11. The Kingdom Animalia Biology 11 The Kingdom Animalia Objectives By the end of the lesson you should be able to: Describe the 5 ways we classify animals Symmetry Germ layers Body plan Segmentation Animal Evolution Hank Video

More information

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University The Evolution of Animal Diversity Dr. Stephen J. Salek Biology 130 Fayetteville State University Create your own animal? Start with a basic plant. Make the plant into a simple animal such as a worm. Consider:

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

23.1 Animal Characteristics EQ Although diverse, what common characteristics do all animal share?

23.1 Animal Characteristics EQ Although diverse, what common characteristics do all animal share? 23.1 Animal Characteristics EQ Although diverse, what common characteristics do all animal share? Sea Slug 23.1 Animal Characteristics Animals are the most physically diverse kingdom of organisms and all

More information

3. Choanoflagellates resemble what? What is the significance of this resemblance?

3. Choanoflagellates resemble what? What is the significance of this resemblance? I. Animal Diversity 1. What are some basic characteristics of the animal kingdom? What characteristics make them different from plants? - Eukaryotic, heterotrophic (we don t make our own food), we store

More information

Chps : Animals. Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs

Chps : Animals. Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs Chps 23-26: Animals Chps. 23-27: Animals Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs Animal Characteristics Forms of symmetry: Radial Bilateral

More information

Learning Objectives. The Animal Kingdom: An Introduction to Animal Diversity. Sexual Reproduction

Learning Objectives. The Animal Kingdom: An Introduction to Animal Diversity. Sexual Reproduction Learning Objectives The Animal Kingdom: An Introduction to Animal Diversity Chapter 29 What characters are common to most animals? Advantages and disadvantages of different environments Searching for relationships

More information

Biology 211 (1) Exam 2 Worksheet!

Biology 211 (1) Exam 2 Worksheet! Biology 211 (1) Exam 2 Worksheet Chapter 33 Introduction to Animal Diversity Kingdom Animalia: 1. Approximately how many different animal species are alive on Earth currently. How many those species have

More information

Sponges. What is the sponge s habitat. What level of organization do sponges have? Type of symmetry?

Sponges. What is the sponge s habitat. What level of organization do sponges have? Type of symmetry? Sponges What is the sponge s habitat Marine (few freshwater species) What level of organization do sponges have? Cell level Type of symmetry? None Type of digestive system (none, complete or incomplete)?

More information

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia What Is an Animal? What characteristics do all animals have? Animals come in many shapes, forms, and sizes. Scientists estimate that there are between 1 and 2 million species of animals! Some, like whales

More information

1. General Features of Animals

1. General Features of Animals Chapter 32: An Overview of Animal Diversity 1. General Features of Animals 2. The History of Animals 1. General Features of Animals General Characteristics of Animals animals are multicellular eukaryotic

More information

The Animal Kingdom: The Protostomes. Protostomes 4/16/2012. Chapter 30

The Animal Kingdom: The Protostomes. Protostomes 4/16/2012. Chapter 30 Porifera Acoelomates ates The Animal Kingdom: The Protostomes Chapter 30 Protostome Bilateral Protostomes Acoelomates ates Characterized by spiral cleavage determinate cleavage (fixed fate of cells) of

More information

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification?

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? Animals What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? What synapomorphies unite Animals Multicellular Heterotrophs (Metazoans)?

More information

Animal Origins and Evolution

Animal Origins and Evolution Animal Origins and Evolution Common Features of Animals multicellular heterotrophic motile Sexual reproduction, embryo Evolution of Animals All animals are multicellular and heterotrophic, which means

More information

Chapter 24 Introduction to Animals

Chapter 24 Introduction to Animals 1 Chapter 24 Introduction to Animals I. Animal characteristics A. General Animal Features Multicellular B. Feeding and Digestion a. acquire nutrients from various sources obtaining nutrients unique to

