Practicing Biology Questions

Size: px
Start display at page:

Download "Practicing Biology Questions"

Transcription

1 Practicing Biology Questions Big Idea 2.A 1. Log onto Scroll down to Big Idea 2: Free Energy. Complete the video review activities listed below for videos #012, #013, and #014 under Big Idea 2. REMEMBER, EACH NUMBERED COMPONENT SHOULD a. Watch Bozeman Video #012: Life Requires Free Energy summarize key concepts and related illustrative examples in b. Watch Bozeman Video #013: Photosynthesis & Respiration summarize key concepts and related illustrative examples. In c. Watch Bozeman Video #014: Environmental Matter Exchange summarize key concepts and related illustrative examples. In 2. Part (A): Use a representation or model to describe why ATP releases a large quantity of energy when hydrolyzed. Part (B): In most cases, how does ATP transfer energy from exergonic to endergonic reactions in the cell? Provide a model (diagram) that supports your explanation. 3. A recent revival of the antievolutionary argument from design holds that biochemical pathways are too complex to have evolved, because all intermediate steps in a given pathway must be present to produce the final product. Critique this argument. How could you use the diversity of metabolic pathways that produce the same or similar products to support your case? 4. Justify, using a specific biological example NOT provided during lecture or found in your textbook, that living systems DO NOT violate the laws of thermodynamics. 5. Describe 2-3 different strategies that organisms employ to obtain free energy for cell processes (i.e., different strategies to regulate body temperature, physiological changes, variations in reproductive and offspring-rearing strategies, etc.). 6. Explain the correlation that exists between size of an organism and metabolic rate. What trends exist across species? What are some plausible explanations for these trends? 7. Predict 2-3 consequences to organisms, populations, and ecosystems if sufficient free energy is not available. Justify your prediction. 8. Part (A): Using either cellular respiration or photosynthesis, describe the components of a redox reaction. Part (B): Describe how photosynthesis and cellular respiration pathways are interdependent. Include a model that supports your description. 9. Describe the mechanisms and structural features that allow organisms to capture, store, and use free energy (i.e., autotrophs versus heterotrophs, photosynthesis, chemosynthesis, anaerobic versus aerobic respiration). 10. Create a visual representation to describe the structure of mitochondrial and chloroplast membranes and explain how membrane structure leads to the establishment of electrochemical gradients and the formation of ATP. 11. Many organisms can withstand periods of oxygen debt (anaerobic conditions). Yeast undergoing oxygen debt convert pyruvic acid to ethanol and carbon dioxide. Animals undergoing oxygen debt convert pyruvic acid to lactic acid. Pyruvic acid is fairly nontoxic even in high concentrations. However, both ethanol and lactic acid are toxic even in moderate concentrations. Explain why this conversion occurs in organisms despite the toxic nature of these substances. Big Idea 2 L. Carnes

2 12. Mitochondria isolated from liver cells can be used to study the rate of electron transport in response to a variety of chemicals. The rate of electron transport is measured as the rate of disappearance of oxygen from the solution using an oxygen-sensitive electrode. How can we justify using the disappearance of oxygen from the solution as a measure of electron transport? 13. Part (A): What color of light is least effective in driving photosynthesis in plants? Explain why this is the case. Part (B): Use a representation or model to describe the light dependent and independent reactions of photosynthesis and the interdependency of the processes in the capture and storage of free energy. 14. Chloroplast thylakoids can be isolated and purified for biochemical experiments. Shown below is an experiment in which ph was measured in a suspension of isolated thylakoids before and after light illumination (first arrow). At the time indicated by the second arrow, a chemical compound was added to the thylakoids. Examine these data and address the questions that follow. a. Based on your understanding of the function of the chloroplast, why does turning on the light cause the ph in the solution outside the thylakoids to increase? b. Given the response, the chemical added was probably an inhibitor of which of the following: oxidative phosphorylation, ATP synthase, NADPH breakdown, ETC between PSI and PSII, Rubisco? 15. Explain how each of the following can be used as evidence of common ancestry AND divergence. a. The use of energetically favorable reactions, such as the conversion of ATP ADP. b. Glycolysis c. Electron Transport Chains & Chemiosmosis 16. Scientific evidence indicates that the CO 2 added to the air by the burning of wood and fossil fuels is contributing to global warming, a rise in global temperature. Tropical rain forests are estimated to be responsible for more than 20% of global photosynthesis, yet their consumption of large amounts of CO 2 is thought to make little or no net contribution to reduction of global warming. Why might this be? (HINT: consider what happens to the food produced by a rain forest tree when it is eaten by animals or the tree dies.) 17. Part (A): Identify more than four (4) chemical elements and molecules that function as key building blocks in or are eliminated as waste by living organisms. Explain the function(s) of each element in the living system. Part (B): Use the nitrogen cycle to create a simple model that shows one possible path for an atom or molecule of nitrogen from abiotic to biotic reservoirs and back. 18. Describe how the structure of a root hair, an alveolus, or a microvilli cell enhances function. 19. Justify the following statement using two illustrative examples: Living systems depend on properties of water that result from its polarity and hydrogen bonding.

