Background. Bioinformatics Exercises for the Study of Evolution with Heme Proteins as a Model System

Size: px
Start display at page:

Download "Background. Bioinformatics Exercises for the Study of Evolution with Heme Proteins as a Model System"

Transcription

1 AP Biology Academy Bioinformatics Exercises for the Study of Evolution with Heme Proteins as a Model System Evolution of O2 transport and storage by hemoglobins: From Bacteria to Plants and Animals 2008 AP Biology Teachers Workshop Background Evolution of O2 transport and storage by hemoglobins: From Bacteria to Plants and Animals truncated globins sensor globins M. tuberculosis B. subtillis HemAT CD01040 globins: Globins are heme proteins, which bind and transport oxygen. This family summarizes a diverse set of homologous protein domains, including: (1) tetrameric vertebrate hemoglobins, which are the major protein component of erythrocytes and transport oxygen in the bloodstream, (2) microorganismal flavohemoglobins, which are linked to C-terminal FADdependend reductase domains, (3) homodimeric bacterial hemoglobins, such as from Vitreoscilla, (4) plant leghemoglobins (symbiotic hemoglobins, involved in nitrogen metabolism in plant rhizomes), (5) plant non-symbiotic hexacoordinate globins and hexacoordinate globins from bacteria and animals, such as neuroglobin, (6) invertebrate hemoglobins, which may occur in tandem-repeat arrangements, and (7) monomeric myoglobins found in animal muscle tissue. mammalian hemoglobin globins 1

2 CD01068 sensor globins: Globin domain present in Globin-Coupled-Sensors (GCS). These domains detect changes in intracellular concentrations of oxygen, monoxide, or nitrous oxide, which result in aerotaxis and/or gene regulation. One subgroup, the HemATs, are aerotactic heme sensors combining a globin with an MCP signaling domain, others function as gene regulators, by direct combination with DNA-binding domains, with domains modulating 2nd messengers, or with domains interacting with transcription factors or regulators. CD00454 truncated hemoglobins: Truncated hemoglobins (trhbs) are a family of oxygen-binding heme proteins found in cyanobacteria, eubacteria, unicellular eukaryotes, and plants. The truncated hemoglobins have a characteristic two-over-two alpha helical folding pattern that is distinct from the three-over-three pattern found in other globins. A subset of these have been demonstrated to form homodimers. Molecular Evolution (ME): relatedness of biological molecules (does not necessarily reflect relatedness of species from which the gene and protein sequences have been taken) Molecular Evolution FlavoHbs Mb I. Genes ME determined primarily by nucleic acid sequence II. Proteins ME determined primarily by amino acid sequence Plant 2-on-2 Hb Bacterial 2-on-2 Hb Plant Hb Hb Bioinformatics Tools Sequence alignment Gene identification Genome assembly Protein structure prediction/alignment Gene expression predictions Info about biomolecules Protein function Protein structure Evolution (molecular and whole organism level) Gene Expression Legend: 1ASH - Hemoglobin (Hb) domain 1 Ascaris suum (pig roundworm) 1DLY - Hb Green Unicellular Alga Chlamydomonas Eugametos 1KR7 - Nerve Tissue Mini-Hb Cerebratulus Lacteus (Nemertean Worm) 1OR4 - HemAT Sensor Domain From B. subtilis 2

3 Protein phylogenetic Tree Visual of relationships between sequences based on molecular evolution Bioinformatics Exercises Advantages: 1. Most schools have computer labs or library computer access. 2. Exercises only require a browser. 3. Students interested in all areas of bioscience must learn to mine computational databases - unavoidable for future scientists. Pitfalls to avoid: 1. Databases are HUGE, must give specific, step-by-step instructions or the student will get hopelessly lost. 2. Some sites go down temporarily, design a 2- or 3-part exercise that uses more than one site, or make the due date flexible. 3. Practice the exercise each year, databases and interfaces change rapidly - what worked last semester may not work now. Assignment: Background Databases: How are they created, maintained, and used? Assignment: Bioinformatics Tools Vocabulary Sequence alignment Multiple sequence alignment and phylogenetic trees Databases: background for students 1. Convey the necessity of computers in storing and analyzing the large amount of biological data available. Link to Human Genome Project web sites 2. Choose exercises or background reading that stress the size and growth rate of biological databases. Explore NCBI 3. Discuss search engines and search design: specificity vs. sensitivity Examples in Entrez 4. Local research in genomics Baylor College of Medicine 1. Convey the necessity of computers in storing and analyzing such a large amount of data. Emphasize the factors that contribute to the dependence of biological studies on computers How many bases in a genome? Human ~ 3 billion Rat ~ 3 billion Chicken ~ 1 billion Fish ~ 400 million Bacteria - M. tuberculosis ~ 4 million 1. Convey the necessity of computers in storing and analyzing such a large amount of data. Human Genome Project 3

4 AP Biology Academy 2. Choose exercises or background reading that stress the size and growth rate of biological databases. NCBI Genbank = nucleotide database About the Human Genome Project Question 1: Question 2: Question 3: 80 billion nucleotide bases (Jan 2008) Doubles ~ every 18 months 260,000 species per month Part of international collection of 100 gigabases (Aug 2005) How many genes are found in the human genome? How many DNA base pairs make up the human genome? Name 2 project goals that will require the help of computers. 2. Choose exercises or background reading that stress the size and growth rate of biological databases. NCBI How many new sequences were added in 2007? What are the top 5 species with sequences in GenBank? What does a GenBank entry include? Who typically submits data to GenBank? Open Access Jan 2008 Database Issue What website would you use to retrieve GenBank information? 3. Discuss search engines and search design: specificity vs. sensitivity Entrez PubMed 3. Discuss search engines and search design: specificity vs. sensitivity Entrez PubMed 4

