is the scientific study of. Gregor Mendel was an Austrian monk. He is considered the of genetics. Mendel carried out his work with ordinary garden.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "is the scientific study of. Gregor Mendel was an Austrian monk. He is considered the of genetics. Mendel carried out his work with ordinary garden."

Transcription

1 11-1 The 11-1 Work of Gregor Mendel The Work of Gregor Mendel is the scientific study of. Gregor Mendel was an Austrian monk. He is considered the of genetics. Mendel carried out his work with ordinary garden.

2 Mendel's Peas Mendel studied seven pea plant (genes), each with two contrasting (alleles). A trait is a specific that from one individual to another. Mendel crossed (mated) plants with each of the seven contrasting traits and studied their.

3 Genes and Dominance Mendel s on Pea Plants 1 Crosses Mendel s F1 Crosses onfpea Plants Mendel obtained the same results for all seven characters!

4 Gregor Mendel s Peas Mendel knew that......the male part of each flower (stamens) produce pollen (containing ), and the female part of the flower (pistil) produces cells.

5 During sexual reproduction, sperm and egg cells join in a process called. Fertilization produces a new cell, the. Pea flowers are self-. Sperm cells in pollen fertilize the egg cells in the flower. The seeds and plants that are produced by self-pollination all of their characteristics from the single plant that bore them. Gregor Mendel s Peas

6 Gregor Mendel s Peas Mendel started with (pure) pea plants, but did not want them to -pollinate. Mendel wanted to - two different plants, so he cut away the pollen-bearing parts and dusted the plant s flower with pollen from another plant.

7 Genes and Dominance Each original pair of plants is the P ( ) generation. The offspring are called the F1, or first, generation. The offspring of crosses between parents with different traits are called. The F1 hybrid plants all had the trait of only one of the parents.

8 Mendel's first conclusion was that biological inheritance is determined by passed from one generation to the next. Today, scientists call the factors that determine traits. Each of the characters Mendel studied was controlled by one gene that occurred in two contrasting forms ( ) that produced different traits for each character. Mendel s second conclusion is called the principle of. Genes and Dominance

9 Genes and Dominance The principle of dominance states that some alleles are dominant and others are. An organism with a dominant allele for a trait will always that form of the trait. An organism with the recessive allele for a trait will exhibit that form only when the dominant allele for that trait is.

10 Segregation Mendel the F1 generation to produce the (second filial) generation. The traits controlled by recessive alleles in of the F2 plants.

11 Segregation Mendel inferred that a dominant allele had the corresponding recessive allele in the generation.

12 Segregation The controlled by the recessive allele showed up in some of the F2 plants. The reappearance of the trait controlled by the recessive allele indicated that at some point the allele for shortness had been separated, or, from the allele for tallness.

13 Mendel suggested that the alleles for tallness and shortness in the F1 plants from each other during the formation of the sex cells, or. Segregation When each F1 plant produces gametes, the two alleles segregate from each other so that each carries only a copy of each gene. Therefore, each F1 plant produces types of gametes those with the for tallness, and those with the for shortness.

14 Mendel needed to check his work, so he -pollinated each plant to produce the generation. This supported his hypothesis about the alleles each F2 offspring received. When he self-pollinated the short plants, all the offspring were. When he self-pollinated of the tall plants, all of the offspring were. When he self-pollinated of the tall plants, the offspring showed the same ratio as the F2 generation.

15 Punnett Squares The likelihood that a particular event will occur is called. The gene combinations that might result from a genetic cross can be determined by drawing a diagram known as a. Punnett squares can be used to and compare the genetic that will result from a cross. F1 F2 A capital letter represents the dominant allele (T = ). A lowercase letter represents the recessive allele (t = ). produced by each F1 parent are shown along the top and left side. Possible combinations for the F 2 offspring appear in the four boxes.

16 Punnett Squares All of the tall plants have the same, or physical characteristics (tall). But they do not have the same, or genetic makeup. One third of the tall plants are TT. Organisms that have two identical alleles for a particular character are said to be or true-breeding. Two thirds of the tall plants are Tt. Organisms that have two different alleles for the same character are or hybrid. TT Homozygous Tt Heterozygous

17 11-2 Probability & Punnett Squares One fourth (1/4) of the F2 plants have two alleles for tallness (TT, homozygous, homozygous tall). Probability & Segregation F1 Two fourths (1/2) have one allele for tall and one for short (Tt, ). One fourth (1/4) of the F2 have two alleles for short (tt, homozygous, homozygous short). F2 Because the allele for tallness (T) is dominant over the allele for shortness (t), of the F2 plants should be tall. The ratio of tall plants (TT or Tt) to short (tt) plants is. The predicted ratio showed up in Mendel s experiments indicating that did occur.