3 20. Assume a cell is 10 µm in linear dimension. Fill in the chart and respond to the prompt below. a. 10-µm cell as a cube b. 20-µm cell as a cube c. 10-µm cell as a sphere d. 20-µm cell as a sphere SA V SA/V Ratio a. In general, how does surface area change as linear dimensions increase twofold? b. In general, how does volume change as linear dimensions increase twofold? c. In general, how do SA/V ratios change as linear dimensions increase twofold? d. Explain how these shapes and ratios impact procurement of nutrients and elimination of wastes. Big Idea 2.B 21. Log onto Scroll down to Big Idea 2: Free Energy. Complete the video review activities listed below for videos #015, #016, and #017 under Big Idea 2. REMEMBER, EACH NUMBERED COMPONENT SHOULD a. Watch Bozeman Video #015: Cell Membranes summarize key concepts and related illustrative examples in your own words. Support your understanding with diagrams when appropriate. b. Watch Bozeman Video #016: Transport Across Membranes summarize key concepts and related illustrative examples. In c. Watch Bozeman Video #017: Compartmentalization summarize key concepts and related illustrative examples. In 22. Describe what is happening in the diagram below. Assume that the membrane is permeable to water only, but not the molecules (dots). 23. Use a representation or model to describe how eukaryotic cells use internal membranes that partition the cell into several specialized regions, and how cell structure of eukaryotes differs from the cell structure of prokaryotes. 24. In eukaryotic cells, ribosomes are found both free in the cytosol and attached to the rough ER. Describe (1) one ultimate destination of a protein produced on an attached ribosome, and one general function of the protein (you do not have to identify a specific protein). And (2) one ultimate destination of a protein produced on a free ribosome, and one general function of the protein (you do not have to identify a specific protein). 25. In terms of cellular structure and function, and using a relevant biological example, explain how a cell illustrates that A Living Unit Greater Than the Sum of Its Parts.

4 Big Idea 2.C 26. Log onto Scroll down to Big Idea 2: Free Energy. Complete the video review activities listed below for videos #018 and #019 under Big Idea 2. REMEMBER, EACH NUMBERED COMPONENT SHOULD HAVE A DEDICATED PAGE (that is, summarize each video on a separate piece of paper): a. Watch Bozeman Video #018: Positive and Negative Feedback Loops summarize key concepts and related illustrative examples in b. Watch Bozeman Video #019: Response to External Environments summarize key concepts and related illustrative examples. In 27. Part (A): Draw a simple positive feedback loop (your choice). Make predictions about how the mechanism amplifies activities and processes based on your model. Part (B): Describe an example of a simple negative regulatory system and how an organism uses the mechanism to respond to an environmental change. 28. Use an illustrative example and model to connect the use of negative feedback and maintaining the internal environment in response to changing external conditions and consequences if dynamic homeostasis is not maintained. 29. Part (A): Draw and describe a model that illustrates how plants use physiological mechanisms to respond to changes in their external environments. Part (B): Describe two behavioral mechanisms used by animals to respond to changes in their external environments. Big Idea 2.D 30. Log onto Scroll down to Big Idea 2: Free Energy. Complete the video review activities listed below for videos #020, #021, #022, and #023 under Big Idea 2. REMEMBER, EACH NUMBERED COMPONENT SHOULD a. Watch Bozeman Video #020: Biotic and Abiotic Factors summarize key concepts and related illustrative examples in b. Watch Bozeman Video #021: Homeostatic Evolution summarize key concepts and related illustrative examples. In c. Watch Bozeman Video #022: Homeostatic Disruptions summarize key concepts and related illustrative examples. In d. Watch Bozeman Video #023: Plant and Animal Defenses summarize key concepts and related illustrative examples. In 31. Use an appropriate example to describe how cell activities can be affected by (1) biotic factors; and (2) abiotic factors. 32. Use an appropriate example to describe how organisms activities can be affected by (1) biotic factors; and (2) abiotic factors. 33. Part (A): Discuss the relationship between species diversity and ecosystem stability. Part (B): Discuss how algal blooms can lead to instability in populations, communities, and ecosystems. 34. Justify, based on scientific evidence, the statement that homeostatic mechanisms reflect continuity due to common ancestry and/or divergence due to adaptation in different environments (i.e., mechanisms for obtaining nutrients and eliminating wastes, etc.) in several different phyla or species, using appropriate examples such as a comparison of osmoregulation in aquatic v. terrestrial plants AND in osmoregulation in bacteria, fish and protists.

5 35. Part (A): Describe how dehydration is an example of a disruption at the cellular level that can affect the health of an organism. Part (B): Describe how invasive/introduced species are an example of a disruption that can affect the balance of an entire ecosystem, using appropriate examples. Part (C): Discuss one way (other than introduced species) in which humans negatively impact the dynamic homeostasis or balance of ecosystems worldwide. 36. Use a representation or model to describe an example of a nonspecific immune defense system in plants AND animals (i.e., chemical responses, cellular responses). 37. Describe one invertebrate defense mechanism and discuss how it is an evolutionary adaptation retained in vertebrates. 38. In specific immunity, how do B cell responses differ from T cell responses? 39. Use a representation or model to describe the components of the acquired/specific immune response (cell-mediated v. humoral). 40. Discuss the role of structure/function in the antibody/antigen relationship. 41. Use a visual representation (graph) to describe the primary and secondary immune response. Discuss possible reasons for the robust nature and speed of the secondary response as compared to the primary response. Big Idea 2.E 42. Log onto Scroll down to Big Idea 2: Free Energy. Complete the video review activities listed below for videos #024, #025, and #026 under Big Idea 2. REMEMBER, EACH NUMBERED COMPONENT SHOULD a. Watch Bozeman Video #024: Development: Timing and Coordination summarize key concepts and related illustrative examples in b. Watch Bozeman Video #025: Mechanisms of Timing and Control summarize key concepts and related illustrative examples. In c. Watch Bozeman Video #026: Behavior and Natural Selection summarize key concepts and related illustrative examples. In 43. Describe a model that illustrates the role of programmed cell death (apoptosis) in normal development and differentiation of an organism of choice (i.e., morphogenesis of fingers/toes, immune function, C. elegans development, flower development, etc.). 44. Design a plan for collecting data to support the claim that the timing and coordination of physiological events in an organism of choice involve regulation (i.e., phototropism in plants, circadian rhythms, jet lag in humans, etc.). 45. Describe 2-3 examples of how a cooperative behavior benefits both the individual and the population (i.e., mutualistic relationships, niche partitioning, etc.) that involves timing and coordination of activities/events.