5 4. Is the Houston Medical Center involved in genomics? Sample questions to ask about the BCM HGSC site How many genome projects are being sequenced for different organisms at the Human Genome Sequencing Center, Baylor College of Medicine? How many primate genome projects are listed? Why do you think so many primate genomes are being sequenced? Why is it important to humans to learn about bovine genomes? Why is it important to humans to learn about microbial genomes? URLs for bioinformatics students: The Human Genome Project: The Human Genome Sequencing Center at Baylor College of Medicine Cells Alive: The Biology Workbench: National Center for Biotechnology Information: Expasy (Swiss Institute of Bioinformatics) European Bioinformatics Institute 1. Introduce vocabulary necessary to describe features of sequence alignments. 2. Sequence alignment Sequence Alignments NCBI Blast 3. Multiple sequence alignments and phylogenetic trees Biology Workbench To compare, use protein sequences rather than DNA when possible Why? Less noise in protein sequences - what are the causes? I. Mathematical Probability: From a strictly mathematical point of view, assuming that there is an equal likelihood of any nucleotide appearing at any point in a sequence (which is generally NOT true biologically), what are the chances that a G in a nucleotide sequence will be randomly matched by a G in the same position in a different sequence? 1/4 From the same point of view, what are the chances that a G in a protein sequence will be randomly matched by a G in the same position in a different sequence? 1/20 5

6 Less noise in protein sequences - what are the causes? II. Degeneracy of the genetic code: 18 of the 20 amino acids are coded for by > one codon - therefore, a single mutation in the DNA code does not necessarily translate into a change in the amino acid code (particularly true of mutations in the 3rd codon) UUC to UUU mutation: UUC encodes PHE (F) UUU encodes PHE (F) a single change within a triplet codon is often not sufficient to cause a codon to code for an amino acid in a different category (nonpolar, polar, positively charged, negatively charged) AAG to AGG mutation: AAG encodes LYS (K) AGG encodes ARG (R) Less noise in protein sequences - what are the causes? III. Similarity signals contribute more information in protein sequences than in nucleotide sequences. Many categories of amino acids, some can be weighted more heavily than others (nonpolar, polar, positively charged, negatively charged, aromatic, structural similarity) Nucleotides - transitions purine to purine, pyrimidine to pyrimidine transversions purine to pyrimidine, pyrimidine to purine Studying VERY CLOSELY related sequences (identity, homology, paralogy): Nucleotide sequence might be preferred (can see subtle changes that might be invisible in protein sequences). Vocabulary for Sequence Alignments If the same letter occurs in two aligned sequences then this position has been conserved in evolution. If the letters differ it is assumed that the two derive from an ancestral letter (which could be one of the two or neither). Evolutionary processes in biology can introduce insertions or deletions in sequences. In a sequence alignment, a letter or a stretch of letters may be paired up with dashes in the other sequence, called gaps, to signify an insertion or deletion. If a biologist makes the statement that two sequences are related, he means that they are believed to have a common evolutionary origin. Identity indicates exact match in two (or more) sequences Similarity indicates chemical or structural similarity (based on categories of amino acids) between unidentical aligned residues in two (or more) sequences Homology the source of the similarity between unidentical aligned residues in two (or more) sequences is biological, such as evolutionarily related sequences in different species (same origin and function) or relationship between members of a chromosome pair in diploid organisms (homologous sequences are similar, but similar sequences are not always homologous) 12 GAPS (yellow) = an insertion in one sequence or a deletion in the other sequence? The residues in aligned positions of different sequences are implied to have a common evolutionary origin 29 identities (green) 20 similarities (cyan) 6

7 Sequence comparison Healthy vs. diseased Identify genes involved in diseases One organism vs. another How closely related are two organisms Unknown function vs. known Lots of genes are not understood Proteins involved in genetic diseases Lactase - Lactose Intolerance Insulin receptor - P53 protein - Cancer Diabetes Disease Sickling cell Sickle Cell Anemia Irreversibly sickled cells Normal red blood cells with no deformations Exercise in Sequence Alignment: Our example is HbB vs. HbS Type the following web site into your browser: Next to the Search box, select Protein, to search the NCBI database containing protein sequences. Red blood cells containing HbS β subunits The record for hemoglobin S should be returned. Hemoglobin is the protein in our blood cells that carries oxygen. Click on the link entitled 1HBSB. Next to the word Display in the grey region at the top of the file, change GenPept to FASTA. 7

8 This will display the amino acid sequence for hemoglobin S in FASTA format. Hold down the left mouse button while you move the mouse over the sequence. This should highlight the amino acid sequence in blue. Now choose Edit:Copy from the browser window, or hit the buttons Ctrl and C to copy. Now, click on the NCBI logo in the upper left corner of the web page to return to the main page. In the dark blue menu bar at the top of the page, click on the word BLAST. In the box of Basic BLAST options, click on the link entitled protein BLAST. Click in the Search box and choose Edit: paste from the browser menu or hit the Ctrl and P keys to paste in the sequence. 8

9 Change the nr database to swissprot, then click the BLAST! button. Wait for alignment to Format Time depends on server use. Under the graph indicating the length of the top alignments, there will be a list of aligning sequences in order of decreasing alignment scores. Click on the score of the first item in the list, which is the highest scoring alignment. This will take you to the section of the file where you can view the alignment. Identify the differences in the sequence of Query 1and Subject 2 A dissimilar substitution occurs at amino acid number 6. The sickle cell mutation in Hemoglobin: Sickle cell anemia is a blood condition seen most commonly in people of African ancestry and in the tribal peoples of India. The individual must have two copies of the mutant hemoglobin gene to exhibit the sickle-shaped cells indicative of the condition. The hemoglobin S beta subunit has the amino acid valine at position 6 instead of the glutamic acid that is normally present. This alteration is the basis of all the problems that occur in people with sickle cell disease. Glu6 to Val The β E6V mutation dramatically decreases the solubility of hemoglobin and causes long fibers to form that sickle the red cells. This was the first genetic disease that was identified at the amino acid level. Hb AS is benign (only shortens red cell life time to ~80 days) Hb SS leads to severe anemia and early death 9