18 Probabilities Predict Averages Probabilities predict the outcome of a large number of events. Probability cannot predict the outcome of an individual event. In genetics, the the number of offspring, the the resulting numbers will get to values. Tt Segregation of alleles into eggs Tt Segregation of alleles into sperm Sperm 1 T T T T 1 2 T 1 2 t T t 1 4 r Eggs t t t 1 4

19 Punnett Square Practice In pea plants, round seeds are dominant over wrinkled. Find the genotypic and phenotypic ratios of a cross between one homozygous round plant and one homozygous wrinkled plant.

20 Punnett Square Practice In pea plants, round seeds are dominant over wrinkled. Find the genotypic and phenotypic ratios of a cross between two heterozygous plants.

21 Punnett Square Practice In pea plants, yellow peas are dominant over green. You are conducting genetic experiments with this character and you need to find out the genotype of a plant with yellow pods. Draw punnett squares to show the two possible outcomes of a test-cross for this trait.

22 11-3 Exploring Mendelian Genetics Independent Assortment To determine if the segregation of one pair of alleles affects the segregation of another pair of alleles, Mendel performed a twofactor cross (AKA Cross). The Dihybrid Cross: F1 Mendel crossed plants that produced round yellow peas (genotype ) with true-breeding plants that produced wrinkled green peas (genotype ). All of the F1 offspring produced round yellow peas (genotype ). He then crossed the F1 offspring.

23 The Dihybrid Cross F2: R r Mendel crossed the heterozygous plants with each other to determine if the alleles would segregate from each other in the generation. Independent Assortment Y y R r Y y The Punnett square predicts a ratio in the F2 generation. Mendel's experimental results were very to this. He had discovered the principle of independent assortment.

24 Punnett Square Practice In pea plants, round seeds are dominant over wrinkled and yellow peas are dominant over green. Find the phenotypic ratio of a cross between two plants heterozygous for both characters (dihybrids).

25 Independent Assortment The principle of independent assortment states that genes for different traits can independently during the formation of. Independent assortment helps account for the many genetic observed between individual organisms of the same species. (You don't look like your parents.)

26 A Summary of Mendel's Principles 1) Hypothesis: Genes are passed from parents to their offspring as discrete particles. (vs. the hypothesis.) 2) Principle of : Some forms of the gene may be dominant and others may be recessive. 3) Principle of : In most sexually reproducing organisms, each adult has two copies of each gene which are segregated from each other when gametes are formed. 4) Principle of Assortment: The alleles for different genes usually segregate independently of one another.

27 Beyond Dominant and Recessive Alleles RR When one allele is not completely dominant over another it is called dominance. In incomplete dominance, the heterozygous phenotype is the two homozygous phenotypes and the genotypic and phenotypic ratios are the. A cross between red (RR) and white (WW) four o clock plants produces -colored flowers ( ). WW

28 In, both alleles contribute to the phenotype. In certain varieties Beyond Dominant and Recessive Alleles of chickens, the allele for black feathers is codominant with the allele for white feathers. Heterozygous chickens are speckled with both black and white feathers. Genes that are controlled by more than two alleles are said to have alleles. An individual can t have more than alleles. However, more than two possible alleles can exist in a. The inheritance of A, B, O blood groups is an example of codominance between the A & B alleles and multiple alleles, since there are three (IA, IB & io).

29 Beyond Dominant and Recessive Alleles Multiple Alleles: Different combinations of four alleles result in the rabbit coat colors shown here. KEY C= full color; dominant to all other alleles cch = chinchilla; partial defect in pigmentation; dominant to ch and c alleles Full color: CC, Ccch, Cch, or Cc Chinchilla: cchch, cchcch, or cchc Himalayan: chc, or chch Albino: cc ch = Himalayan; color in certain parts of the body; dominant to c allele c = albino; no color; recessive to all other alleles

30 Beyond Dominant and Recessive Alleles Traits controlled by two or more genes are said to be traits. Polygenic traits exhibit an or quantitative effect producing a of variation in a population. AaBbCc aabbcc Aabbcc 20 Fraction of progeny color in humans is a polygenic trait controlled by more than different genes AaBbcc AaBbCc AABbCc AaBbCc AABBCC AABBCc

31 Applying Mendel's Principles Thomas Hunt used fruit flies to advance the study of genetics. Morgan and others tested Mendel s principles and learned that they applied to organisms. Morgan also was the first to demonstrate experimentally that are on.

32 Applying Mendel's Principles Mendel s principles can be used to study inheritance of traits and to calculate the of certain traits appearing in the next generation.