Unit 8 Cell Metabolism. Foldable Notes

Unit 8 Cell Metabolism. Foldable Notes Unit 8 Cell Metabolism Foldable Notes Silently read pages 94-96 of your biology textbook Middle Inside Top Vocabulary 1. ATP 2. ADP 3. Product 4. Reactant 5. Chloroplast 6. Mitochondria 7. Heterotroph

More information

Photosynthesis and cellular respirations

Photosynthesis and cellular respirations The Introduction of Biology Defining of life Basic chemistry, the chemistry of organic molecules Classification of living things History of cells and Cells structures and functions Photosynthesis and cellular

More information

Energy Exchanges Exam: What to Study

Energy Exchanges Exam: What to Study Energy Exchanges Exam: What to Study Here s what you will need to make sure you understand in order to prepare for our exam: Free Energy Conceptual understanding of free energy as available energy in a

More information

Be sure to understand:

Be sure to understand: Learning Targets & Focus Questions for Unit 6: Bioenergetics Chapter 8: Thermodynamics Chapter 9: Cell Resp Focus Q Ch. 10: Photosynthesis Chapter 8 (141-150) 1. I can explain how living systems adhere

More information

Cell Energy Notes ATP THE ENDOSYMBIOTIC THEORY. CELL ENERGY Cells usable source of is called ATP stands for. Name Per

Cell Energy Notes ATP THE ENDOSYMBIOTIC THEORY. CELL ENERGY Cells usable source of is called ATP stands for. Name Per Cell Energy Notes Name Per THE ENDOSYMBIOTIC THEORY The Endosymbiotic theory is the idea that a long time ago, engulfed other prokaryotic cells by. This resulted in the first First proposed by Explains

More information

Energy in the World of Life

Energy in the World of Life Cellular Energy Energy in the World of Life Sustaining life s organization requires ongoing energy inputs Assembly of the molecules of life starts with energy input into living cells Energy Conversion

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Outline I. Energy and Carbon Cycle II. Photosynthesis A. Introduction B. Reactions II. Cellular Respiration A. Introduction B. Reactions Carbon Cycle All organisms

More information

AP Curriculum Framework with Learning Objectives

AP Curriculum Framework with Learning Objectives Big Ideas Big Idea 1: The process of evolution drives the diversity and unity of life. AP Curriculum Framework with Learning Objectives Understanding 1.A: Change in the genetic makeup of a population over

More information

A A A A B B1

A A A A B B1 LEARNING OBJECTIVES FOR EACH BIG IDEA WITH ASSOCIATED SCIENCE PRACTICES AND ESSENTIAL KNOWLEDGE Learning Objectives will be the target for AP Biology exam questions Learning Objectives Sci Prac Es Knowl

More information

Name Date Class. Photosynthesis and Respiration

Name Date Class. Photosynthesis and Respiration Concept Mapping Photosynthesis and Respiration Complete the Venn diagram about photosynthesis and respiration. These terms may be used more than once: absorbs, Calvin cycle, chlorophyll, CO 2, H 2 O, Krebs

More information

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation Cellular Energetics Photosynthesis, Cellular Respiration and Fermentation TEKS B.4 Science concepts. The student knows that cells are the basic structures of all living things with specialized parts that

More information

Cellular Energy. How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration. Click on a lesson name to select.

Cellular Energy. How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration. Click on a lesson name to select. Section 1: How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration Click on a lesson name to select. Section 1 How Organisms Obtain Energy Transformation of Energy Energy

More information

Energy and the Cell. All living things need energy to survive and do work.

Energy and the Cell. All living things need energy to survive and do work. Energy and the Cell EQ: How do cells acquire energy? EQ: Why is the relationship between plants and animals essential to life? All living things need energy to survive and do work. Organisms who depend

More information

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels Cellular Respiration: Harvesting Chemical Energy 9.1 Catabolic pathways yield energy by oxidizing organic fuels 9.2 Glycolysis harvests chemical energy by oxidizing glucose to pyruvate 9.3 The citric acid

More information

Chapter 8.1. How Organisms Obtain Energy

Chapter 8.1. How Organisms Obtain Energy Chapter 8.1 How Organisms Obtain Energy Main Idea All living organisms use energy to carry out all biological processes. Energy Energy is the ability to do work. Quick Review: Heterotrophs are organisms

More information

Cell Energy: The Big Picture. So, What Exactly is ATP. Adenosine Triphosphate. Your turn to Practice converting ATP to ADP:

Cell Energy: The Big Picture. So, What Exactly is ATP. Adenosine Triphosphate. Your turn to Practice converting ATP to ADP: Understanding How Living Things Obtain and Use Energy. Cell Energy: The Big Picture Most Autotrophs produce food (sugar) using light energy during Photosynthesis. Then, both Autotrophs and Heterotroph

More information

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution. The AP Biology course is designed to enable you to develop advanced inquiry and reasoning skills, such as designing a plan for collecting data, analyzing data, applying mathematical routines, and connecting

More information

Biology Semester 1 Study Guide

Biology Semester 1 Study Guide Biology Semester 1 Study Guide Part 1: Scientific Investigations You are conducting an experiment to determine if increased UV radiation from the decrease in the ozone layer is killing off frog tadpoles.