10 Disease Disease AS + AS Sickle Cell anemia Anopheles gambiae, Infection with Plasmodium falciparum HbAS cells only last ~80 days and release the immature parasite which is destroyed by the immune system. Sickle Cell Anemia The sickle cell trait is maintained by strong selective pressure because AS individuals have resistance to malaria. It is a classic case of natural selection. AA + AS + SA + SS 50% are resistant and live malaria sickle cell disease Trait has evolved spontaneously and independently in several different locations in Africa because of strong selective pressure The Plasmodium parasite must remain in the red blood cells for more than 90 days to be able to change its cell coat and avoid antibody responses Exercise in Multiple Sequence Alignment The Biology Workbench The Biology Workbench is one of my favorite teaching tools, because the student can do a complete Bioinformatics project with the Workbench, from retrieving the sequences to performing multiple alignments and creating phylogenetic tree diagrams. 1. Retrieve sequences from database 2. Manually input sequences 3. Align selection of sequences 4. Align multiple alignments of sequences 5. Create a phylogenetic tree 1. Retrieve sequences Be careful, there are many databases - too much information -too many results from a query confuses the student a. GenPept - Genbank gene products - full release b. SwissProt - manually curated European database Select Ndjinn Multiple Database Search and click Run. Ndjinn Multiple Database Search 10

11 Genpept search of fetal hemoglobin : 7 results in over 1 minute SwissProt search of fetal hemoglobin : 68 results in ~ 20 seconds Select two human Hb gamma protein sequences Click Import Sequence(s) Sequences now listed under Protein Tools 2. Manually input sequences Obtain sequence in FASTA format from NCBI as in previous exercise Select Add New Protein Sequence and click Run Add New Protein Sequence Type in a name for the sequence. Use paste to input sequence. Click Save. Sequence will be listed below Protein Tools. 3. Align selected sequences Check boxes next to sequences Scroll down Protein Tools list to CLUSTALW - Multiple Sequence Alignment Click Run then click Submit on the next page CLUSTALW 11

12 Color coding represents consensus. HbG1 and HbG2 have an A:G substitution at position 136 HbE has the A at 136 HbB has the G Alignment can be copied an pasted into text document. Set page to landscape for rows of alignment to print on one line. Analysis: Highest scoring pairwise alignments: 1. HbG1 and HbG2 2. HbS and HbB Scroll back to alignment and import the alignment. Lowest scoring pairwise alignments: 1. HbS and HbE 2. HbS and HbG2 3. HbB and HbG1 Alignment is listed including protein names under Alignment Tools. Complete 5 alignments of proteins in the globin-like superfamily. 1. Human Hemoglobins (globin family) HbB, HbS, HbE, HbG1, HbG2 2. Globin family Non-symbiotic hemoglobins from rice and corn, symbiotic hemoglobins from soybean and pea 3. Sensor family HemAT from B. subtillis and H. salinarum, methyl-accepting chemotaxis protein from A. tumefaciens 4. Truncated family 2-on-2 hemoglobin from Arabidopsis, protein from S. aureus, and M. tuberculosis Identifiers to retrieve sequences can be found in syllabus. 12

13 4. Aligning aligned sequences Check boxes next to alignments Scroll down Alignment Tools list to CLUSTALWPROF - Align Two Existing Alignments (Profiles) Click Run then click Submit on the next page CLUSTALWPROF Import the alignment. To create an alignment with all 4 groups of sequences, repeat CLUSTALWPROF two more times, using the new alignment plus one other. WARNING: This creates a LONG alignment, but also leads to an interesting phylogenetic tree. 5. Creating a phylogenetic tree Select an alignment Scroll down Alignment Tools list to DRAWGRAM - Draw Rooted Phylogenetic Tree from Alignment Click Run then click Submit on the next page DRAWGRAM Use this link to get a version with white background suitable for reports. Phylogenetic Tree of Proteins in Globin-Like Superfamily Globin family Truncated family Sensor family Additional Ideas Have students align all 15 sequences using CLUSTALW and compare to the alignment of alignments from CLUSTALWPROF Assign students an unknown sequence and have them identify to which family it belongs using alignments and paired alignment scores Using an alignment of all 15 sequences, hypothesize why sensor globin family members are longer proteins? Predict which portion of the B. subtillis HemAT is responsible for signaling. 13

Bioinformatics Exercises

Bioinformatics Exercises Bioinformatics Exercises AP Biology Teachers Workshop Susan Cates, Ph.D. Evolution of Species Phylogenetic Trees show the relatedness of organisms Common Ancestor (Root of the tree) 1 Rooted vs. Unrooted

More information

Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST

Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST Introduction Bioinformatics is a powerful tool which can be used to determine evolutionary relationships and

More information

Using Bioinformatics to Study Evolutionary Relationships Instructions

Using Bioinformatics to Study Evolutionary Relationships Instructions 3 Using Bioinformatics to Study Evolutionary Relationships Instructions Student Researcher Background: Making and Using Multiple Sequence Alignments One of the primary tasks of genetic researchers is comparing

More information

Hands-On Nine The PAX6 Gene and Protein

Hands-On Nine The PAX6 Gene and Protein Hands-On Nine The PAX6 Gene and Protein Main Purpose of Hands-On Activity: Using bioinformatics tools to examine the sequences, homology, and disease relevance of the Pax6: a master gene of eye formation.

More information

Bioinformatics: Investigating Molecular/Biochemical Evidence for Evolution

Bioinformatics: Investigating Molecular/Biochemical Evidence for Evolution Bioinformatics: Investigating Molecular/Biochemical Evidence for Evolution Background How does an evolutionary biologist decide how closely related two different species are? The simplest way is to compare

More information

USING BLAST TO IDENTIFY PROTEINS THAT ARE EVOLUTIONARILY RELATED ACROSS SPECIES

USING BLAST TO IDENTIFY PROTEINS THAT ARE EVOLUTIONARILY RELATED ACROSS SPECIES USING BLAST TO IDENTIFY PROTEINS THAT ARE EVOLUTIONARILY RELATED ACROSS SPECIES HOW CAN BIOINFORMATICS BE USED AS A TOOL TO DETERMINE EVOLUTIONARY RELATIONSHPS AND TO BETTER UNDERSTAND PROTEIN HERITAGE?