33 Genetics and the Environment Nature vs. Nurture Characteristics of any organism are determined by the interaction between genes and the. These Hydrangea can be blue, violet or pink depending on the soil ph.

34 11-4 Meiosis 11-4 Meiosis During reproduction, each organism must inherit a copy of every gene from each of its parents. Gametes are formed by a process that the two sets of genes so that each gamete ends up with just set. Meiosis

35 All organisms have different of chromosomes. A body cell ( ) in an adult fruit fly has chromosomes: from its mother, and from its father. These two sets of chromosomes are. Each of the four chromosomes that came from the male parent has a corresponding chromosome from the female parent. Chromosome Number A cell that contains both sets of homologous chromosomes is said to be (2N). For Drosophila, the diploid number is. The gametes of sexually reproducing organisms contain only a set of chromosomes, and therefore only a single set of. These cells are (N). For Drosophila, the haploid number is.

36

37 Phases of Meiosis Meiosis I Interphase I Meiosis I Prophase I Metaphase I Anaphase I Telophase I and Cytokinesis Meiosis is a process of division in which the number of chromosomes per cell is cut in through the separation of chromosomes in a diploid cell. Meiosis involves divisions, meiosis I and meiosis II. By the end of meiosis II, the diploid parent cell that entered meiosis has become haploid cells.

38 Phases of Meiosis Interphase I Cells undergo a round of DNA, forming chromosomes. AS MITOSIS! Prophase I occurs, each chromosome pairs with its corresponding chromosome to form a (4 chromatids). THAN MITOSIS!

39 Phases of Meiosis When homologous chromosomes form tetrads in meiosis, they portions of their in a process called. Crossing-over produces new combinations of alleles, increasing. THAN MITOSIS!

40 Phases of Meiosis Metaphase I fibers attach to the and they line up in pairs along the of the cell. THAN MITOSIS! Anaphase I The spindle fibers pull the homologous, chromosomes toward opposite ends of the cell. THAN MITOSIS!

41 Phases of Meiosis Nuclear form. Division of the and plasma membrane occurs. The two cells produced by meiosis I are and have chromosomes and that are different from each other and from the diploid cell. Telophase I & Cytokinesis THAN MITOSIS Meiosis II The two cells produced by meiosis I now enter a second meiotic division. Unlike meiosis I, neither cell goes through DNA, yet each of the cell s chromosomes still have 2.

42 Phases of Meiosis Meiosis II (Mitosis- ) Telophase and Cytokinesis II II II II and Cytokinesis II

43 Prophase II Meiosis I results in two (N) daughter cells, each with the number of chromosomes as the original cell. Phases of Meiosis Metaphase II The chromosomes line up in the of the cell.

44 Phases of Meiosis Anaphase II The sister separate and move toward opposite of the cell. Telophase II & Cytokinesis Meiosis II results in haploid (N) daughter cells.

45 Spermatogenesis Gamete Formation In organisms, meiosis results in equal-sized called sperm through the process of.

46 Oogenesis Gamete Formation In many female organisms, only egg results from meiosis during the process of. The other three cells, called bodies, are usually not involved in reproduction.

47 Comparing Mitosis and Meiosis s/majorsbiology/meiosis.html Mitosis Meiosis DNA replication Occurs during interphase before mitosis begins Occurs during before begins Number of divisions One, including prophase, metaphase, anaphase, and telophase, each including prophase, metaphase, anaphase, and telophase Synapsis of homologous choromosomes forming tetrads Number of daughter cells and genetic composition Does not occur Occurs during, forming ( groups of four chromatids); is associated with between -sister chromatids Two, each diploid(2n) and genetically identical to the parent cell, each (n), containing half as many chromosomes as the parent cell; genetically from the parent cell and from. Role in the animal body Enables multicellular adult to arise from zygote; produces cells for growth and tissue repair Produces ; reduces number of chromosomes by and introduces genetic among the gametes

48 11-5 Linkage & Gene Maps All the genes found on one chromosome are said to be. In Drosophilla, the gene for eye color is on the chromosome. This is known as a sex- character or trait. Linkage

49 Gene Mapping Crossover can be used to map on. The greater the crossover frequency between two genes, the they are on the chromosome and the more the gene appears to assort. This is why Mendel's results followed the laws of for all 7 of the characters he studied. He was!