More information

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

Map of AP-Aligned Bio-Rad Kits with Learning Objectives Map of AP-Aligned Bio-Rad Kits with Learning Objectives Cover more than one AP Biology Big Idea with these AP-aligned Bio-Rad kits. Big Idea 1 Big Idea 2 Big Idea 3 Big Idea 4 ThINQ! pglo Transformation

More information

Cellular Energy: Respiration. Goals: Anaerobic respiration

Cellular Energy: Respiration. Goals: Anaerobic respiration Cellular Energy: Respiration Anaerobic respiration Goals: Define and describe the 3 sets of chemical reactions that comprise aerobic cellular respiration Describe the types of anaerobic respiration Compare

More information

Transformation of Energy! Energy is the ability to do work.! Thermodynamics is the study of the flow and transformation of energy in the universe.

Transformation of Energy! Energy is the ability to do work.! Thermodynamics is the study of the flow and transformation of energy in the universe. Section 1 How Organisms Obtain Energy Transformation of Energy! Energy is the ability to do work.! Thermodynamics is the study of the flow and transformation of energy in the universe. Section 1 How Organisms

More information

AP Bio-Ms.Bell Unit#3 Cellular Energies Name

AP Bio-Ms.Bell Unit#3 Cellular Energies Name AP Bio-Ms.Bell Unit#3 Cellular Energies Name 1. Base your answer to the following question on the image below. 7. Base your answer to the following question on Which of the following choices correctly

More information

ATP. Chapter 4. Photosynthesis. Cell Respiration. Energy of Life. All organisms need energy in order to survive

ATP. Chapter 4. Photosynthesis. Cell Respiration. Energy of Life. All organisms need energy in order to survive ATP Chapter 4 Photosynthesis Energy of Life All organisms need energy in order to survive 2 Major groups of organisms: A. autotrophs make their own food Ex: plants B. heterotrophs must eat others living

More information

Cellular Energetics Review

Cellular Energetics Review Cellular Energetics Review 1. What two molecules are formed when a phosphate is removed from ATP? 2. Describe how photosynthesis and cellular respiration are reverse processes. 3. What is the function

More information

Cell Energetics. How plants make food and everyone makes energy!

Cell Energetics. How plants make food and everyone makes energy! Cell Energetics How plants make food and everyone makes energy! Carbon Cycle Where did the mitochondria and chloroplast come from? Endosymbiotic Theory Endosymbiotic theory = a theory that some of the

More information

The branch of biology dealing with interactions among organisms and between organisms and their environment is called. ecology.

The branch of biology dealing with interactions among organisms and between organisms and their environment is called. ecology. The branch of biology dealing with interactions among organisms and between organisms and their environment is called ecology. The simplest grouping of more than one kind of organism in the biosphere is

More information

X Biology I. Unit 1-4: Cellular Energy

X Biology I. Unit 1-4: Cellular Energy NOTE/STUDY GUIDE: Unit 1-4, Cellular Energy X Biology I, Mr. Doc Miller, M.Ed. North Central High School Name: ID#: NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE X Biology I Unit 1-4: Cellular Energy Additional

More information

AP Biology Review Chapters 6-8 Review Questions Chapter 6: Metabolism: Energy and Enzymes Chapter 7: Photosynthesis Chapter 8: Cellular Respiration

AP Biology Review Chapters 6-8 Review Questions Chapter 6: Metabolism: Energy and Enzymes Chapter 7: Photosynthesis Chapter 8: Cellular Respiration AP Biology Review Chapters 6-8 Review Questions Chapter 6: Metabolism: Energy and Enzymes 1. Understand and know the first and second laws of thermodynamics. What is entropy? What happens when entropy

More information

Overview of Photosynthesis

Overview of Photosynthesis Overview of Photosynthesis Most autotrophs (organisms that create their own food), make organic compounds (sugars/glucose) using a process called photosynthesis. This process occurs only in plants. Overview

More information

2.A.2- Capture and Storage of Free Energy

2.A.2- Capture and Storage of Free Energy 2.A.2- Capture and Storage of Free Energy Big Idea 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce, and to maintain dynamic homeostasis. EU 2.A- Growth, reproduction

More information

II. The Relationship Between Photosynthesis and Respiration

II. The Relationship Between Photosynthesis and Respiration Name Period Date Cellular Respiration Notes Outline I The Importance of Food A Food provides living things with the: B Food serves as a source of: C Food serves as a source of: II The Relationship Between

More information

Cellular Respiration and Photosynthesis Test

Cellular Respiration and Photosynthesis Test Cellular Respiration and Photosynthesis Test 1. When bonds are made energy is, when bonds are broken energy is. A. stored / released C. released / stored B. used / not used D. created / destroyed 2. Aerobic

More information

AP Biology Essential Knowledge Cards BIG IDEA 1

AP Biology Essential Knowledge Cards BIG IDEA 1 AP Biology Essential Knowledge Cards BIG IDEA 1 Essential knowledge 1.A.1: Natural selection is a major mechanism of evolution. Essential knowledge 1.A.4: Biological evolution is supported by scientific

More information

Ch. 9 - Cellular Respiration/Fermentation Study Guide

Ch. 9 - Cellular Respiration/Fermentation Study Guide Ch. 9 - Cellular Respiration/Fermentation Study Guide A. Introduction 1. All living things need energy for metabolism. a. Plants produce glucose through photosynthesis; break down glucose during cellular

More information

1 of 13 8/11/2014 10:32 AM Units: Teacher: APBiology, CORE Course: APBiology Year: 2012-13 Chemistry of Life Chapters 1-4 Big Idea 1, 2 & 4 Change in the genetic population over time is feedback mechanisms

More information

SPRING GROVE AREA SCHOOL DISTRICT. Course Description. Instructional Strategies, Learning Practices, Activities, and Experiences.

