Phylogenetic analysis. Characters

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Phylogenetic analysis. Characters"

Transcription

1 Typical steps: Phylogenetic analysis Selection of taxa. Selection of characters. Construction of data matrix: character coding. Estimating the best-fitting tree (model) from the data matrix: phylogenetic inference. Characters Taxon Sp A Sp B Sp C Sp D Sp E Sp F Sp G Sp H B F H D G E C A Character: Characters What are individuals? Compare for what purpose? Is a character a property of an individual, or of a set of individuals? How are characters comparable among individuals? Heritability? The problems associated with the biological character problem are so complex and multifaceted and this issue is so conceptually immature that any single author s account is doomed to be too narrow and lopsided to be of much use. Günter Wagner The Character Concept in Evolutionary Biology (2001) 1

2 Characters Most agree that characters must be observable, quantifiable, and variable features of organisms. Many ways of characterizing characters: Quasi-independent independent functional units in morphology or genetics. Heritable units in morphology or genetics. Natural subsystems of individual organisms characterized by constraints on their possible states. Abstractions based on the mental decomposition of organisms. Organisms having the same character are similar in some sense. How is similarity assessed? How similar is similar? Homology In phylogenetics, the term character is tightly associated with concept of homology: 2

3 Homology Homology implies similarity of characters due to common ancestry. Characters whose similarity is due to common ancestry are homologous. Characters whose similarity is not due to common ancestry are analogous. Hypothesis of homology is a proposition that shared similarity among organisms originated in a recent common ancestor. Some issues: Is homology strictly a presence/absence kind of property? Can two characters be 50% homologous? How is homology typically assessed? Positional topology. Common developmental patterns (e.g., tissue similarity). Underlying genetic structure. Continuity in fossil record. If evolution produces changes in characters, don t homology relationships change over time? Homologous characters Conventional definition: correspondence of features among taxa due to common ancestry. Evidence about homology comes from: Paleontology: sequences of fossils. Comparative biology: comparisons among living species. Developmental biology: common embryonic origin. In general, homologous structures are given the same name in different species. Homologous features may have different structures and functions in different groups. Homology is a hypothesis. 3

4 Homologous characters Homology Homologous structures might not be similar in position, structure, or function: E.g., homology of jaw bones of fish with auditory ossicles of mammal: Evidence from development and fossil record. Tympanum Malleus Incus Stapes Angular Articular Quadrate Hyomandibular 4

5 Homology Structures similar in position, structure, and function might not be homologous: E.g., development of alimentary canal from gastrocoel (archenteron) in vertebrates: t Sharks, most bony fishes: originates from roof. Agnathans, urodeles: originates from floor. Anurans: ua originates from roof and floor. Most amniotes: entire gastrocoel + other tissues. 5

6 Analogy Functional convergence. Often observed in organisms subject to convergent evolution. Similar selection regimes may produce similar characteristics. Analogous characters 6

7 Implications for phylogenetic inference Homology results in similarity that is consistent with the phylogenetic model. Mechanism: inheritance from common ancestor. Analogy results in similarity that is inconsistent with the phylogenetic model. Mechanism: evolutionary convergence. Homoplasy (residual variation) thus has two components: Similarity due to analogy. Dissimilarity. 7

8 Levels of homology Phylogenetic or taxic homology is special case of more general hierarchy of homology types: Iterative homology: correspondence between different characters (or repeated characters) in the same individual at the same time. Ontogenetic homology: correspondence between characters of the same individual at different times. Polymorphic homology: correspondence between characters of different individuals of the same taxon (e.g., species). Taxic homology: correspondence between characters found in different species or higher taxa. The conundrum of logical circularity: If homology is similarity due to common ancestry: Then we must know patterns of ancestry to correctly identify homologies. If evolution produces change in genetics and morphology, and homologies change over time: Then we must know patterns of change to correctly identify homologies. But if characters must be homologous (i.e., comparable) to be useful in phylogenetic inference: Then homologies must be identified in order to infer patterns of ancestry and change. 8

9 Homology recognition Leads to two fundamentally different concepts of homology recognition: (1) Prior homology recognition: Use evidence from structure, function, development, or fossil record to hypothesize homologies within monophyletic group. Use hypothetical homologies to infer phylogenetic relationships. (2) Posterior homology recognition: Use inferred phylogenetic relationships to infer homologies based on inferred monophyletic groups. Use other evidence to test homologies. Homology = synapomorphy. Prior homology recognition Characters H Taxon Sp A Sp B Sp C Sp D Sp E Sp F Sp G Sp H B F D G E C A 9

10 Posterior homology recognition A B C O A B C O Important distinction Character: a biological feature that varies among taxa. = Variable. Examples: Flower color Possession of scales Femur length Nucleotide at particular position within a DNA coding sequence. Character state: value of a character for a particular taxon. = Instantiation of the variable. Examples: {red, pink, white} {scales absent, scales present} {positive integer/10} {A, T, C, G} 10