11-4 Meiosis Meiosis. Slide 1 of 35. Copyright Pearson Prentice Hall

11-4 Meiosis Meiosis. Slide 1 of 35. Copyright Pearson Prentice Hall 11-4 Meiosis 1 of 35 Each organism must inherit a single copy of every gene from each of its parents. Gametes are formed by a process that separates the two sets of genes so that each gamete ends up with

More information

Interest Grabber. Analyzing Inheritance

Interest Grabber. Analyzing Inheritance Interest Grabber Section 11-1 Analyzing Inheritance Offspring resemble their parents. Offspring inherit genes for characteristics from their parents. To learn about inheritance, scientists have experimented

More information

Section 11 1 The Work of Gregor Mendel

Section 11 1 The Work of Gregor Mendel Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) What is the principle of dominance? What happens during segregation? Gregor Mendel s Peas (pages 263 264) 1. The

More information

Meiosis and Mendel. Chapter 6

Meiosis and Mendel. Chapter 6 Meiosis and Mendel Chapter 6 6.1 CHROMOSOMES AND MEIOSIS Key Concept Gametes have half the number of chromosomes that body cells have. Body Cells vs. Gametes You have body cells and gametes body cells

More information

Reinforcement Unit 3 Resource Book. Meiosis and Mendel KEY CONCEPT Gametes have half the number of chromosomes that body cells have.

Reinforcement Unit 3 Resource Book. Meiosis and Mendel KEY CONCEPT Gametes have half the number of chromosomes that body cells have. 6.1 CHROMOSOMES AND MEIOSIS KEY CONCEPT Gametes have half the number of chromosomes that body cells have. Your body is made of two basic cell types. One basic type are somatic cells, also called body cells,

More information

THINK ABOUT IT. Lesson Overview. Meiosis. As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located.

THINK ABOUT IT. Lesson Overview. Meiosis. As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located. Notes THINK ABOUT IT As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located. They expected genes to be carried on structures inside the cell, but which structures?

More information

Lesson Overview Meiosis

Lesson Overview Meiosis 11.4 THINK ABOUT IT As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located. They expected genes to be carried on structures inside the cell, but which structures?

More information

T TT Tt. T TT Tt. T = Tall t = Short. Figure 11 1

T TT Tt. T TT Tt. T = Tall t = Short. Figure 11 1 Chapt 11 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The principles of probability can be used to a. predict the traits of the offspring of genetic

More information

Sexual Reproduction and Genetics

Sexual Reproduction and Genetics Chapter Test A CHAPTER 10 Sexual Reproduction and Genetics Part A: Multiple Choice In the space at the left, write the letter of the term, number, or phrase that best answers each question. 1. How many

More information

Essential Questions. Meiosis. Copyright McGraw-Hill Education

Essential Questions. Meiosis. Copyright McGraw-Hill Education Essential Questions How does the reduction in chromosome number occur during meiosis? What are the stages of meiosis? What is the importance of meiosis in providing genetic variation? Meiosis Vocabulary

More information

Name Date Class. Meiosis I and Meiosis II

Name Date Class. Meiosis I and Meiosis II Concept Mapping Meiosis I and Meiosis II Complete the events chains about meiosis I and meiosis II. These terms may be used more than once: chromosomes, condense, cytokinesis, equator, line up, nuclei,

More information

Biology Chapter 11: Introduction to Genetics

Biology Chapter 11: Introduction to Genetics Biology Chapter 11: Introduction to Genetics Meiosis - The mechanism that halves the number of chromosomes in cells is a form of cell division called meiosis - Meiosis consists of two successive nuclear

More information

Meiosis. Two distinct divisions, called meiosis I and meiosis II

Meiosis. Two distinct divisions, called meiosis I and meiosis II Meiosis A process in which the number of chromosomes per cell is cut in half through the separation of homologous chromosomes to form gametes, or sex cells Two distinct divisions, called meiosis I and

More information

Ch 11.Introduction to Genetics.Biology.Landis

Ch 11.Introduction to Genetics.Biology.Landis Nom Section 11 1 The Work of Gregor Mendel (pages 263 266) This section describes how Gregor Mendel studied the inheritance of traits in garden peas and what his conclusions were. Introduction (page 263)

More information

Name Date Class CHAPTER 10. Section 1: Meiosis

Name Date Class CHAPTER 10. Section 1: Meiosis Name Date Class Study Guide CHAPTER 10 Section 1: Meiosis In your textbook, read about meiosis I and meiosis II. Label the diagrams below. Use these choices: anaphase I anaphase II interphase metaphase

More information

Mendelian Genetics. Introduction to the principles of Mendelian Genetics

Mendelian Genetics. Introduction to the principles of Mendelian Genetics + Mendelian Genetics Introduction to the principles of Mendelian Genetics + What is Genetics? n It is the study of patterns of inheritance and variations in organisms. n Genes control each trait of a living

More information

Gametes are the reproductive cells - the egg or the sperm. Gametes.