SPRING GROVE AREA SCHOOL DISTRICT. Course Description. Instructional Strategies, Learning Practices, Activities, and Experiences. SPRING GROVE AREA SCHOOL DISTRICT PLANNED COURSE OVERVIEW Course Title: Advanced Placement Biology Grade Level(s): 12 Units of Credit: 1.50 Classification: Elective Length of Course: 30 cycles Periods

More information

2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of November

2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of November Name: Class: Date: 2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of 02-09 November 1 Which of the following statements is true for all cells? a They use solar energy

More information

Review Questions - Lecture 5: Metabolism, Part 1

Review Questions - Lecture 5: Metabolism, Part 1 Review Questions - Lecture 5: Metabolism, Part 1 Questions: 1. What is metabolism? 2. What does it mean to say that a cell has emergent properties? 3. Define metabolic pathway. 4. What is the difference

More information

Biology Unit Overview and Pacing Guide

Biology Unit Overview and Pacing Guide This document provides teachers with an overview of each unit in the Biology curriculum. The Curriculum Engine provides additional information including knowledge and performance learning targets, key

More information

Marine Resources Development Foundation/MarineLab Grades: 9, 10, 11, 12 States: AP Biology Course Description Subjects: Science

Marine Resources Development Foundation/MarineLab Grades: 9, 10, 11, 12 States: AP Biology Course Description Subjects: Science Marine Resources Development Foundation/MarineLab Grades: 9, 10, 11, 12 States: AP Biology Course Description Subjects: Science Highlighted components are included in Tallahassee Museum s 2016 program

More information

BIOLOGY STANDARDS BASED RUBRIC

BIOLOGY STANDARDS BASED RUBRIC BIOLOGY STANDARDS BASED RUBRIC STUDENTS WILL UNDERSTAND THAT THE FUNDAMENTAL PROCESSES OF ALL LIVING THINGS DEPEND ON A VARIETY OF SPECIALIZED CELL STRUCTURES AND CHEMICAL PROCESSES. First Semester Benchmarks:

More information

Photosynthesis and Cellular Respiration Note-taking Guide

Photosynthesis and Cellular Respiration Note-taking Guide Photosynthesis and Cellular Respiration Note-taking Guide Preview to Photosynthesis glucose, reactions, light-dependent, Calvin cycle, thylakoid, photosystem II, oxygen, light-harvesting, two, chloroplasts,

More information

AP Biology. Photosynthesis

AP Biology. Photosynthesis Photosynthesis Redox Reactions break bonds & move electrons from one molecule to another as electrons move they carry energy with them that energy is stored in another bond, released as heat or harvested

More information

AP Biology Review Chapters 6-8 Review Questions Chapter 6: Metabolism: Energy and Enzymes Chapter 7: Photosynthesis Chapter 8: Cellular Respiration

AP Biology Review Chapters 6-8 Review Questions Chapter 6: Metabolism: Energy and Enzymes Chapter 7: Photosynthesis Chapter 8: Cellular Respiration AP Biology Review Chapters 6-8 Review Questions Chapter 6: Metabolism: Energy and Enzymes 1. Understand and know the first and second laws of thermodynamics. What is entropy? What happens when entropy

More information

ATP, Cellular Respiration and Photosynthesis

ATP, Cellular Respiration and Photosynthesis ATP, Cellular Respiration and Photosynthesis Energy for Cells Free Energy: the energy available to do work Types of Reactions Endergonic Reactions: require an input of energy Exergonic Reactions: release

More information

Essential knowledge 1.A.2: Natural selection

Essential knowledge 1.A.2: Natural selection Appendix C AP Biology Concepts at a Glance Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring understanding 1.A: Change in the genetic makeup of a population over time

More information

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars 4.2 8.2 Overview Photosynthesis: of Photosynthesis An Overview Photosynthesis process by which plants make food using energy from the sun Plants are autotrophs that make their own source of chemical energy.

More information

Unit 5 Cellular Energy

Unit 5 Cellular Energy Unit 5 Cellular Energy I. Enzymes (159) 1.Are CATALYSTS: Speed up chemical reactions that would otherwise happen too slowly to support life. Catalysts DO NOT make reactions happen that couldn t happen

More information

Harvesting energy: photosynthesis & cellular respiration part 1

Harvesting energy: photosynthesis & cellular respiration part 1 Harvesting energy: photosynthesis & cellular respiration part 1 Agenda I. Overview (Big Pictures) of Photosynthesis & Cellular Respiration II. Making Glucose - Photosynthesis III. Making ATP - Cellular

More information

Unit 5.1 ~ Cell Energy: PHOTOSYNTHESIS

Unit 5.1 ~ Cell Energy: PHOTOSYNTHESIS Unit 5.1 ~ Cell Energy: PHOTOSYNTHESIS Objectives/Goals: Classify organisms in how they obtain energy Identify the reactants and products of photosynthesis Understand how ATP is used to provide cells with