More information

Section 4 Professor Donald McFarlane

Section 4 Professor Donald McFarlane Characteristics Section 4 Professor Donald McFarlane Lecture 11 Animals: Origins and Bauplans Multicellular heterotroph Cells lack cell walls Most have nerves, muscles, capacity to move at some point in

More information

BIOLOGY. An Introduction to Animal Diversity CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Animal Diversity CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 32 An Introduction to Animal Diversity Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick A Kingdom of Consumers

More information

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals Introduction to Animals Table of Contents Objectives Identify four important characteristics of animals. List two kinds of tissues found only in animals. Explain how the first animals may have evolved

More information

Sponges and Cnidarians

Sponges and Cnidarians The Animal Kingdom Multicellular Sponges and Cnidarians Biology : Chapter 26 Eukaryotic Heterotrophs Cells lack cell walls 95% are invertebrates What Animals Do to Survive Feeding Response Respiration

More information

Features of the Animal

Features of the Animal Features of the Animal Kingdom Bởi: OpenStaxCollege Even though members of the animal kingdom are incredibly diverse, animals share common features that distinguish them from organisms in other kingdoms.

More information

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida 1 Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida Objectives: Be able to distinguish radial symmetry from bilateral symmetry. Be able to identify which of the phyla

More information

ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS

ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS GENERAL FEATURES OF ANIMALS Heterotrophy - obtain energy and organic molecules by ingesting other organisms Multicellularity - Many have complex bodies

More information

Marine Invertebrates

Marine Invertebrates Name: Date: Period: Marine Invertebrates Porifera Annelida Cnidaria Mollusca Platyhelminthes Arthropoda Nematoda Echinodermata Name Class Date Section 26 2 Sponges (pages 664 667) This section explains

More information

BIOLOGY - CLUTCH CH.32 - OVERVIEW OF ANIMALS.

BIOLOGY - CLUTCH CH.32 - OVERVIEW OF ANIMALS. !! www.clutchprep.com Animals are multicellular, heterotrophic eukaryotes that feed by ingesting their food Most animals are diploid, and produce gametes produced directly by meiosis Animals lack cell

More information

Chapter 32 Introduction to Animal Diversity

Chapter 32 Introduction to Animal Diversity Chapter 32 Introduction to Animal Diversity Review: Biology 101 There are 3 domains: They are Archaea Bacteria Protista! Eukarya Endosymbiosis (proposed by Lynn Margulis) is a relationship between two

More information

Introduction to Animal Diversity. Chapter 23.1, 23.2 and additional

Introduction to Animal Diversity. Chapter 23.1, 23.2 and additional Introduction to Animal Diversity Chapter 23.1, 23.2 and additional 1 Think of an Animal... Does your choice have hair or fur? Does it have a skeleton? Over a million species of animals described 95% have

More information

Intro to Animals. Chapter 32

Intro to Animals. Chapter 32 Intro to Animals Chapter 32 1) Multicellular Organization (Different cells have different functions) Specialization: adaptation of a cell for a particular function Remember: cells tissues organs organ

More information

What is a Cnidarian?

What is a Cnidarian? Invertebrate What is a Cnidarian? 9000 species of jellyfishes, corals, sea anemones, hydras Mostly marine animals Radially symmetrical One body opening Two layers of cells organized into tissues with specific

More information

Porifera Sponges Features:

Porifera Sponges Features: Porifera Sponges The Phylum Porifera consists only of sponges, which is unique since these animals are entirely aquatic; with 98% found only in marine environments and a small percentage found in freshwater

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity Lecture Outline Overview: Welcome to Your Kingdom Biologists have identified 1.3 million living species of animals. Estimates of the total number of animal

More information

Today: Animal Body Plans. Animal Body Plans: The Gut. The Animal Kingdom- General Characteristics: Animal Body Plans: Symmetry

Today: Animal Body Plans. Animal Body Plans: The Gut. The Animal Kingdom- General Characteristics: Animal Body Plans: Symmetry Today: Exploring the Animal Kingdom Introduction to Ecology The Animal Kingdom- General Characteristics: Multicellular Heterotrophic (via ingestion) Eukaryotes Require Oxygen for aerobic respiration Reproduce