Gametes are the reproductive cells - the egg or the sperm. Gametes. Meiosis Meiosis is the type of cell division for that produces the cells ( ) which are also known as gametes. Two important characteristics of meiosis is that it reduces the number of chromosomes to half

More information

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells.

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells. Mitosis & Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences for genetic variation. 1. Students will describe

More information

Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have.

Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have. Section 1: Chromosomes and Meiosis KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous

More information

biology Slide 1 of 35 End Show Copyright Pearson Prentice Hall

biology Slide 1 of 35 End Show Copyright Pearson Prentice Hall biology 1 of 35 Why do you look a little like your mom and your dad? Why do you look a little like your grandma but your brother or sister looks a little like your grandpa? How is the way you look and

More information

Name Class Date. Term Definition How I m Going to Remember the Meaning

Name Class Date. Term Definition How I m Going to Remember the Meaning 11.4 Meiosis Lesson Objectives Contrast the number of chromosomes in body cells and in gametes. Summarize the events of meiosis. Contrast meiosis and mitosis. Describe how alleles from different genes

More information

CH 13 Meiosis & Sexual Life Cycles

CH 13 Meiosis & Sexual Life Cycles CH 13 Meiosis & Sexual Life Cycles AP Biology 2005-2006 Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same amount of DNA

More information

BENCHMARK 1 STUDY GUIDE SPRING 2017

BENCHMARK 1 STUDY GUIDE SPRING 2017 BENCHMARK 1 STUDY GUIDE SPRING 2017 Name: There will be semester one content on this benchmark as well. Study your final exam review guide from last semester. New Semester Material: (Chapter 10 Cell Growth

More information

VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis

VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis 6.1 CHROMOSOMES AND MEIOSIS Study Guide KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous

More information

Mitosis and Genetics Study Guide Answer Key

Mitosis and Genetics Study Guide Answer Key Mitosis and Genetics Study Guide Answer Key 1. Which of the following is true of Interphase? a. It is part of Meiosis b. It occurs before Meiosis c. The cell does normal cell activities during interphase

More information

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells.

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells. Mitosis & Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences for genetic variation. 1. Students will describe

More information

1 Mendel and His Peas

1 Mendel and His Peas CHAPTER 3 1 Mendel and His Peas SECTION Heredity BEFORE YOU READ After you read this section, you should be able to answer these questions: What is heredity? How did Gregor Mendel study heredity? National

More information

MEIOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU

MEIOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU MEIOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU Meiosis is a special type of cell division necessary for sexual reproduction in eukaryotes such as animals, plants and fungi The number of sets of chromosomes

More information

EOC - Unit 4 Review - Genetics

EOC - Unit 4 Review - Genetics EOC - Unit 4 Review - Genetics Part A: Benchmark Standard SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance. Also Assesses SC.912.L.16.2 Discuss

More information

Natural Selection. Population Dynamics. The Origins of Genetic Variation. The Origins of Genetic Variation. Intergenerational Mutation Rate

Natural Selection. Population Dynamics. The Origins of Genetic Variation. The Origins of Genetic Variation. Intergenerational Mutation Rate Natural Selection Population Dynamics Humans, Sickle-cell Disease, and Malaria How does a population of humans become resistant to malaria? Overproduction Environmental pressure/competition Pre-existing

More information

MEIOSIS CELL DIVISION Chapter

MEIOSIS CELL DIVISION Chapter Section 6.1: Meiosis MEIOSIS CELL DIVISION Chapter 6.1 6.2 WHAT DETERMINES WHAT YOU LOOK LIKE? Meiosis Animation Meiosis creates 4 genetically different gametes (haploid) Mitosis creates 2 identical daughter

More information

Observing Patterns in Inherited Traits

Observing Patterns in Inherited Traits Observing Patterns in Inherited Traits Chapter 10 Before you go on Review the answers to the following questions to test your understanding of previous material. 1. Most organisms are diploid. What does

More information

Meiosis & Sexual Reproduction

Meiosis & Sexual Reproduction Meiosis & Sexual Reproduction 2007-2008 Turn in warm ups to basket! Prepare for your test! Get out your mitosis/meiosis foldable After the test: New vocabulary! 2/23/17 Draw and label the parts of the

More information

Mitosis & Meiosis. PPT Questions. 4. Why must each new cell get a complete copy of the original cell s DNA?