More information

Ch. 4 Cells and Energy. Photosynthesis and Cellular Respiration

Ch. 4 Cells and Energy. Photosynthesis and Cellular Respiration Ch. 4 Cells and Energy Photosynthesis and Cellular Respiration 1 2 4.1 Chemical Energy and ATP Living organisms need energy Most comes indirectly from sun! Some change sunlight into organic compounds Others

More information

AP Biology Big Idea 2 Unit Study Guide

AP Biology Big Idea 2 Unit Study Guide Name: Period: AP Biology Big Idea 2 Unit Study Guide This study guide highlights concepts and terms covered in the evolution unit. While this study guide is meant to be inclusive, any term or concept covered

More information

Pre-AP Biology Energy Unit Study Guide Part I

Pre-AP Biology Energy Unit Study Guide Part I Pre-AP Biology Energy Unit Study Guide Part I The Law of conservation of matter/mass : matter can not be created or destroyed However, matter may be rearranged in space In chemical reactions, the mass

More information

Cell Energetics - Practice Test

Cell Energetics - Practice Test Name: Class: _ Date: _ Cell Energetics - Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is the source of energy used

More information

Metabolism Review. A. Top 10

Metabolism Review. A. Top 10 A. Top 10 Metabolism Review 1. Energy production through chemiosmosis a. pumping of H+ ions onto one side of a membrane through protein pumps in an Electron Transport Chain (ETC) b. flow of H+ ions across

More information

Photosynthesis and Cellular Respiration Note-taking Guide

Photosynthesis and Cellular Respiration Note-taking Guide Photosynthesis and Cellular Respiration Note-taking Guide Preview to Photosynthesis glucose, reectlons, light-dependent, Calvin cycle, thylakoid, oxygen, light-harvesting, two, chloroplasts, photosynthesis,

More information

Cell Energy: Photosynthesis & Respiration

Cell Energy: Photosynthesis & Respiration Cell Energy: Photosynthesis & Respiration Today s Learning Goals In plants, chlorophyll (found in chloroplasts) captures energy from the sun in order to make food during photosynthesis (Review) Cells release

More information

Life: Levels of Organization, Cell Structure & Function, Major Processes for Fueling Life s Activity

Life: Levels of Organization, Cell Structure & Function, Major Processes for Fueling Life s Activity 1 EVPP 110 Lecture Dr. Largen - Fall 2003 Life: Levels of Organization, Cell Structure & Function, Major Processes for Fueling Life s Activity 2 Levels of Organization of Life Levels of organization of

More information

Unit 3: Photosynthesis & Cellular Respiration

Unit 3: Photosynthesis & Cellular Respiration Unit 3: Photosynthesis & Cellular Respiration Monday/Tuesday Wednesday/Thursday Friday Bell Ringer Answer Daily Goal HOMEWORK Bell Ringer Answer Monday/Tuesday Wednesday/Thursday Friday Daily Goal HOMEWORK

More information

Unit 2: Cellular Chemistry, Structure, and Physiology Module 4: Cellular Physiology

Unit 2: Cellular Chemistry, Structure, and Physiology Module 4: Cellular Physiology Unit 2: Cellular Chemistry, Structure, and Physiology Module 4: Cellular Physiology NC Essential Standard: 1.2.1 Explain how homeostasis is maintained in a cell and within an organism in various environments

More information

Page 1. Name: UNIT: PHOTOSYNTHESIS AND RESPIRATION TOPIC: PHOTOSYNTHESIS

Page 1. Name: UNIT: PHOTOSYNTHESIS AND RESPIRATION TOPIC: PHOTOSYNTHESIS Name: 4667-1 - Page 1 UNIT: PHOTOSYNTHESIS AND RESPIRATION TOPIC: PHOTOSYNTHESIS 1) The diagram below illustrates the movement of materials involved in a process that is vital for the energy needs of organisms.

More information

Cellular Respiration. Anaerobic vs Aerobic

Cellular Respiration. Anaerobic vs Aerobic Cellular Respiration Anaerobic vs Aerobic What is Cellular Respiration? Process where organisms use GLUCOSE (sugar) to create ENERGY! The energy that is released from chemical bonds during Cellular Respiration

More information

Cellular respiration. How do living things stay alive? Cellular Respiration Burning. Photosynthesis. Cellular Respiration

Cellular respiration. How do living things stay alive? Cellular Respiration Burning. Photosynthesis. Cellular Respiration How do living things stay alive? Cellular Respiration Burning Happens in ALL living things inside cells and has the main goal of producing ATP the fuel of life It does not matter whether the organisms

More information

Chapter 5. Table of Contents. Section 1 Energy and Living Things. Section 2 Photosynthesis. Section 3 Cellular Respiration

Chapter 5. Table of Contents. Section 1 Energy and Living Things. Section 2 Photosynthesis. Section 3 Cellular Respiration Photosynthesis and Cellular Respiration Table of Contents Section 1 Energy and Living Things Section 2 Photosynthesis Section 3 Cellular Respiration Section 1 Energy and Living Things Objectives Analyze

More information

Sunday, August 25, 2013 PHOTOSYNTHESIS

Sunday, August 25, 2013 PHOTOSYNTHESIS PHOTOSYNTHESIS PREFACE The sun is the ultimate source of energy. The sun powers nearly all life forms. Photosynthesis converts solar energy into chemical energy. Photoautotrophs use solar energy to synthesize

More information

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy.