More information

The Animals, or Metazoa. Approximate proportions of animal species presently known; The true diversity of animals may be more than 90% Arthropods

The Animals, or Metazoa. Approximate proportions of animal species presently known; The true diversity of animals may be more than 90% Arthropods The Animals, or Metazoa Are some of the best-studied organisms Comprise over a million known species Originated c. the Cambrian (~550 MYA) Most animal phyla are marine; however, due to the diversity of

More information

Animals are in Domain Eukarya

Animals are in Domain Eukarya The Diversity of Animals 1: invertebrates Chapter 23 Animals are in Domain Eukarya Immediate ancestors are a type of Protista Key features Multicellular Kingdom Animalia Heterotrophic: gain energy by consuming

More information

Are these organisms. animals or not?

Are these organisms. animals or not? 1 2 3 4 5 Are these organisms 6 7 8 animals or not? 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 Typical Animal Characteristics Eukaryotic Multicellular Ability to move Reproduce Obtain food (heterotrophic)

More information

Name Class Date. After you read this section, you should be able to answer these questions:

Name Class Date. After you read this section, you should be able to answer these questions: CHAPTER 14 3 Invertebrates SECTION Introduction to Animals BEFORE YOU READ After you read this section, you should be able to answer these questions: What structures and systems perform basic life functions

More information

Chapter 18. The Evolution of Invertebrate Diversity. Lecture by Joan Sharp

Chapter 18. The Evolution of Invertebrate Diversity. Lecture by Joan Sharp Chapter 18 The Evolution of Invertebrate Diversity PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc.

More information

BIOLOGY. Chapter 27 Introduction to Animal Diversity

BIOLOGY. Chapter 27 Introduction to Animal Diversity BIOLOGY Chapter 27 Introduction to Animal Diversity Fig. 32-1 An Overview of Animal Diversity Multicellular Nutrition mode: Heterotrophic (ingestion) Cell structure & specialization Tissues develop from

More information

Characteristics of Echinoderms

Characteristics of Echinoderms Characteristics of Echinoderms Adult echinoderms have a body plan with five parts organized symmetrically around a center Does not have an anterior nor posterior end or a brain Most echinoderms are two

More information

Chapter 32 Intro to Animals. Image from:

Chapter 32 Intro to Animals. Image from: Chapter 32 Intro to Animals Image from: http://animaldiversity.ummz.umich.edu/index.html Animals Invertebrates (animals without a backbone) Porifera Cnidaria Worms Mollusks Echinoderms Arthropods Animals

More information

09/12/2012. Classification. Characteristics. Learning Outcome G2. Student Achievement Indicators. Phylum Porifera The Sponges

09/12/2012. Classification. Characteristics. Learning Outcome G2. Student Achievement Indicators. Phylum Porifera The Sponges Learning Outcome G2 Analyse the increasing complexity of the Phylum Porifera and the Phylum Cnidaria Learning Outcome G2 Phylum Porifera & Phylum Cnidaria Student Achievement Indicators Students who have

More information

Kingdom Animalia. Special Features: Advanced nervous systems means cephalization (faces), brains, and efficient mobility (walk/run/swim/grab)

Kingdom Animalia. Special Features: Advanced nervous systems means cephalization (faces), brains, and efficient mobility (walk/run/swim/grab) Kingdom Animalia Kingdom Animalia Cell Number: Multicellular with extensive specialization Cell Type: Eukaryotic Animal Cells (no cell wall) Food: Heterotrophic Carnivore (meat), Herbivore (plants), Omnivore

More information

Arthropoda ARTHRO JOINTED PODA FEET

Arthropoda ARTHRO JOINTED PODA FEET Arthropoda ARTHRO JOINTED PODA FEET The arthropods are a group of animals which has attained the greatest biological success largest number of species and individuals and occupy the greatest number of