11 Characters and states Prior homology recognition concepts associated with characters. Homologies hypothesized prior to phylogenetic analysis. Based on criteria of position, developmental pattern, genetic structure, fossil record. Assumptions of homology not testable at level of current phylogenetic analysis. Might be tested at higher (more inclusive) level. Posterior homology recognition concepts associated with character states. Synapomorphies inferred from results of a phylogenetic analysis. Can be tested independently by examining biological basis of character states. Homology in molecular biology Molecular biologists may have done more to confound the meaning of the term homology than have any other group of scientists. David Hillis, 1994 Common misuse of term: percent similarity. E.g., two gene sequences are 50% homologous. Typical meaning: share 50% of their aligned nucleotides in common. No implication of common ancestry, just similarity. 11

12 Homology in molecular biology Problem: Most genes are evolutionarily related. Et Extant tgenomes derived dby duplication, modification, and recombination of small number of original replicating sequences. Therefore most genes are homologous at some level. Necessary to constrain concept of homology to most recent relationship shared by two given genes. Homology in molecular biology Some processes that trace back to single genealogical precursor: Speciation: divergence of lineages of organisms. Gene duplication: divergence of lineages of genes within an organismal lineage. Horizontal (lateral) gene transfer: divergence of lineages of genes by transfer across different organismal lineages. Kinds of homology of whole genes, based on process: Orthologous genes (or products): homologues that diverged as result of speciation event. Paralogous genes (or products): homologues that diverged as result of gene duplication event. Xenologous genes (or products): homologues that diverged as result of lateral gene transfer. 12

13 Homology in molecular biology Positional homology: at level of single nucleotide site (or amino-acid site). In phylogenetic analysis of DNA sequences: Characters: nucleotide positions. Character states: different kinds of nucleotides. Homology in molecular biology Positional homology inferred from alignment procedure: Simplified, naïve form of phylogenetic analysis. Separate optimization i step: Many possible alignment models, based on differing assumptions about probabilities of substitution, insertion, and deletion. For low sequence similarity, results of subsequent phylogenetic analysis can be highly dependent on results of alignment. Recent multiple-alignment algorithms are very sophisticated: May iteratively combine alignment and phylogenetic-inference steps. 13

Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships

Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships Chapter 26: Phylogeny and the Tree of Life You Must Know The taxonomic categories and how they indicate relatedness. How systematics is used to develop phylogenetic trees. How to construct a phylogenetic

More information

Classification and Phylogeny

Classification and Phylogeny Classification and Phylogeny The diversity it of life is great. To communicate about it, there must be a scheme for organization. There are many species that would be difficult to organize without a scheme

More information

CHAPTERS 24-25: Evidence for Evolution and Phylogeny

CHAPTERS 24-25: Evidence for Evolution and Phylogeny CHAPTERS 24-25: Evidence for Evolution and Phylogeny 1. For each of the following, indicate how it is used as evidence of evolution by natural selection or shown as an evolutionary trend: a. Paleontology

More information

Phylogeny and systematics. Why are these disciplines important in evolutionary biology and how are they related to each other?

Phylogeny and systematics. Why are these disciplines important in evolutionary biology and how are they related to each other? Phylogeny and systematics Why are these disciplines important in evolutionary biology and how are they related to each other? Phylogeny and systematics Phylogeny: the evolutionary history of a species

More information

Classification, Phylogeny yand Evolutionary History

Classification, Phylogeny yand Evolutionary History Classification, Phylogeny yand Evolutionary History The diversity of life is great. To communicate about it, there must be a scheme for organization. There are many species that would be difficult to organize

More information

Many of the slides that I ll use have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!

Many of the slides that I ll use have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Many of the slides that I ll use have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Paul has many great tools for teaching phylogenetics at his web site: http://hydrodictyon.eeb.uconn.edu/people/plewis

More information

8/23/2014. Phylogeny and the Tree of Life

8/23/2014. Phylogeny and the Tree of Life Phylogeny and the Tree of Life Chapter 26 Objectives Explain the following characteristics of the Linnaean system of classification: a. binomial nomenclature b. hierarchical classification List the major

More information

POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics

POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics - in deriving a phylogeny our goal is simply to reconstruct the historical relationships between a group of taxa. - before we review the

More information

C.DARWIN ( )

C.DARWIN ( ) C.DARWIN (1809-1882) LAMARCK Each evolutionary lineage has evolved, transforming itself, from a ancestor appeared by spontaneous generation DARWIN All organisms are historically interconnected. Their relationships

More information

AP Biology Notes Outline Enduring Understanding 1.B. Big Idea 1: The process of evolution drives the diversity and unity of life.