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP The chemical energy used for most cell processes is carried by ATP. Molecules in food store chemical

More information

4 GETTING READY TO LEARN Preview Key Concepts 4.1 Chemical Energy and ATP All cells need chemical energy.

4 GETTING READY TO LEARN Preview Key Concepts 4.1 Chemical Energy and ATP All cells need chemical energy. CHAPTER 4 Cells and Energy GETTING READY TO LEARN Preview Key Concepts 4.1 Chemical Energy and ATP All cells need chemical energy. 4.2 Overview of Photosynthesis The overall process of photosynthesis produces

More information

METABOLISM. What is metabolism? Categories of metabolic reactions. Total of all chemical reactions occurring within the body

METABOLISM. What is metabolism? Categories of metabolic reactions. Total of all chemical reactions occurring within the body METABOLISM What is metabolism? METABOLISM Total of all chemical reactions occurring within the body Categories of metabolic reactions Catabolic reactions Degradation pathways Anabolic reactions Synthesis

More information

1/25/2018. Bio 1101 Lec. 5, Part A Chapter 6: Cellular Respiration

1/25/2018. Bio 1101 Lec. 5, Part A Chapter 6: Cellular Respiration 1 2 3 4 5 Bio 1101 Lec. 5, Part A Chapter 6: Cellular Respiration Energy is needed by cells to do work Chemical energy, a form of potential energy, is stored in bonds of food molecules (such as glucose)

More information

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October Name: Class: _ Date: _ 2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of 19-23 October Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Which

More information

Valley Central School District 944 State Route 17K Montgomery, NY Telephone Number: (845) ext Fax Number: (845)

Valley Central School District 944 State Route 17K Montgomery, NY Telephone Number: (845) ext Fax Number: (845) Valley Central School District 944 State Route 17K Montgomery, NY 12549 Telephone Number: (845)457-2400 ext. 18121 Fax Number: (845)457-4254 Advance Placement Biology Presented to the Board of Education

More information

Unit 3: Cell Energy Guided Notes

Unit 3: Cell Energy Guided Notes Enzymes Unit 3: Cell Energy Guided Notes 1 We get energy from the food we eat by breaking apart the chemical bonds where food is stored. energy is in the bonds, energy is the energy we use to do things.

More information

CELLULAR ENERGETICS PHOTOSYNTHESIS SUMMARY EQUATION SITE OF PHOTOSYNTHESIS -- PLANTS. Cellular Energetics Activity #4 page 1

CELLULAR ENERGETICS PHOTOSYNTHESIS SUMMARY EQUATION SITE OF PHOTOSYNTHESIS -- PLANTS. Cellular Energetics Activity #4 page 1 Cellular Energetics Activity #4 page 1 AP BIOLOGY NAME CELLULAR ENERGETICS ACTIVITY #4 DATE HOUR PHOTOSYNTHESIS SUMMARY EQUATION SITE OF PHOTOSYNTHESIS -- PLANTS Cellular Energetics Activity #4 page 2

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Outline I. Energy and Carbon Cycle II. Photosynthesis A. Introduction B. Reactions II. Cellular Respiration A. Introduction B. Reactions Carbon Cycle All organisms

More information

Ch. 6 & 7 Photosynthesis & Cellular Respiration

Ch. 6 & 7 Photosynthesis & Cellular Respiration Ch. 6 & 7 Photosynthesis & Cellular Respiration 6.1 Energy Reactions The Cycle of Energy Sun CO 2 H 2 O Photosynthesis (energy stored) Cellular Respiration (energy released) O 2 Glucose Obtaining Energy

More information

PHOTOSYNTHESIS. Light Reaction Calvin Cycle

PHOTOSYNTHESIS. Light Reaction Calvin Cycle PHOTOSYNTHESIS Light Reaction Calvin Cycle Photosynthesis Purpose: use energy from light to convert inorganic compounds into organic fuels that have stored potential energy in their carbon bonds Carbon

More information

All Cells need energy. (Ability to perform work) What do cells use energy for? Mitosis. Repair. Active transport. Movement.

All Cells need energy. (Ability to perform work) What do cells use energy for? Mitosis. Repair. Active transport. Movement. Cell Energetics All Cells need energy. (Ability to perform work) What do cells use energy for? Mitosis. Repair. Active transport. Movement. What Is ATP? ATP adenosine triphosphate is a chemical molecule

More information

PHOTOSYNTHESIS STARTS WITH

PHOTOSYNTHESIS STARTS WITH Name Date Period PHOTOSYNTHESIS STARTS WITH 1. Molecules that collect light energy are called _P. 2. Chlorophyll a and b absorb _B -_V and _R wavelengths of light best. 3. _C is the main light absorbing

More information

Energy Metabolism exergonic reaction endergonic reaction Energy of activation

Energy Metabolism exergonic reaction endergonic reaction Energy of activation Metabolism Energy Living things require energy to grow and reproduce Most energy used originates from the sun Plants capture 2% of solar energy Some captured energy is lost as metabolic heat All energy

More information

AP Biology Curriculum Framework

AP Biology Curriculum Framework AP Biology Curriculum Framework This chart correlates the College Board s Advanced Placement Biology Curriculum Framework to the corresponding chapters and Key Concept numbers in Campbell BIOLOGY IN FOCUS,

More information

1. Why are keystone species good? 2. What kind of solution does water ALWAYS move towards? 3. Do plant cells have mitochondria? Why? 4.