More information

BIOINFORMATICS LAB AP BIOLOGY

BIOINFORMATICS LAB AP BIOLOGY BIOINFORMATICS LAB AP BIOLOGY Bioinformatics is the science of collecting and analyzing complex biological data. Bioinformatics combines computer science, statistics and biology to allow scientists to

More information

Chapter 7: Covalent Structure of Proteins. Voet & Voet: Pages ,

Chapter 7: Covalent Structure of Proteins. Voet & Voet: Pages , Chapter 7: Covalent Structure of Proteins Voet & Voet: Pages 163-164, 185-194 Slide 1 Structure & Function Function is best understood in terms of structure Four levels of structure that apply to proteins

More information

Bioinformatics. Dept. of Computational Biology & Bioinformatics

Bioinformatics. Dept. of Computational Biology & Bioinformatics Bioinformatics Dept. of Computational Biology & Bioinformatics 3 Bioinformatics - play with sequences & structures Dept. of Computational Biology & Bioinformatics 4 ORGANIZATION OF LIFE ROLE OF BIOINFORMATICS

More information

Comparing whole genomes

Comparing whole genomes BioNumerics Tutorial: Comparing whole genomes 1 Aim The Chromosome Comparison window in BioNumerics has been designed for large-scale comparison of sequences of unlimited length. In this tutorial you will

More information

Supplemental Materials

Supplemental Materials JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION, May 2013, p. 107-109 DOI: http://dx.doi.org/10.1128/jmbe.v14i1.496 Supplemental Materials for Engaging Students in a Bioinformatics Activity to Introduce Gene

More information

METHODS FOR DETERMINING PHYLOGENY. In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task.

METHODS FOR DETERMINING PHYLOGENY. In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task. Chapter 12 (Strikberger) Molecular Phylogenies and Evolution METHODS FOR DETERMINING PHYLOGENY In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task. Modern

More information

GENERAL BIOLOGY LABORATORY EXERCISE Amino Acid Sequence Analysis of Cytochrome C in Bacteria and Eukarya Using Bioinformatics

GENERAL BIOLOGY LABORATORY EXERCISE Amino Acid Sequence Analysis of Cytochrome C in Bacteria and Eukarya Using Bioinformatics GENERAL BIOLOGY LABORATORY EXERCISE Amino Acid Sequence Analysis of Cytochrome C in Bacteria and Eukarya Using Bioinformatics INTRODUCTION: All life forms undergo metabolic processes to obtain energy.

More information

Introduction to Bioinformatics Online Course: IBT

Introduction to Bioinformatics Online Course: IBT Introduction to Bioinformatics Online Course: IBT Multiple Sequence Alignment Building Multiple Sequence Alignment Lec1 Building a Multiple Sequence Alignment Learning Outcomes 1- Understanding Why multiple

More information

08/21/2017 BLAST. Multiple Sequence Alignments: Clustal Omega

08/21/2017 BLAST. Multiple Sequence Alignments: Clustal Omega BLAST Multiple Sequence Alignments: Clustal Omega What does basic BLAST do (e.g. what is input sequence and how does BLAST look for matches?) Susan Parrish McDaniel College Multiple Sequence Alignments

More information

Genomes and Their Evolution

Genomes and Their Evolution Chapter 21 Genomes and Their Evolution PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Open a Word document to record answers to any italicized questions. You will the final document to me at

Open a Word document to record answers to any italicized questions. You will  the final document to me at Molecular Evidence for Evolution Open a Word document to record answers to any italicized questions. You will email the final document to me at tchnsci@yahoo.com Pre Lab Activity: Genes code for amino

More information

Investigating Evolutionary Questions Using Online Molecular Databases *

Investigating Evolutionary Questions Using Online Molecular Databases * Investigating Evolutionary Questions Using Online Molecular Databases * Adapted from Puterbaugh and Burleigh, and The American Biology Teacher Lesson Background and Overview [Student Information Handout]

More information

Protein Architecture V: Evolution, Function & Classification. Lecture 9: Amino acid use units. Caveat: collagen is a. Margaret A. Daugherty.

Protein Architecture V: Evolution, Function & Classification. Lecture 9: Amino acid use units. Caveat: collagen is a. Margaret A. Daugherty. Lecture 9: Protein Architecture V: Evolution, Function & Classification Margaret A. Daugherty Fall 2004 Amino acid use *Proteins don t use aa s equally; eg, most proteins not repeating units. Caveat: collagen

More information

Bio 1B Lecture Outline (please print and bring along) Fall, 2007

Bio 1B Lecture Outline (please print and bring along) Fall, 2007 Bio 1B Lecture Outline (please print and bring along) Fall, 2007 B.D. Mishler, Dept. of Integrative Biology 2-6810, bmishler@berkeley.edu Evolution lecture #5 -- Molecular genetics and molecular evolution

More information

Sequence Alignment: A General Overview. COMP Fall 2010 Luay Nakhleh, Rice University

Sequence Alignment: A General Overview. COMP Fall 2010 Luay Nakhleh, Rice University Sequence Alignment: A General Overview COMP 571 - Fall 2010 Luay Nakhleh, Rice University Life through Evolution All living organisms are related to each other through evolution This means: any pair of

More information

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment Algorithms in Bioinformatics FOUR Sami Khuri Department of Computer Science San José State University Pairwise Sequence Alignment Homology Similarity Global string alignment Local string alignment Dot

More information

RELATIONSHIPS BETWEEN GENES/PROTEINS HOMOLOGUES

RELATIONSHIPS BETWEEN GENES/PROTEINS HOMOLOGUES Molecular Biology-2018 1 Definitions: RELATIONSHIPS BETWEEN GENES/PROTEINS HOMOLOGUES Heterologues: Genes or proteins that possess different sequences and activities. Homologues: Genes or proteins that

More information

Grundlagen der Bioinformatik Summer semester Lecturer: Prof. Daniel Huson

Grundlagen der Bioinformatik Summer semester Lecturer: Prof. Daniel Huson Grundlagen der Bioinformatik, SS 10, D. Huson, April 12, 2010 1 1 Introduction Grundlagen der Bioinformatik Summer semester 2010 Lecturer: Prof. Daniel Huson Office hours: Thursdays 17-18h (Sand 14, C310a)