AP Biology Notes Outline Enduring Understanding 1.B. Big Idea 1: The process of evolution drives the diversity and unity of life. AP Biology Notes Outline Enduring Understanding 1.B Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring Understanding 1.B: Organisms are linked by lines of descent from

More information

PHYLOGENY & THE TREE OF LIFE

PHYLOGENY & THE TREE OF LIFE PHYLOGENY & THE TREE OF LIFE PREFACE In this powerpoint we learn how biologists distinguish and categorize the millions of species on earth. Early we looked at the process of evolution here we look at

More information

Patterns of Evolution

Patterns of Evolution Patterns of Evolution A tree that represents an estimate (hypothesis) of evolutionary relatedness is a phylogeny Classifications can be based on groupings within a phylogeny Groupings can be categorized

More information

Classifications can be based on groupings g within a phylogeny

Classifications can be based on groupings g within a phylogeny Patterns of Evolution A tree that represents an estimate (hypothesis) of evolutionary relatedness is a phylogeny Classifications can be based on groupings g within a phylogeny y Groupings can be categorized

More information

SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION. Using Anatomy, Embryology, Biochemistry, and Paleontology

SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION. Using Anatomy, Embryology, Biochemistry, and Paleontology SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION Using Anatomy, Embryology, Biochemistry, and Paleontology Scientific Fields Different fields of science have contributed evidence for the theory of

More information

Cladistics and Bioinformatics Questions 2013

Cladistics and Bioinformatics Questions 2013 AP Biology Name Cladistics and Bioinformatics Questions 2013 1. The following table shows the percentage similarity in sequences of nucleotides from a homologous gene derived from five different species

More information

Phylogeny 9/8/2014. Evolutionary Relationships. Data Supporting Phylogeny. Chapter 26

Phylogeny 9/8/2014. Evolutionary Relationships. Data Supporting Phylogeny. Chapter 26 Phylogeny Chapter 26 Taxonomy Taxonomy: ordered division of organisms into categories based on a set of characteristics used to assess similarities and differences Carolus Linnaeus developed binomial nomenclature,

More information

AP Biology Notes Outline Enduring Understanding 1.B. Big Idea 1: The process of evolution drives the diversity and unity of life.

AP Biology Notes Outline Enduring Understanding 1.B. Big Idea 1: The process of evolution drives the diversity and unity of life. AP Biology Notes Outline Enduring Understanding 1.B Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring Understanding 1.B: Organisms are linked by lines of descent from

More information

Warm-Up- Review Natural Selection and Reproduction for quiz today!!!! Notes on Evidence of Evolution Work on Vocabulary and Lab

Warm-Up- Review Natural Selection and Reproduction for quiz today!!!! Notes on Evidence of Evolution Work on Vocabulary and Lab Date: Agenda Warm-Up- Review Natural Selection and Reproduction for quiz today!!!! Notes on Evidence of Evolution Work on Vocabulary and Lab Ask questions based on 5.1 and 5.2 Quiz on 5.1 and 5.2 How

More information

Chapter 26: Phylogeny and the Tree of Life

Chapter 26: Phylogeny and the Tree of Life Chapter 26: Phylogeny and the Tree of Life 1. Key Concepts Pertaining to Phylogeny 2. Determining Phylogenies 3. Evolutionary History Revealed in Genomes 1. Key Concepts Pertaining to Phylogeny PHYLOGENY

More information

Chapter 26 Phylogeny and the Tree of Life

Chapter 26 Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life Biologists estimate that there are about 5 to 100 million species of organisms living on Earth today. Evidence from morphological, biochemical, and gene sequence

More information

Phylogenetic Tree Reconstruction

Phylogenetic Tree Reconstruction I519 Introduction to Bioinformatics, 2011 Phylogenetic Tree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Evolution theory Speciation Evolution of new organisms is driven

More information

Phylogeny and the Tree of Life

Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Module: Sequence Alignment Theory and Applications Session: Introduction to Searching and Sequence Alignment

Module: Sequence Alignment Theory and Applications Session: Introduction to Searching and Sequence Alignment Module: Sequence Alignment Theory and Applications Session: Introduction to Searching and Sequence Alignment Introduction to Bioinformatics online course : IBT Jonathan Kayondo Learning Objectives Understand

More information

CHAPTER 26 PHYLOGENY AND THE TREE OF LIFE Connecting Classification to Phylogeny

CHAPTER 26 PHYLOGENY AND THE TREE OF LIFE Connecting Classification to Phylogeny CHAPTER 26 PHYLOGENY AND THE TREE OF LIFE Connecting Classification to Phylogeny To trace phylogeny or the evolutionary history of life, biologists use evidence from paleontology, molecular data, comparative

More information

Outline. Classification of Living Things

Outline. Classification of Living Things Outline Classification of Living Things Chapter 20 Mader: Biology 8th Ed. Taxonomy Binomial System Species Identification Classification Categories Phylogenetic Trees Tracing Phylogeny Cladistic Systematics