1. Why are keystone species good? 2. What kind of solution does water ALWAYS move towards? 3. Do plant cells have mitochondria? Why? 4. 1. Why are keystone species good? 2. What kind of solution does water ALWAYS move towards? 3. Do plant cells have mitochondria? Why? 4. What happens to sugars produced during photosynthesis? 5. How does

More information

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6 Metabolism: Energy and Enzymes Chapter 6 Forms of Energy Outline Laws of Thermodynamics Metabolic Reactions ATP Metabolic Pathways Energy of Activation Enzymes Photosynthesis Cellular Respiration 1 2 Forms

More information

This is an example of cellular respiration, which can be used to make beer and wine using different metabolic pathways For these reasons we call this

This is an example of cellular respiration, which can be used to make beer and wine using different metabolic pathways For these reasons we call this Chapter 6 Carvings from ancient Egypt show barley being crushed and mixed with water (left) and then put into closed vessels (centre) where airless conditions are suitable for the production of alcohol

More information

Energy for Life 12/11/14. Light Absorption in Chloroplasts

Energy for Life 12/11/14. Light Absorption in Chloroplasts Energy for Life Biochemical pathways A series of reactions where the products of one reaction is used in the next reaction Light Absorption in Chloroplasts Chloroplasts Two membranes Grana- layered stacks

More information

Cellular Energy (Photosynthesis & Cellular Respiration)

Cellular Energy (Photosynthesis & Cellular Respiration) (Photosynthesis & Cellular Respiration) Before You Read Before you read the chapter, respond to these statements. 1. Write an A if you agree with the statement. 2. Write a D if you disagree with the statement.

More information

Cellular Energy. The cell will store energy in molecules like sugars and ATP

Cellular Energy. The cell will store energy in molecules like sugars and ATP Cellular Energy Cellular Energy The cell will store energy in molecules like sugars and ATP Most cells have small stores of ATP that only last a few seconds, but cannot store energy there long-term. Cells

More information

In Cellular Respiration, are removed from sugar and transferred to

In Cellular Respiration, are removed from sugar and transferred to 1 2 3 4 5 Bio 1101 Lec. 5, Part A (Guided Notes) Chapter 6: Cellular Respiration Energy is needed by cells to do work Chemical energy, a form of potential energy, is stored in bonds of food molecules (such

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Name Date Class CHAPTER 5 TEST PREP PRETEST Photosynthesis and Cellular Respiration In the space provided, write the letter of the term or phrase that best completes each statement or best answers each

More information

Biology Semester One Final Exam Review

Biology Semester One Final Exam Review Biology Semester One Final Exam Review PART ONE: CHARACTERISTICS OF LIFE 1) Define Biology. (Remember to break words down into the prefix and suffix to determine the meaning if needed.) The study of life

More information

Use evidence of characteristics of life to differentiate between living and nonliving things.

Use evidence of characteristics of life to differentiate between living and nonliving things. Grade Big Idea Essential Questions Concepts Competencies Vocabulary 2002 Standards All living things have a common set characteristic needs and functions that separate them from nonliving things such as:

More information

AP Biology Day 16. Monday, September 26, 2016

AP Biology Day 16. Monday, September 26, 2016 AP Biology Day 16 Monday, September 26, 2016 CW/HW Assignments 1. Ch. 9 Guided Reading 2. Ch. 9 Video Cornell Notes (2) PLANNER 1. Ch. 9 Video Cornell Notes (weebly) 2. Study & schedule test retake! unit

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs:

More information

Photosynthesis and Cellular Respiration Lapbook Pre-test. SC.912.L.18.7: Identify the reactants, products, and basic functions of photosynthesis.

Photosynthesis and Cellular Respiration Lapbook Pre-test. SC.912.L.18.7: Identify the reactants, products, and basic functions of photosynthesis. Photosynthesis and Cellular Respiration Lapbook Pre-test Covers Standards: SC.912.L.18.7: Identify the reactants, products, and basic functions of photosynthesis. SC.912.L.18.8: Identify the reactants,

More information

AQA Biology A-level Topic 5: Energy transfers in and between organisms

AQA Biology A-level Topic 5: Energy transfers in and between organisms AQA Biology A-level Topic 5: Energy transfers in and between organisms Notes Photosynthesis Photosynthesis is a reaction in which light energy is used to produce glucose in plants. The process requires

More information

Biology I Photosynthesis. O + sunlight energy C 6. Outer membrane. Inner membrane

Biology I Photosynthesis. O + sunlight energy C 6. Outer membrane. Inner membrane Name: Why? Biology I Photosynthesis How do light-dependent and light-independent reactions provide food for a plant? Plants are the original solar panels. Through photosynthesis a plant is able to convert

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration What you will learn: GPS Standard SB3a Explain the cycling of energy through the processes of photosynthesis and respiration. IN OTHER WORDS Photosynthesis and Cellular

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Photosynthesis a set of chemical reactions that converts carbon dioxide and water to food for plants, cyanobacteria and plant like protists Carbon Dioxide + Water

More information

Chemistry of Life Cells & Bioprocesses CRT Review

Chemistry of Life Cells & Bioprocesses CRT Review Chemistry of Life Cells & Bioprocesses CRT Review Chapter 2: The Chemistry of Life macromolecules - The four types of macromolecules are carbohydrates, lipids, nucleic acids, and proteins Types of Macromolecules

More information

Which row in the chart below identifies the lettered substances in this process?

Which row in the chart below identifies the lettered substances in this process? 1. A biological process that occurs in both plants and animals is shown below. Which row in the chart below identifies the lettered substances in this process? A) 1 B) 2 C) 3 D) 4 2. All life depends on

More information