More information

Sara C. Madeira. Universidade da Beira Interior. (Thanks to Ana Teresa Freitas, IST for useful resources on this subject)

Sara C. Madeira. Universidade da Beira Interior. (Thanks to Ana Teresa Freitas, IST for useful resources on this subject) Bioinformática Sequence Alignment Pairwise Sequence Alignment Universidade da Beira Interior (Thanks to Ana Teresa Freitas, IST for useful resources on this subject) 1 16/3/29 & 23/3/29 27/4/29 Outline

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Introduction to Bioinformatics Lecture : p he biological problem p lobal alignment p Local alignment p Multiple alignment 6 Background: comparative genomics p Basic question in biology: what properties

More information

BIOINFORMATICS: An Introduction

BIOINFORMATICS: An Introduction BIOINFORMATICS: An Introduction What is Bioinformatics? The term was first coined in 1988 by Dr. Hwa Lim The original definition was : a collective term for data compilation, organisation, analysis and

More information

Comparative genomics: Overview & Tools + MUMmer algorithm

Comparative genomics: Overview & Tools + MUMmer algorithm Comparative genomics: Overview & Tools + MUMmer algorithm Urmila Kulkarni-Kale Bioinformatics Centre University of Pune, Pune 411 007. urmila@bioinfo.ernet.in Genome sequence: Fact file 1995: The first

More information

Example Items. Biology

Example Items. Biology Example Items iology iology Example Items are a representative set of items for the P. Teachers may use this set of items along with the test blueprint as guides to prepare students for the P. On the last

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Fall 2017 Databases and Protein Structure Representation October 2, 2017 Molecular Biology as Information Science > 12, 000 genomes sequenced, mostly bacterial (2013) > 5x10 6 unique sequences available

More information

Bioinformatics. Part 8. Sequence Analysis An introduction. Mahdi Vasighi

Bioinformatics. Part 8. Sequence Analysis An introduction. Mahdi Vasighi Bioinformatics Sequence Analysis An introduction Part 8 Mahdi Vasighi Sequence analysis Some of the earliest problems in genomics concerned how to measure similarity of DNA and protein sequences, either

More information

COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST

COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST Big Idea 1 Evolution INVESTIGATION 3 COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST How can bioinformatics be used as a tool to determine evolutionary relationships and to

More information

Journal of Proteomics & Bioinformatics - Open Access

Journal of Proteomics & Bioinformatics - Open Access Abstract Methodology for Phylogenetic Tree Construction Kudipudi Srinivas 2, Allam Appa Rao 1, GR Sridhar 3, Srinubabu Gedela 1* 1 International Center for Bioinformatics & Center for Biotechnology, Andhra

More information

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid.

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid. 1. A change that makes a polypeptide defective has been discovered in its amino acid sequence. The normal and defective amino acid sequences are shown below. Researchers are attempting to reproduce the

More information

Ensembl focuses on metazoan (animal) genomes. The genomes currently available at the Ensembl site are:

Ensembl focuses on metazoan (animal) genomes. The genomes currently available at the Ensembl site are: Comparative genomics and proteomics Species available Ensembl focuses on metazoan (animal) genomes. The genomes currently available at the Ensembl site are: Vertebrates: human, chimpanzee, mouse, rat,

More information

Piecing It Together. 1) The envelope contains puzzle pieces for 5 vertebrate embryos in 3 different stages of

Piecing It Together. 1) The envelope contains puzzle pieces for 5 vertebrate embryos in 3 different stages of Piecing It Together 1) The envelope contains puzzle pieces for 5 vertebrate embryos in 3 different stages of development. Lay out the pieces so that you have matched up each animal name card with its 3

More information

Warm Up. What are some examples of living things? Describe the characteristics of living things

Warm Up. What are some examples of living things? Describe the characteristics of living things Warm Up What are some examples of living things? Describe the characteristics of living things Objectives Identify the levels of biological organization and explain their relationships Describe cell structure

More information

Studying Life. Lesson Overview. Lesson Overview. 1.3 Studying Life

Studying Life. Lesson Overview. Lesson Overview. 1.3 Studying Life Lesson Overview 1.3 Characteristics of Living Things What characteristics do all living things share? Living things are made up of basic units called cells, are based on a universal genetic code, obtain

More information

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD Department of Computer Science University of Missouri 2008 Free for Academic

More information

Protein Structure Prediction and Display

Protein Structure Prediction and Display Protein Structure Prediction and Display Goal Take primary structure (sequence) and, using rules derived from known structures, predict the secondary structure that is most likely to be adopted by each

More information

BIOLOGY STANDARDS BASED RUBRIC

BIOLOGY STANDARDS BASED RUBRIC BIOLOGY STANDARDS BASED RUBRIC STUDENTS WILL UNDERSTAND THAT THE FUNDAMENTAL PROCESSES OF ALL LIVING THINGS DEPEND ON A VARIETY OF SPECIALIZED CELL STRUCTURES AND CHEMICAL PROCESSES. First Semester Benchmarks:

More information

BIG IDEA 4: BIOLOGICAL SYSTEMS INTERACT, AND THESE SYSTEMS AND THEIR INTERACTIONS POSSESS COMPLEX PROPERTIES.

BIG IDEA 4: BIOLOGICAL SYSTEMS INTERACT, AND THESE SYSTEMS AND THEIR INTERACTIONS POSSESS COMPLEX PROPERTIES. Enduring Understanding 4.C Independent Study Assignment Assignment Instructions Both components of this assignment (Part I and Part II) should be completed on the pages provided. Each numbered component

More information

Protein Bioinformatics Computer lab #1 Friday, April 11, 2008 Sean Prigge and Ingo Ruczinski

Protein Bioinformatics Computer lab #1 Friday, April 11, 2008 Sean Prigge and Ingo Ruczinski Protein Bioinformatics 260.655 Computer lab #1 Friday, April 11, 2008 Sean Prigge and Ingo Ruczinski Goals: Approx. Time [1] Use the Protein Data Bank PDB website. 10 minutes [2] Use the WebMol Viewer.