More information

Homology and Information Gathering and Domain Annotation for Proteins

Homology and Information Gathering and Domain Annotation for Proteins Homology and Information Gathering and Domain Annotation for Proteins Outline Homology Information Gathering for Proteins Domain Annotation for Proteins Examples and exercises The concept of homology The

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

Integrative Biology 200 "PRINCIPLES OF PHYLOGENETICS" Spring 2018 University of California, Berkeley

Integrative Biology 200 PRINCIPLES OF PHYLOGENETICS Spring 2018 University of California, Berkeley Integrative Biology 200 "PRINCIPLES OF PHYLOGENETICS" Spring 2018 University of California, Berkeley B.D. Mishler Feb. 14, 2018. Phylogenetic trees VI: Dating in the 21st century: clocks, & calibrations;

More information

Integrative Biology 200A "PRINCIPLES OF PHYLOGENETICS" Spring 2008

Integrative Biology 200A PRINCIPLES OF PHYLOGENETICS Spring 2008 Integrative Biology 200A "PRINCIPLES OF PHYLOGENETICS" Spring 2008 University of California, Berkeley B.D. Mishler March 18, 2008. Phylogenetic Trees I: Reconstruction; Models, Algorithms & Assumptions

More information

Theory a well supported testable explanation of phenomenon occurring in the natural world.

Theory a well supported testable explanation of phenomenon occurring in the natural world. Evolution Theory of Evolution Theory a well supported testable explanation of phenomenon occurring in the natural world. Evolution the process by which modern organisms changed over time from ancient common

More information

Consensus Methods. * You are only responsible for the first two

Consensus Methods. * You are only responsible for the first two Consensus Trees * consensus trees reconcile clades from different trees * consensus is a conservative estimate of phylogeny that emphasizes points of agreement * philosophy: agreement among data sets is

More information

C3020 Molecular Evolution. Exercises #3: Phylogenetics

C3020 Molecular Evolution. Exercises #3: Phylogenetics C3020 Molecular Evolution Exercises #3: Phylogenetics Consider the following sequences for five taxa 1-5 and the known outgroup O, which has the ancestral states (note that sequence 3 has changed from

More information

BINF6201/8201. Molecular phylogenetic methods

BINF6201/8201. Molecular phylogenetic methods BINF60/80 Molecular phylogenetic methods 0-7-06 Phylogenetics Ø According to the evolutionary theory, all life forms on this planet are related to one another by descent. Ø Traditionally, phylogenetics

More information

Chapter Chemical Uniqueness 1/23/2009. The Uses of Principles. Zoology: the Study of Animal Life. Fig. 1.1

Chapter Chemical Uniqueness 1/23/2009. The Uses of Principles. Zoology: the Study of Animal Life. Fig. 1.1 Fig. 1.1 Chapter 1 Life: Biological Principles and the Science of Zoology BIO 2402 General Zoology Copyright The McGraw Hill Companies, Inc. Permission required for reproduction or display. The Uses of

More information

Biology Keystone (PA Core) Quiz Theory of Evolution - (BIO.B ) Theory Of Evolution, (BIO.B ) Scientific Terms

Biology Keystone (PA Core) Quiz Theory of Evolution - (BIO.B ) Theory Of Evolution, (BIO.B ) Scientific Terms Biology Keystone (PA Core) Quiz Theory of Evolution - (BIO.B.3.2.1 ) Theory Of Evolution, (BIO.B.3.3.1 ) Scientific Terms Student Name: Teacher Name: Jared George Date: Score: 1) Evidence for evolution

More information

BLAST. Varieties of BLAST

BLAST. Varieties of BLAST BLAST Basic Local Alignment Search Tool (1990) Altschul, Gish, Miller, Myers, & Lipman Uses short-cuts or heuristics to improve search speed Like speed-reading, does not examine every nucleotide of database

More information

Phylogenetic methods in molecular systematics

Phylogenetic methods in molecular systematics Phylogenetic methods in molecular systematics Niklas Wahlberg Stockholm University Acknowledgement Many of the slides in this lecture series modified from slides by others www.dbbm.fiocruz.br/james/lectures.html

More information

Integrating Fossils into Phylogenies. Throughout the 20th century, the relationship between paleontology and evolutionary biology has been strained.

Integrating Fossils into Phylogenies. Throughout the 20th century, the relationship between paleontology and evolutionary biology has been strained. IB 200B Principals of Phylogenetic Systematics Spring 2011 Integrating Fossils into Phylogenies Throughout the 20th century, the relationship between paleontology and evolutionary biology has been strained.