Mitosis & Meiosis. PPT Questions. 4. Why must each new cell get a complete copy of the original cell s DNA? 1. From where do new cells arise? Mitosis & Meiosis PPT Questions 2. Why does the body constantly make new cells? 3. Is cell division the same in all cells? Explain. 4. Why must each new cell get a complete

More information

SEXUAL REPRODUCTION & MEIOSIS

SEXUAL REPRODUCTION & MEIOSIS SEXUAL REPRODUCTION & MEIOSIS Living organisms are distinguished by their ability to reproduce their own kind. Offspring resemble their parents more than they do less closely related individuals of the

More information

Sexual Reproduction and Meiosis. Chapter 11

Sexual Reproduction and Meiosis. Chapter 11 Sexual Reproduction and Meiosis Chapter 11 1 Sexual life cycle Made up of meiosis and fertilization Diploid cells Somatic cells of adults have 2 sets of chromosomes Haploid cells Gametes (egg and sperm)

More information

Sexual Reproduction and Genetics

Sexual Reproduction and Genetics 10 Sexual Reproduction and Genetics section 1 Meiosis Before You Read Think about the traits that make people unique. Some people are tall, while others are short. People can have brown, blue, or green

More information

Meiosis. The form of cell division by which gametes, with half the regular number of chromosomes, are produced.

Meiosis. The form of cell division by which gametes, with half the regular number of chromosomes, are produced. MEIOSIS Meiosis The form of cell division by which gametes, with half the regular number of chromosomes, are produced. diploid (2n) haploid (n) (complete set of chromosomes) (half the regular number of

More information

Chapter 10.2 Notes. Genes don t exist free in the nucleus but lined up on a. In the body cells of animals and most plants, chromosomes occur in

Chapter 10.2 Notes. Genes don t exist free in the nucleus but lined up on a. In the body cells of animals and most plants, chromosomes occur in Chapter 10.2 Notes NAME Honors Biology Organisms have tens of thousands of genes that determine individual traits Genes don t exist free in the nucleus but lined up on a Diploid and Haploid Cells In the

More information

Chapter 11 Meiosis and Sexual Reproduction

Chapter 11 Meiosis and Sexual Reproduction Chapter 11 Meiosis and Sexual S Section 1: S Gamete: Haploid reproductive cell that unites with another haploid reproductive cell to form a zygote. S Zygote: The cell that results from the fusion of gametes

More information

What is a sex cell? How are sex cells made? How does meiosis help explain Mendel s results?

What is a sex cell? How are sex cells made? How does meiosis help explain Mendel s results? CHAPTER 6 3 Meiosis SECTION Heredity BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a sex cell? How are sex cells made? How does meiosis help explain

More information

11/18/2016. Meiosis. Dr. Bertolotti. How is meiosis different from mitosis?

11/18/2016. Meiosis. Dr. Bertolotti. How is meiosis different from mitosis? Meiosis Dr. Bertolotti How is meiosis different from mitosis? 1 3 Types of Cell Division 1. Binary fission- cell division in prokaryotes 2. Cell Cycle (with Mitosis)- cell division in eukaryotes to form

More information

1. The process in which ( ) are produced. 2. Males produce cells and females produce cells through meiosis

1. The process in which ( ) are produced. 2. Males produce cells and females produce cells through meiosis Name: Aim 35: What is Meiosis? Date: I. What is Meiosis? What is Meiosis? Which organisms undergo Meiosis? Where does Meiosis occur? What does Meiosis produce? What is Meiosis also known as? 1. The process

More information

Meiosis and Sexual Reproduction Chapter 11. Reproduction Section 1

Meiosis and Sexual Reproduction Chapter 11. Reproduction Section 1 Meiosis and Sexual Reproduction Chapter 11 Reproduction Section 1 Reproduction Key Idea: An individual formed by asexual reproduction is genetically identical to its parent. Asexual Reproduction In asexual

More information

Zoology Cell Division and Inheritance

Zoology Cell Division and Inheritance Zoology Cell Division and Inheritance I. A Code for All Life A. Before Genetics - 1. If a very tall man married a short woman, you would expect their children to be intermediate, with average height. 2.

More information

Chapter 13 Meiosis and Sexual Reproduction

Chapter 13 Meiosis and Sexual Reproduction Biology 110 Sec. 11 J. Greg Doheny Chapter 13 Meiosis and Sexual Reproduction Quiz Questions: 1. What word do you use to describe a chromosome or gene allele that we inherit from our Mother? From our Father?

More information

Interactive Biology Multimedia Courseware Mendel's Principles of Heredity. Copyright 1998 CyberEd Inc.