More information

Sequences, Structures, and Gene Regulatory Networks

Sequences, Structures, and Gene Regulatory Networks Sequences, Structures, and Gene Regulatory Networks Learning Outcomes After this class, you will Understand gene expression and protein structure in more detail Appreciate why biologists like to align

More information

Synteny Portal Documentation

Synteny Portal Documentation Synteny Portal Documentation Synteny Portal is a web application portal for visualizing, browsing, searching and building synteny blocks. Synteny Portal provides four main web applications: SynCircos,

More information

Chapter 15: Darwin and Evolution

Chapter 15: Darwin and Evolution Chapter 15: Darwin and Evolution AP Curriculum Alignment Big Idea 1 is about evolution. Charles Darwin is called the father of evolution because his theory of natural selection explains how evolution occurs.

More information

The Complete Set Of Genetic Instructions In An Organism's Chromosomes Is Called The

The Complete Set Of Genetic Instructions In An Organism's Chromosomes Is Called The The Complete Set Of Genetic Instructions In An Organism's Chromosomes Is Called The What is a genome? A genome is an organism's complete set of genetic instructions. Single strands of DNA are coiled up

More information

Sequencing alignment Ameer Effat M. Elfarash

Sequencing alignment Ameer Effat M. Elfarash Sequencing alignment Ameer Effat M. Elfarash Dept. of Genetics Fac. of Agriculture, Assiut Univ. aelfarash@aun.edu.eg Why perform a multiple sequence alignment? MSAs are at the heart of comparative genomics

More information

EBI web resources II: Ensembl and InterPro

EBI web resources II: Ensembl and InterPro EBI web resources II: Ensembl and InterPro Yanbin Yin http://www.ebi.ac.uk/training/online/course/ 1 Homework 3 Go to http://www.ebi.ac.uk/interpro/training.htmland finish the second online training course

More information

Bioinformatics tools for phylogeny and visualization. Yanbin Yin

Bioinformatics tools for phylogeny and visualization. Yanbin Yin Bioinformatics tools for phylogeny and visualization Yanbin Yin 1 Homework assignment 5 1. Take the MAFFT alignment http://cys.bios.niu.edu/yyin/teach/pbb/purdue.cellwall.list.lignin.f a.aln as input and

More information

Lab 1 Uniform Motion - Graphing and Analyzing Motion

Lab 1 Uniform Motion - Graphing and Analyzing Motion Lab 1 Uniform Motion - Graphing and Analyzing Motion Objectives: < To observe the distance-time relation for motion at constant velocity. < To make a straight line fit to the distance-time data. < To interpret

More information

Exploring Evolution & Bioinformatics

Exploring Evolution & Bioinformatics Chapter 6 Exploring Evolution & Bioinformatics Jane Goodall The human sequence (red) differs from the chimpanzee sequence (blue) in only one amino acid in a protein chain of 153 residues for myoglobin

More information

Cladistics and Bioinformatics Questions 2013

Cladistics and Bioinformatics Questions 2013 AP Biology Name Cladistics and Bioinformatics Questions 2013 1. The following table shows the percentage similarity in sequences of nucleotides from a homologous gene derived from five different species

More information

The Contribution of Bioinformatics to Evolutionary Thought

The Contribution of Bioinformatics to Evolutionary Thought The Contribution of Bioinformatics to Evolutionary Thought A demonstration of the abilities of Entrez, BLAST, and UCSC s Genome Browser to provide information about common ancestry. American Scientific

More information

Full file at CHAPTER 2 Genetics

Full file at   CHAPTER 2 Genetics CHAPTER 2 Genetics MULTIPLE CHOICE 1. Chromosomes are a. small linear bodies. b. contained in cells. c. replicated during cell division. 2. A cross between true-breeding plants bearing yellow seeds produces

More information

Emily Blanton Phylogeny Lab Report May 2009

Emily Blanton Phylogeny Lab Report May 2009 Introduction It is suggested through scientific research that all living organisms are connected- that we all share a common ancestor and that, through time, we have all evolved from the same starting

More information

Genomics and bioinformatics summary. Finding genes -- computer searches

Genomics and bioinformatics summary. Finding genes -- computer searches Genomics and bioinformatics summary 1. Gene finding: computer searches, cdnas, ESTs, 2. Microarrays 3. Use BLAST to find homologous sequences 4. Multiple sequence alignments (MSAs) 5. Trees quantify sequence

More information

Chapter 18 Active Reading Guide Genomes and Their Evolution

Chapter 18 Active Reading Guide Genomes and Their Evolution Name: AP Biology Mr. Croft Chapter 18 Active Reading Guide Genomes and Their Evolution Most AP Biology teachers think this chapter involves an advanced topic. The questions posed here will help you understand

More information

Biology New Jersey 1. NATURE OF LIFE 2. THE CHEMISTRY OF LIFE. Tutorial Outline

Biology New Jersey 1. NATURE OF LIFE 2. THE CHEMISTRY OF LIFE. Tutorial Outline Tutorial Outline New Jersey Tutorials are designed specifically for the New Jersey Core Curriculum Content Standards to prepare students for the PARCC assessments, the New Jersey Biology Competency Test

More information

Name Block Date Final Exam Study Guide

Name Block Date Final Exam Study Guide Name Block Date Final Exam Study Guide Unit 7: DNA & Protein Synthesis List the 3 building blocks of DNA (sugar, phosphate, base) Use base-pairing rules to replicate a strand of DNA (A-T, C-G). Transcribe

More information

Student Handout Fruit Fly Ethomics & Genomics

Student Handout Fruit Fly Ethomics & Genomics Student Handout Fruit Fly Ethomics & Genomics Summary of Laboratory Exercise In this laboratory unit, students will connect behavioral phenotypes to their underlying genes and molecules in the model genetic

More information

Proteins: Historians of Life on Earth Garry A. Duncan, Eric Martz, and Sam Donovan