More information

Phylogeny and the Tree of Life

Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life Lecture Outline Overview: Investigating the Tree of Life Evolutionary biology is about both process and pattern. o The processes of evolution are natural selection

More information

Visualizing Phylogenetic Relationships

Visualizing Phylogenetic Relationships Visualizing Phylogenetic Relationships Figure 26.5 Instructors: Additional questions related to this Visualizing Figure can be assigned in MasteringBiology. A phylogenetic tree visually represents a hypothesis

More information

Evaluate evidence provided by data from many scientific disciplines to support biological evolution. [LO 1.9, SP 5.3]

Evaluate evidence provided by data from many scientific disciplines to support biological evolution. [LO 1.9, SP 5.3] Learning Objectives Evaluate evidence provided by data from many scientific disciplines to support biological evolution. [LO 1.9, SP 5.3] Refine evidence based on data from many scientific disciplines

More information

Chapter 10. Objectives. Contrast the pre-darwin world view w/ the post-darwin world view Examine early ideas about evolution.

Chapter 10. Objectives. Contrast the pre-darwin world view w/ the post-darwin world view Examine early ideas about evolution. Objectives Section 1 Early Ideas About Evolution Contrast the pre-darwin world view w/ the post-darwin world view Examine early ideas about evolution. Section 1 Science Before Darwin God created man in

More information

EVOLUTION change in populations over time

EVOLUTION change in populations over time EVOLUTION change in populations over time HISTORY ideas that shaped the current theory James Hutton (1785) proposes that Earth is shaped by geological forces that took place over extremely long periods

More information

Classification Systems. - Taxonomy

Classification Systems. - Taxonomy Classification Systems - Taxonomy Why Classify? 2.5 million kinds of organisms Not complete- 20 million organisms estimated Must divide into manageable groups To work with the diversity of life we need

More information

BIOLOGY. Phylogeny and the Tree of Life CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Phylogeny and the Tree of Life CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 26 Phylogeny and the Tree of Life Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 26.1: Phylogenies show

More information

Modern Evolutionary Classification. Section 18-2 pgs

Modern Evolutionary Classification. Section 18-2 pgs Modern Evolutionary Classification Section 18-2 pgs 451-455 Modern Evolutionary Classification In a sense, organisms determine who belongs to their species by choosing with whom they will mate. Taxonomic

More information

Hominid Evolution What derived characteristics differentiate members of the Family Hominidae and how are they related?

Hominid Evolution What derived characteristics differentiate members of the Family Hominidae and how are they related? Hominid Evolution What derived characteristics differentiate members of the Family Hominidae and how are they related? Introduction. The central idea of biological evolution is that all life on Earth shares

More information

Phylogenetic Trees. What They Are Why We Do It & How To Do It. Presented by Amy Harris Dr Brad Morantz

Phylogenetic Trees. What They Are Why We Do It & How To Do It. Presented by Amy Harris Dr Brad Morantz Phylogenetic Trees What They Are Why We Do It & How To Do It Presented by Amy Harris Dr Brad Morantz Overview What is a phylogenetic tree Why do we do it How do we do it Methods and programs Parallels

More information

CLASSIFICATION OF LIVING THINGS. Chapter 18

CLASSIFICATION OF LIVING THINGS. Chapter 18 CLASSIFICATION OF LIVING THINGS Chapter 18 How many species are there? About 1.8 million species have been given scientific names Nearly 2/3 of which are insects 99% of all known animal species are smaller

More information

Chapter 10. Classification and Phylogeny of Animals. Order in Diversity. Hierarchy of taxa. Table Linnaeus introduced binomial nomenclature

Chapter 10. Classification and Phylogeny of Animals. Order in Diversity. Hierarchy of taxa. Table Linnaeus introduced binomial nomenclature Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10 Classification and Phylogeny of Animals Order in Diversity History Systematic zoologists have three

More information

How to Use This Presentation

How to Use This Presentation How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

Evidence of Evolution. Lesson Overview. Lesson Overview Evidence of Evolution

Evidence of Evolution. Lesson Overview. Lesson Overview Evidence of Evolution Lesson Overview Lesson Overview 16.4 THINK ABOUT IT Scientists in some fields, including geology, physics, paleontology, chemistry, and embryology, did not have the technology or understanding to test

More information

Microbial Taxonomy and the Evolution of Diversity

Microbial Taxonomy and the Evolution of Diversity 19 Microbial Taxonomy and the Evolution of Diversity Copyright McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display. 1 Taxonomy Introduction to Microbial Taxonomy

More information

METHODS FOR DETERMINING PHYLOGENY. In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task.

METHODS FOR DETERMINING PHYLOGENY. In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task. Chapter 12 (Strikberger) Molecular Phylogenies and Evolution METHODS FOR DETERMINING PHYLOGENY In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task. Modern

More information

Phylogenetic Trees. How do the changes in gene sequences allow us to reconstruct the evolutionary relationships between related species?

Phylogenetic Trees. How do the changes in gene sequences allow us to reconstruct the evolutionary relationships between related species? Why? Phylogenetic Trees How do the changes in gene sequences allow us to reconstruct the evolutionary relationships between related species? The saying Don t judge a book by its cover. could be applied

More information

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics.