Interactive Biology Multimedia Courseware Mendel's Principles of Heredity. Copyright 1998 CyberEd Inc. Interactive Biology Multimedia Courseware Mendel's Principles of Heredity Copyright 1998 CyberEd Inc. Mendel's Principles of Heredity TEACHING OBJECTIVES The following subject areas are illustrated throughout

More information

Meiosis and Life Cycles - 1

Meiosis and Life Cycles - 1 Meiosis and Life Cycles - 1 We have just finished looking at the process of mitosis, a process that produces cells genetically identical to the original cell. Mitosis ensures that each cell of an organism

More information

CELL GROWTH AND DIVISION. Chapter 10

CELL GROWTH AND DIVISION. Chapter 10 CELL GROWTH AND DIVISION Chapter 10 Cell division = The formation of 2 daughter cells from a single parent cell Increases ratio of surface area to volume for each cell Allows for more efficient exchange

More information

Meiosis & Sexual Reproduction

Meiosis & Sexual Reproduction Meiosis & Sexual Reproduction 2007-2008 Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same amount of DNA same number of chromosomes

More information

Unit 4 Review - Genetics. UNIT 4 Vocabulary topics: Cell Reproduction, Cell Cycle, Cell Division, Genetics

Unit 4 Review - Genetics. UNIT 4 Vocabulary topics: Cell Reproduction, Cell Cycle, Cell Division, Genetics Unit 4 Review - Genetics Sexual vs. Asexual Reproduction Mendel s Laws of Heredity Patterns of Inheritance Meiosis and Genetic Variation Non-Mendelian Patterns of Inheritance Cell Reproduction/Cell Cycle/

More information

Introduction to Mendelian Genetics. Packet #12

Introduction to Mendelian Genetics. Packet #12 Introduction to Mendelian Genetics Packet #12 1 Friday, August 21, 2015 The Chromosome Theory of Inheritance The Chromosome Theory of Inheritance According to the chromosome theory of inheritance, the

More information

5.3 Reproduction and Meiosis

5.3 Reproduction and Meiosis 5.3 Reproduction and Meiosis Lesson Objectives Compare and contrast asexual and sexual reproduction. Give an overview of sexual reproduction, and outline the phases of meiosis. Explain why sexual reproduction

More information

Outline for today s lecture (Ch. 14, Part I)

Outline for today s lecture (Ch. 14, Part I) Outline for today s lecture (Ch. 14, Part I) Ploidy vs. DNA content The basis of heredity ca. 1850s Mendel s Experiments and Theory Law of Segregation Law of Independent Assortment Introduction to Probability

More information

Mendel and the Gene Idea. Biology Exploring Life Section Modern Biology Section 9-1

Mendel and the Gene Idea. Biology Exploring Life Section Modern Biology Section 9-1 Mendel and the Gene Idea Biology Exploring Life Section 10.0-10.2 Modern Biology Section 9-1 Objectives Summarize the Blending Hypothesis and the problems associated with it. Describe the methods used

More information

Meiosis B-4.5. Summarize the characteristics of the phases of meiosis I and meiosis II.

Meiosis B-4.5. Summarize the characteristics of the phases of meiosis I and meiosis II. Meiosis B-4.5 Summarize the characteristics of the phases of meiosis I and meiosis II. Key Concepts Daughter cells Diploid Haploid Zygote Gamete Meiosis I vs. Meiosis II What You Already Know This concept

More information

GENERAL SAFETY: Follow your teacher s directions. Do not work in the laboratory without your teacher s supervision.

GENERAL SAFETY: Follow your teacher s directions. Do not work in the laboratory without your teacher s supervision. Name: Bio AP Lab: Cell Division B: Mitosis & Meiosis (Modified from AP Biology Investigative Labs) BACKGROUND: One of the characteristics of living things is the ability to replicate and pass on genetic

More information

MEIOSIS LAB INTRODUCTION PART I: SIMULATION OF MEIOSIS EVOLUTION. Activity #9

MEIOSIS LAB INTRODUCTION PART I: SIMULATION OF MEIOSIS EVOLUTION. Activity #9 AP BIOLOGY EVOLUTION Unit 1 Part 7 Chapter 13 Activity #9 NAME DATE PERIOD MEIOSIS LAB INTRODUCTION Meiosis involves two successive nuclear divisions that produce four haploid cells. Meiosis I is the reduction

More information

Cell Reproduction Review

Cell Reproduction Review Name Date Period Cell Reproduction Review Explain what is occurring in each part of the cell cycle --- G 0, G1, S, G2, and M. 1 CELL DIVISION Label all parts of each cell in the cell cycle and explain

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics We ve all heard of it, but What is genetics? Genetics: the study of gene structure and action and the patterns of inheritance of traits from parent to offspring. Ancient ideas

More information

Chapter 13. Meiosis & Sexual Reproduction. AP Biology

Chapter 13. Meiosis & Sexual Reproduction. AP Biology Chapter 13. Meiosis & Sexual Reproduction Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same amount of DNA same number of