Proteins: Historians of Life on Earth Garry A. Duncan, Eric Martz, and Sam Donovan Microbes Count! 181 Video VI: Microbial Evolution Introduction Prior to the 1980 s, one of the most commonly accepted taxonomic hypotheses in biology was that all organisms belonged to one of two domains:

More information

Variation of Traits. genetic variation: the measure of the differences among individuals within a population

Variation of Traits. genetic variation: the measure of the differences among individuals within a population Genetic variability is the measure of the differences among individuals within a population. Because some traits are more suited to certain environments, creating particular niches and fits, we know that

More information

Topics. Antibiotic resistance, changing environment LITERACY MATHEMATICS. Traits, variation, population MATHEMATICS

Topics. Antibiotic resistance, changing environment LITERACY MATHEMATICS. Traits, variation, population MATHEMATICS UNIT OVERVIEW EVOLUTION Listed below is a summary of the activities in this unit. Note that the total teaching time is listed as 9 34 periods of approximately 45 50 minutes (approximately 6-7 weeks). 1.

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Protein Bioinformatics. Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet sandberg.cmb.ki.

Protein Bioinformatics. Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet sandberg.cmb.ki. Protein Bioinformatics Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet rickard.sandberg@ki.se sandberg.cmb.ki.se Outline Protein features motifs patterns profiles signals 2 Protein

More information

Lecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM)

Lecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM) Bioinformatics II Probability and Statistics Universität Zürich and ETH Zürich Spring Semester 2009 Lecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM) Dr Fraser Daly adapted from

More information

Introduction to Bioinformatics. Shifra Ben-Dor Irit Orr

Introduction to Bioinformatics. Shifra Ben-Dor Irit Orr Introduction to Bioinformatics Shifra Ben-Dor Irit Orr Lecture Outline: Technical Course Items Introduction to Bioinformatics Introduction to Databases This week and next week What is bioinformatics? A

More information

Chem Lecture 3 Hemoglobin & Myoglobin

Chem Lecture 3 Hemoglobin & Myoglobin Chem 452 - Lecture 3 Hemoglobin & Myoglobin 111003 Hemoglobin (Hb) and Myoglobin (Mb) function as oxygen transport and storage molecules in higher organisms. There functions have been long studied and,

More information

Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD William and Nancy Thompson Missouri Distinguished Professor Department

More information

A DISEASE ECOLOGIST S GUIDE TO EVOLUTION: EVIDENCE FROM HOST- PARASITE RELATIONSHIPS

A DISEASE ECOLOGIST S GUIDE TO EVOLUTION: EVIDENCE FROM HOST- PARASITE RELATIONSHIPS A DISEASE ECOLOGIST S GUIDE TO EVOLUTION: EVIDENCE FROM HOST- PARASITE RELATIONSHIPS SARAH A. ORLOFSKE TEACHING EVOLUTION WORKSHOP UNIVERSITY OF COLORADO BOULDER sarah.orlofske@colorado.edu Ph.D. Candidate

More information

Module: Sequence Alignment Theory and Applications Session: Introduction to Searching and Sequence Alignment

Module: Sequence Alignment Theory and Applications Session: Introduction to Searching and Sequence Alignment Module: Sequence Alignment Theory and Applications Session: Introduction to Searching and Sequence Alignment Introduction to Bioinformatics online course : IBT Jonathan Kayondo Learning Objectives Understand

More information

How to Use This Presentation

How to Use This Presentation How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

STAAR Biology Assessment

STAAR Biology Assessment STAAR Biology Assessment Reporting Category 1: Cell Structure and Function The student will demonstrate an understanding of biomolecules as building blocks of cells, and that cells are the basic unit of

More information

AP Biology Summer Assignment

AP Biology Summer Assignment AP Biology Summer Assignment 2017-18 Students must complete this assignment by the first week of school. The first exam, which will be the first week of school, will cover the information in this packet.

More information

Homology and Information Gathering and Domain Annotation for Proteins

Homology and Information Gathering and Domain Annotation for Proteins Homology and Information Gathering and Domain Annotation for Proteins Outline Homology Information Gathering for Proteins Domain Annotation for Proteins Examples and exercises The concept of homology The

More information

PROTEIN SYNTHESIS INTRO

PROTEIN SYNTHESIS INTRO MR. POMERANTZ Page 1 of 6 Protein synthesis Intro. Use the text book to help properly answer the following questions 1. RNA differs from DNA in that RNA a. is single-stranded. c. contains the nitrogen

More information

Translation Part 2 of Protein Synthesis

Translation Part 2 of Protein Synthesis Translation Part 2 of Protein Synthesis IN: How is transcription like making a jello mold? (be specific) What process does this diagram represent? A. Mutation B. Replication C.Transcription D.Translation

More information

Biology Semester 2 Final Review

Biology Semester 2 Final Review Name Period Due Date: 50 HW Points Biology Semester 2 Final Review LT 15 (Proteins and Traits) Proteins express inherited traits and carry out most cell functions. 1. Give examples of structural and functional

More information

Sequence analysis and comparison

Sequence analysis and comparison The aim with sequence identification: Sequence analysis and comparison Marjolein Thunnissen Lund September 2012 Is there any known protein sequence that is homologous to mine? Are there any other species

More information

Ap Biology Chapter 17 Packet Answers

Ap Biology Chapter 17 Packet Answers AP BIOLOGY CHAPTER 17 PACKET ANSWERS PDF - Are you looking for ap biology chapter 17 packet answers Books? Now, you will be happy that at this time ap biology chapter 17 packet answers PDF is available

More information

Readings Lecture Topics Class Activities Labs Projects Chapter 1: Biology 6 th ed. Campbell and Reese Student Selected Magazine Article

Readings Lecture Topics Class Activities Labs Projects Chapter 1: Biology 6 th ed. Campbell and Reese Student Selected Magazine Article Unit Subtopics and Duration Unit 1: Principles of Science Themes in science Research and Lab techniques 6 days Readings Lecture Topics Class Activities Labs Projects Chapter 1: Biology 6 th ed. Campbell

More information

Sequencing alignment Ameer Effat M. Elfarash

Sequencing alignment Ameer Effat M. Elfarash Sequencing alignment Ameer Effat M. Elfarash Dept. of Genetics Fac. of Agriculture, Assiut Univ. amir_effat@yahoo.com Why perform a multiple sequence alignment? MSAs are at the heart of comparative genomics

More information

Big Idea 1: Does the process of evolution drive the diversity and unit of life?