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics. Evolutionary Genetics (for Encyclopedia of Biodiversity) Sergey Gavrilets Departments of Ecology and Evolutionary Biology and Mathematics, University of Tennessee, Knoxville, TN 37996-6 USA Evolutionary

More information

Workshop: Biosystematics

Workshop: Biosystematics Workshop: Biosystematics by Julian Lee (revised by D. Krempels) Biosystematics (sometimes called simply "systematics") is that biological sub-discipline that is concerned with the theory and practice of

More information

Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST

Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST Introduction Bioinformatics is a powerful tool which can be used to determine evolutionary relationships and

More information

Evolution and Taxonomy Laboratory

Evolution and Taxonomy Laboratory Evolution and Taxonomy Laboratory 1 Introduction Evolution refers to the process by which forms of life have changed through time by what is described as descent with modification. Evolution explains the

More information

Integrative Biology 200A "PRINCIPLES OF PHYLOGENETICS" Spring 2012 University of California, Berkeley

Integrative Biology 200A PRINCIPLES OF PHYLOGENETICS Spring 2012 University of California, Berkeley Integrative Biology 200A "PRINCIPLES OF PHYLOGENETICS" Spring 2012 University of California, Berkeley B.D. Mishler Feb. 7, 2012. Morphological data IV -- ontogeny & structure of plants The last frontier

More information

AP Biology TEST #5 Chapters REVIEW SHEET

AP Biology TEST #5 Chapters REVIEW SHEET AP Biology TEST #5 Chapters 21 25 REVIEW SHEET 1. The half-life of an isotope is best defined as the A) time a fixed fraction of isotope material will take to change from one form to another. B) age over

More information

10 Biodiversity Support. AQA Biology. Biodiversity. Specification reference. Learning objectives. Introduction. Background

10 Biodiversity Support. AQA Biology. Biodiversity. Specification reference. Learning objectives. Introduction. Background Biodiversity Specification reference 3.4.5 3.4.6 3.4.7 Learning objectives After completing this worksheet you should be able to: recall the definition of a species and know how the binomial system is

More information

1. Given the information in the table below. Sequence of Amino Acids in the Same Part of the Hemoglobin Molecules

1. Given the information in the table below. Sequence of Amino Acids in the Same Part of the Hemoglobin Molecules TEKS 7A analyze and evaluate how evidence of common ancestry among groups is provided by the fossil record, biogeography, and homologies, including anatomical, molecular, and developmental 1. Given the

More information

Evolution as Fact and Theory. What is a Scientific Theory? Examples of Scientific Theories:

Evolution as Fact and Theory. What is a Scientific Theory? Examples of Scientific Theories: Evolution as Fact and Theory What is a Scientific Theory? A well-substantiated explanation of some aspect of the natural world; an organized system of accepted knowledge that applies in a variety of circumstances

More information

Evolution as Fact and Theory

Evolution as Fact and Theory Evolution as Fact and Theory What is a Scientific Theory? A well-substantiated explanation of some aspect of the natural world; an organized system of accepted knowledge that applies in a variety of circumstances

More information

Berg Tymoczko Stryer Biochemistry Sixth Edition Chapter 1:

Berg Tymoczko Stryer Biochemistry Sixth Edition Chapter 1: Berg Tymoczko Stryer Biochemistry Sixth Edition Chapter 1: Biochemistry: An Evolving Science Tips on note taking... Remember copies of my lectures are available on my webpage If you forget to print them

More information

Evidences of Evolution

Evidences of Evolution Evidences of Evolution Darwin stated that all organisms descend from a common ancestor Darwin based his theory of Natural Selection on observations of: Traits, geographical distribution, selective breeding,

More information

Function, Homology and Character. Individuation*

Function, Homology and Character. Individuation* Submitted to Philosophy of Science- their ref. 0508291 1 Function, Homology and Character Individuation* 9,485 wds Submitted to Philosophy of Science- their ref. 0508291 2 Abstract I defend the view that

More information

Evidence of EVOLUTION

Evidence of EVOLUTION Evidence of EVOLUTION Evolution: Genetic change in a population through time Charles Darwin On his journey around the world, Darwin found evidence of GRADUAL CHANGE (evolution) He cited evidences he found

More information

16.4 The Evidence of Evolution. Adapted from following Materials; Biology,Miller & Levine (2010) Understanding Evolution (evolution.berkely.

16.4 The Evidence of Evolution. Adapted from following Materials; Biology,Miller & Levine (2010) Understanding Evolution (evolution.berkely. 16.4 The Evidence of Evolution Adapted from following Materials; Biology,Miller & Levine (2010) Understanding Evolution (evolution.berkely.edu) Guiding Question: What are the main lines of scientific evidence

More information

Student pages-1. Biological Evolution and Classification Scientific Evidence of Common Ancestry. Purpose. Before You Begin.