More information

Chapter 32: An Introduction to Animal Diversity

Chapter 32: An Introduction to Animal Diversity Chapter 32: An Introduction to Animal Diversity Chapter 32: An Introduction to Animal Diversity Name Period Concept 32.1 Animals are multicellular, heterotrophic eukaryotes with tissues that develop from

More information

Animals. Chapters Exam November 22, 2011

Animals. Chapters Exam November 22, 2011 Animals Chapters 32-35 Exam November 22, 2011 Overview of Animals Chapter 32 General Features of Animals and Evolution of the Body Plan General Features of Animals Heterotrophs Multicellular No Cell Walls

More information

BIOLOGY. An Overview of Animal Diversity CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Overview of Animal Diversity CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 32 An Overview of Animal Diversity Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 32.1: Animals are

More information

Invertebrate Survey Lab

Invertebrate Survey Lab Answer these questions before lab. 1. What kingdom do all animals fall into? a. Protist b. Animalia c. Eukarya 2. How many phyla of invertebrates are in appendix E on pages 1074-1076? a. 9 b. 7 c. 8 3.

More information

An Overview of Animal Diversity

An Overview of Animal Diversity Figure 32.1 CAMPBELL BIOLOGY Figure 32.1a A Kingdom of Consumers TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson! Most animals are mobile and use traits such as strength, speed, toxins, or camouflage

More information

The Radiata-Bilateria split. Second branching in the evolutionary tree

The Radiata-Bilateria split. Second branching in the evolutionary tree The Radiata-Bilateria split Second branching in the evolutionary tree Two very important characteristics are used to distinguish between the second bifurcation of metazoans Body symmetry Germinal layers

More information

Lecture XII Origin of Animals Dr. Kopeny

Lecture XII Origin of Animals Dr. Kopeny Delivered 2/20 and 2/22 Lecture XII Origin of Animals Dr. Kopeny Origin of Animals and Diversification of Body Plans Phylogeny of animals based on morphology Porifera Cnidaria Ctenophora Platyhelminthes

More information

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, and Lophotrochozoa

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, and Lophotrochozoa 1 Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, and Lophotrochozoa Objectives: Be able to distinguish radial symmetry from bilateral symmetry. Be able to identify which of the phyla

More information

Embryonic Development. Chapters 32-34: Animal Diversity AP Biology Fig Zygote Cleavage Blastocoel. Cleavage.

Embryonic Development. Chapters 32-34: Animal Diversity AP Biology Fig Zygote Cleavage Blastocoel. Cleavage. Chapters 32-34: Animal Diversity AP Biology 2012 1 Animal Characteristics Heterotrophs Multicellular Eukaryotes Cells lack cell walls Bodies held together by structural proteins like collagen Contain nervous

More information

What defines the zygote, the blastula, and the gastrula? Draw pictures.

What defines the zygote, the blastula, and the gastrula? Draw pictures. What makes a multicellular organism multicellular? a) Multiple cells b) Multiple cells that work together c) Specialized cells d) Multiple specialized cells that work together What defines the zygote,

More information

Lab 37 Platyhelminthes and Nematoda

Lab 37 Platyhelminthes and Nematoda Lab 37 Platyhelminthes and Nematoda - Bilateral symmetry - Protostome (mouth 1 st ) development - Mesoderm present - Two groups: lophotrochozoa and edcysozoa - Body cavity may be present or absent Phylum

More information

What is an animal? Introduction to Animals. Germ Layers. Tissues and Organs. Structural Support. Types of Symmetry 11/3/2015

What is an animal? Introduction to Animals. Germ Layers. Tissues and Organs. Structural Support. Types of Symmetry 11/3/2015 What is an animal? Introduction to Animals Multicellular chemoorganoheterotrophs Eukaryotes that lack cell walls and chloroplasts Have mitochondria Are motile at some point in their lives Contain collagen