Big Idea 1: Does the process of evolution drive the diversity and unit of life? AP Biology Syllabus 2016-2017 Course Overview: AP Biology is equivalent to an introductory college level biology program in order to develop student led inquiry into science. The class is designed to go

More information

EBI web resources II: Ensembl and InterPro. Yanbin Yin Spring 2013

EBI web resources II: Ensembl and InterPro. Yanbin Yin Spring 2013 EBI web resources II: Ensembl and InterPro Yanbin Yin Spring 2013 1 Outline Intro to genome annotation Protein family/domain databases InterPro, Pfam, Superfamily etc. Genome browser Ensembl Hands on Practice

More information

3. SEQUENCE ANALYSIS BIOINFORMATICS COURSE MTAT

3. SEQUENCE ANALYSIS BIOINFORMATICS COURSE MTAT 3. SEQUENCE ANALYSIS BIOINFORMATICS COURSE MTAT.03.239 25.09.2012 SEQUENCE ANALYSIS IS IMPORTANT FOR... Prediction of function Gene finding the process of identifying the regions of genomic DNA that encode

More information

GENETICS - CLUTCH CH.1 INTRODUCTION TO GENETICS.

GENETICS - CLUTCH CH.1 INTRODUCTION TO GENETICS. !! www.clutchprep.com CONCEPT: HISTORY OF GENETICS The earliest use of genetics was through of plants and animals (8000-1000 B.C.) Selective breeding (artificial selection) is the process of breeding organisms

More information

Campbell Biology AP Edition 11 th Edition, 2018

Campbell Biology AP Edition 11 th Edition, 2018 A Correlation and Narrative Summary of Campbell Biology AP Edition 11 th Edition, 2018 To the AP Biology Curriculum Framework AP is a trademark registered and/or owned by the College Board, which was not

More information

Large-Scale Genomic Surveys

Large-Scale Genomic Surveys Bioinformatics Subtopics Fold Recognition Secondary Structure Prediction Docking & Drug Design Protein Geometry Protein Flexibility Homology Modeling Sequence Alignment Structure Classification Gene Prediction

More information

Introduction to Molecular and Cell Biology

Introduction to Molecular and Cell Biology Introduction to Molecular and Cell Biology Molecular biology seeks to understand the physical and chemical basis of life. and helps us answer the following? What is the molecular basis of disease? What

More information

SCOTCAT Credits: 20 SCQF Level 7 Semester 1 Academic year: 2018/ am, Practical classes one per week pm Mon, Tue, or Wed

SCOTCAT Credits: 20 SCQF Level 7 Semester 1 Academic year: 2018/ am, Practical classes one per week pm Mon, Tue, or Wed Biology (BL) modules BL1101 Biology 1 SCOTCAT Credits: 20 SCQF Level 7 Semester 1 10.00 am; Practical classes one per week 2.00-5.00 pm Mon, Tue, or Wed This module is an introduction to molecular and

More information

Tutorial 4 Substitution matrices and PSI-BLAST

Tutorial 4 Substitution matrices and PSI-BLAST Tutorial 4 Substitution matrices and PSI-BLAST 1 Agenda Substitution Matrices PAM - Point Accepted Mutations BLOSUM - Blocks Substitution Matrix PSI-BLAST Cool story of the day: Why should we care about

More information

What can sequences tell us?

What can sequences tell us? Bioinformatics What can sequences tell us? AGACCTGAGATAACCGATAC By themselves? Not a heck of a lot...* *Indeed, one of the key results learned from the Human Genome Project is that disease is much more

More information

Biology Assessment. Eligible Texas Essential Knowledge and Skills

Biology Assessment. Eligible Texas Essential Knowledge and Skills Biology Assessment Eligible Texas Essential Knowledge and Skills STAAR Biology Assessment Reporting Category 1: Cell Structure and Function The student will demonstrate an understanding of biomolecules

More information

1. The basic structural and physiological unit of all living organisms is the A) aggregate. B) organelle. C) organism. D) membrane. E) cell.

1. The basic structural and physiological unit of all living organisms is the A) aggregate. B) organelle. C) organism. D) membrane. E) cell. Name: Date: Test File Questions 1. The basic structural and physiological unit of all living organisms is the A) aggregate. B) organelle. C) organism. D) membrane. E) cell. 2. A cell A) can be composed

More information

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic analysis Phylogenetic Basics: Biological

More information

Introduction to Biology with Lab

Introduction to Biology with Lab Introduction to Biology with Lab Course Text/Materials Mader, Sylvia S. Inquiry into Life, 12th edition, McGraw-Hill, 2008, ISBN: 9780073309330 [find and buy the text: Straighterline.com/textbooks] Custom

More information

2012 Univ Aguilera Lecture. Introduction to Molecular and Cell Biology

2012 Univ Aguilera Lecture. Introduction to Molecular and Cell Biology 2012 Univ. 1301 Aguilera Lecture Introduction to Molecular and Cell Biology Molecular biology seeks to understand the physical and chemical basis of life. and helps us answer the following? What is the

More information

CONCEPT OF SEQUENCE COMPARISON. Natapol Pornputtapong 18 January 2018

CONCEPT OF SEQUENCE COMPARISON. Natapol Pornputtapong 18 January 2018 CONCEPT OF SEQUENCE COMPARISON Natapol Pornputtapong 18 January 2018 SEQUENCE ANALYSIS - A ROSETTA STONE OF LIFE Sequence analysis is the process of subjecting a DNA, RNA or peptide sequence to any of

More information

Local Alignment Statistics

Local Alignment Statistics Local Alignment Statistics Stephen Altschul National Center for Biotechnology Information National Library of Medicine National Institutes of Health Bethesda, MD Central Issues in Biological Sequence Comparison

More information