Student pages-1. Biological Evolution and Classification Scientific Evidence of Common Ancestry. Purpose. Before You Begin. Biological Evolution and Classification Scientific Evidence of Common Ancestry Student Pages Purpose The purpose of this activity is to reinforce your understanding of the theory of evolution and some

More information

Need for systematics. Applications of systematics. Linnaeus plus Darwin. Approaches in systematics. Principles of cladistics

Need for systematics. Applications of systematics. Linnaeus plus Darwin. Approaches in systematics. Principles of cladistics Topics Need for systematics Applications of systematics Linnaeus plus Darwin Approaches in systematics Principles of cladistics Systematics pp. 474-475. Systematics - Study of diversity and evolutionary

More information

Essential knowledge 1.A.2: Natural selection

Essential knowledge 1.A.2: Natural selection Appendix C AP Biology Concepts at a Glance Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring understanding 1.A: Change in the genetic makeup of a population over time

More information

EvolutionIntro.notebook. May 13, Do Now LE 1: Copy Now. May 13 12:28 PM. Apr 21 6:33 AM. May 13 7:22 AM. May 13 7:00 AM.

EvolutionIntro.notebook. May 13, Do Now LE 1: Copy Now. May 13 12:28 PM. Apr 21 6:33 AM. May 13 7:22 AM. May 13 7:00 AM. Different interpretations of cetacean evolutionary history 4/19/10 Aim: What is Evolution by Natural Selection Do Now: How do we know all life on earth is related? Homework Read pp. 375 379 p. 379 # 1,2,3

More information

Chapter 27: Evolutionary Genetics

Chapter 27: Evolutionary Genetics Chapter 27: Evolutionary Genetics Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand what the term species means to biology. 2. Recognize the various patterns

More information

8/23/2014. Introduction to Animal Diversity

8/23/2014. Introduction to Animal Diversity Introduction to Animal Diversity Chapter 32 Objectives List the characteristics that combine to define animals Summarize key events of the Paleozoic, Mesozoic, and Cenozoic eras Distinguish between the

More information

16.4 Evidence of Evolution

16.4 Evidence of Evolution 16.4 Evidence of Evolution Lesson Objectives Explain how geologic distribution of species relates to their evolutionary history. Explain how fossils and the fossil record document the descent of modern

More information

Laboratory IV Phylogenetic Reconstruction

Laboratory IV Phylogenetic Reconstruction Laboratory IV Phylogenetic Reconstruction Objective: In this week s lab you will learn how to reconstruct evolutionary relationships. Biologists have experimented with a variety of methods for interpreting

More information

Seuqence Analysis '17--lecture 10. Trees types of trees Newick notation UPGMA Fitch Margoliash Distance vs Parsimony

Seuqence Analysis '17--lecture 10. Trees types of trees Newick notation UPGMA Fitch Margoliash Distance vs Parsimony Seuqence nalysis '17--lecture 10 Trees types of trees Newick notation UPGM Fitch Margoliash istance vs Parsimony Phyogenetic trees What is a phylogenetic tree? model of evolutionary relationships -- common

More information

Theory of Evolution Charles Darwin

Theory of Evolution Charles Darwin Theory of Evolution Charles arwin 858-59: Origin of Species 5 year voyage of H.M.S. eagle (83-36) Populations have variations. Natural Selection & Survival of the fittest: nature selects best adapted varieties

More information

15 Darwin's Theory of Natural Selection 15-1 The Puzzle of Life's Diversity

15 Darwin's Theory of Natural Selection 15-1 The Puzzle of Life's Diversity 15-1 The Puzzle of Life's Diversity Study the photo of leaves... What else do you see? How did the Leaf Mantis come to look like decaying leaves? Define evolution in its simplest meaning? Review the meaning

More information

20 Phylogeny CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece. Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge

20 Phylogeny CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece. Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 20 Phylogeny Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Investigating the Evolutionary History of

More information

Sequence Analysis 17: lecture 5. Substitution matrices Multiple sequence alignment

Sequence Analysis 17: lecture 5. Substitution matrices Multiple sequence alignment Sequence Analysis 17: lecture 5 Substitution matrices Multiple sequence alignment Substitution matrices Used to score aligned positions, usually of amino acids. Expressed as the log-likelihood ratio of

More information

Laboratory. Phylogenetics

Laboratory. Phylogenetics Laboratory 11 Phylogenetics Biology 171L SP18 Lab 11: Phylogenetics Student Learning Outcomes 1. Discover Darwin s contribution to biology. 2. Understand the importance of evolution in the study of biology.