More information

2/17/2017. Lecture 10: Chapter 31 Protostome Diversity

2/17/2017. Lecture 10: Chapter 31 Protostome Diversity 1 Lecture 10: Chapter 31 Protostome Diversity 2 3 Protostomes: one of two monophyletic groups of bilaterally symmetrical, coelomate animals The other group is the Deuterostomes Differ in pattern of early

More information

Unit 10: Animals Guided Reading Questions (80 pts total)

Unit 10: Animals Guided Reading Questions (80 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 32 An Introduction to Animal Diversity 1. Define the following

More information

Chapter 7. Marine Animals Without a Backbone

Chapter 7. Marine Animals Without a Backbone Chapter 7 Marine Animals Without a Backbone General Characteristics of Animals Multicellular, diploid organisms with tissues, organs or organ systems in most Heterotrophic Require oxygen for aerobic

More information

COMPARISON BETWEEN PORIFERA AND CNIDARIA. Colwyn Sleep

COMPARISON BETWEEN PORIFERA AND CNIDARIA. Colwyn Sleep COMPARISON BETWEEN PORIFERA AND CNIDARIA Colwyn Sleep INTRODUCTION Porifera Cnidaria Porifera and Cnidaria are organisms which share similar characteristics with one another. -They are both multicellular,

More information

Chapter 8. Sponges Phylum Porifera Basic characteristics: simple asymmetric sessile

Chapter 8. Sponges Phylum Porifera Basic characteristics: simple asymmetric sessile Chapter 8 Key Concepts Sponges are asymmetric, sessile animals that filter food from the water circulating through their bodies. Sponges provide habitats for other animals. Cnidarians and ctenophores exhibit

More information

INVERTEBRATES. The Earth and Living Things. Carme Font Casanovas 1

INVERTEBRATES. The Earth and Living Things. Carme Font Casanovas 1 INVERTEBRATES Living Things. Carme Font Casanovas 1 How many animals can you see? ant rose coral snake anemone fish grass bee Living Things. Carme Font Casanovas 2 Invertebrates There are animals without

More information

Tuesday February 26, 2013 Invertebrate Animals Animals: Multicellular, no cell wall or chlorophyll, eukaryotic, heterotrophs

Tuesday February 26, 2013 Invertebrate Animals Animals: Multicellular, no cell wall or chlorophyll, eukaryotic, heterotrophs Name: Class: Biology Weekly Packet February 25 th - March 1 st, 2013 Monday February 25, 2013 Catalyst Tuesday February 26, 2013 Invertebrate Animals Animals: Multicellular, no cell wall or chlorophyll,

More information

Superphylum Deuterostomia

Superphylum Deuterostomia Superphylum Deuterostomia Bởi: OpenStaxCollege The phyla Echinodermata and Chordata (the phylum in which humans are placed) both belong to the superphylum Deuterostomia. Recall that protostome and deuterostomes

More information

Choanoflagellates. Porifera (sponges) Ctenophora (comb jellies) Cnidaria (jellyfish, corals, sea anemones) Acoela (acoels)

Choanoflagellates. Porifera (sponges) Ctenophora (comb jellies) Cnidaria (jellyfish, corals, sea anemones) Acoela (acoels) Choanoflagellates Fungi Choanoflagellates ANIMALIA Porifera (sponges) ANIMALIA Multicellularity Ctenophora (comb jellies) Diploblasty Cnidaria (jellyfish, corals, sea anemones) Acoela (acoels) Triploblasty

More information

Chapter 18 ANIMAL EVOLUTION AND DIVERSITY. Introduction What is an animal? The Evolution of Invertebrate Diversity

Chapter 18 ANIMAL EVOLUTION AND DIVERSITY. Introduction What is an animal? The Evolution of Invertebrate Diversity Chapter 18 The Evolution of Invertebrate Diversity Introduction Most octopuses rely on nonaggressive defense mechanisms such as camouflage. The blue-ringed octopus is an exception, with a toxin 10,000

More information