More information

Statistical Models in Evolutionary Biology An Introductory Discussion

Statistical Models in Evolutionary Biology An Introductory Discussion Statistical Models in Evolutionary Biology An Introductory Discussion Christopher R. Genovese Department of Statistics Carnegie Mellon University http://www.stat.cmu.edu/ ~ genovese/ JSM 8 August 2006

More information

Chapter 1 Biology: Exploring Life

Chapter 1 Biology: Exploring Life Chapter 1 Biology: Exploring Life PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Figure 1.0_1 Chapter 1:

More information

Bioinformatics Exercises

Bioinformatics Exercises Bioinformatics Exercises AP Biology Teachers Workshop Susan Cates, Ph.D. Evolution of Species Phylogenetic Trees show the relatedness of organisms Common Ancestor (Root of the tree) 1 Rooted vs. Unrooted

More information

What is the purpose of the Classifying System? To allow the accurate identification of a particular organism

What is the purpose of the Classifying System? To allow the accurate identification of a particular organism What is the purpose of the Classifying System? To allow the accurate identification of a particular organism Taxonomy The practice of classifying organisms -Taxonomy was founded nearly 300 years ago by

More information

COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST

COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST Big Idea 1 Evolution INVESTIGATION 3 COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST How can bioinformatics be used as a tool to determine evolutionary relationships and to

More information

08/21/2017 BLAST. Multiple Sequence Alignments: Clustal Omega

08/21/2017 BLAST. Multiple Sequence Alignments: Clustal Omega BLAST Multiple Sequence Alignments: Clustal Omega What does basic BLAST do (e.g. what is input sequence and how does BLAST look for matches?) Susan Parrish McDaniel College Multiple Sequence Alignments

More information

Human Evolution. Becoming Human. Objectives 9/13/2010. Carl Sagan s Universe Calendar. How old is the universe? How old is the earth?

Human Evolution. Becoming Human. Objectives 9/13/2010. Carl Sagan s Universe Calendar. How old is the universe? How old is the earth? Human Evolution Becoming Human (A) Pan troglodytes, chimpanzee, modern (B) Australopithecus africanus, STS 5, 2.6 My (C) Australopithecus africanus, STS 71, 2.5 My (D) Homo habilis, KNM-ER 1813, 1.9 My

More information

PSI Biology Classification Classification

PSI Biology Classification Classification Classification Classification & Naming Classwork 1. What is the correct order of the current classification hierarchy, from most general to most specific? 2. Are two organisms in domain more or less closely

More information

Unsupervised Learning in Spectral Genome Analysis

Unsupervised Learning in Spectral Genome Analysis Unsupervised Learning in Spectral Genome Analysis Lutz Hamel 1, Neha Nahar 1, Maria S. Poptsova 2, Olga Zhaxybayeva 3, J. Peter Gogarten 2 1 Department of Computer Sciences and Statistics, University of

More information

Fig. 26.7a. Biodiversity. 1. Course Outline Outcomes Instructors Text Grading. 2. Course Syllabus. Fig. 26.7b Table

Fig. 26.7a. Biodiversity. 1. Course Outline Outcomes Instructors Text Grading. 2. Course Syllabus. Fig. 26.7b Table Fig. 26.7a Biodiversity 1. Course Outline Outcomes Instructors Text Grading 2. Course Syllabus Fig. 26.7b Table 26.2-1 1 Table 26.2-2 Outline: Systematics and the Phylogenetic Revolution I. Naming and

More information

Chapter 7- Changes Over Time. Section 2 Evidence of Evolution

Chapter 7- Changes Over Time. Section 2 Evidence of Evolution Chapter 7- Changes Over Time Section 2 Evidence of Evolution Pg 31 Topic: Evidence of Evolution (7.2) EQ: How do varying pieces of evidence support the theory of evolution and changes in Earth s history?

More information

BLAST Database Searching. BME 110: CompBio Tools Todd Lowe April 8, 2010

BLAST Database Searching. BME 110: CompBio Tools Todd Lowe April 8, 2010 BLAST Database Searching BME 110: CompBio Tools Todd Lowe April 8, 2010 Admin Reading: Read chapter 7, and the NCBI Blast Guide and tutorial http://www.ncbi.nlm.nih.gov/blast/why.shtml Read Chapter 8 for

More information

Phylogeny and the Tree of Life

Phylogeny and the Tree of Life LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 26 Phylogeny and the Tree of Life

More information

II Parsimony, character analysis, and optimization of sequence characters

II Parsimony, character analysis, and optimization of sequence characters II Parsimony, character analysis, and optimization of sequence characters CHAPTER 4 The logic of the data matrix in phylogenetic analysis Brent D. Mishler 4.1 Introduction The process of phylogenetic

More information

1. Construct and use dichotomous keys to identify organisms.

1. Construct and use dichotomous keys to identify organisms. OBJECTIVE SHEET SYSTEMATICS AND CLASSIFICATION 1. Construct and use dichotomous keys to identify organisms. 2. Clarify the purpose behind systematics and phylogeny. 3. Identify the structures of a phylogenetic

More information