More information

Objectives. Announcements. Comparison of mitosis and meiosis

Objectives. Announcements. Comparison of mitosis and meiosis Announcements Colloquium sessions for which you can get credit posted on web site: Feb 20, 27 Mar 6, 13, 20 Apr 17, 24 May 15. Review study CD that came with text for lab this week (especially mitosis

More information

Unit 6 : Meiosis & Sexual Reproduction

Unit 6 : Meiosis & Sexual Reproduction Unit 6 : Meiosis & Sexual Reproduction 2006-2007 Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same number of chromosomes

More information

Sexual life cycle. Sexual life cycle. Fertilization. Sexual Reproduction and Meiosis. Made up of meiosis and fertilization Diploid cells (2n)

Sexual life cycle. Sexual life cycle. Fertilization. Sexual Reproduction and Meiosis. Made up of meiosis and fertilization Diploid cells (2n) Sexual life cycle Sexual Reproduction and Meiosis Made up of meiosis and fertilization Diploid cells (2n) Chapter 11 Somatic cells of adults have 2 sets of Haploid cells (n) Gametes have only 1 set of

More information

HEREDITY: Objective: I can describe what heredity is because I can identify traits and characteristics

HEREDITY: Objective: I can describe what heredity is because I can identify traits and characteristics Mendel and Heredity HEREDITY: SC.7.L.16.1 Understand and explain that every organism requires a set of instructions that specifies its traits, that this hereditary information. Objective: I can describe

More information

Honors Biology Test Chapter 8 Mitosis and Meiosis

Honors Biology Test Chapter 8 Mitosis and Meiosis Honors Biology Test Chapter 8 Mitosis and Meiosis 1. In mitosis, if a parent cell has 16 chromosomes, each daughter cell will have how many chromosomes? a. 64 b. 32 c. 16 d. 8 e. 4 2. Chromatids that are

More information

Cell Cycle and Cell Division

Cell Cycle and Cell Division Cell Cycle and Cell Division Why Do Cells Divide? Reproduction Growth and Development Tissue Renewal The Cell Cycle What Structures Do Divide When The Cell Divides? 33% 33% 33% 1. DNA 2. chromosomes 3.

More information

Meiosis & Sexual Life Cycle

Meiosis & Sexual Life Cycle Chapter 13. Meiosis & Sexual Life Cycle 1 Cell reproduction Mitosis produce cells with same information identical daughter cells exact copies (clones) same amount of DNA same number of chromosomes asexual

More information

10.2 Sexual Reproduction and Meiosis

10.2 Sexual Reproduction and Meiosis 10.2 Sexual Reproduction and Meiosis There are thousands of different species of organisms. Each species produces more of its own. A species of bacteria splits to make two identical bacteria. A eucalyptus

More information

Chromosome duplication and distribution during cell division

Chromosome duplication and distribution during cell division CELL DIVISION AND HEREDITY Student Packet SUMMARY IN EUKARYOTES, HERITABLE INFORMATION IS PASSED TO THE NEXT GENERATION VIA PROCESSES THAT INCLUDE THE CELL CYCLE, MITOSIS /MEIOSIS AND FERTILIZATION Mitosis

More information

Unit 5: Chapter 11 Test Review

Unit 5: Chapter 11 Test Review Name: Date: Period: Unit 5: Chapter 11 Test Review 1. Vocabulary you should know. Recommendation (optional): make flashcards, or write the definition down. Make sure you understand the meanings of all

More information

Cell Reproduction Mitosis & Meiosis

Cell Reproduction Mitosis & Meiosis Cell Reproduction Mitosis & Meiosis Outcomes 1. Describe mitosis in detail (460-465) interphase, mitosis and cytokinesis (the cell cycle) explain the importance of maintaining chromosome number through

More information

6-10 Sexual reproduction requires special cells (gametes) made by meiosis.

6-10 Sexual reproduction requires special cells (gametes) made by meiosis. Do Now Answer the following questions: For every cell undergoing mitosis, how many cells are created? For a cell with 6 chromosomes, how many chromosomes are in the daughter cells? Why are daughter cells

More information

STUDY UNIT 1 MITOSIS AND MEIOSIS. Klug, Cummings & Spencer Chapter 2. Morphology of eukaryotic metaphase chromosomes. Chromatids

STUDY UNIT 1 MITOSIS AND MEIOSIS. Klug, Cummings & Spencer Chapter 2. Morphology of eukaryotic metaphase chromosomes. Chromatids STUDY UNIT 1 MITOSIS AND MEIOSIS Klug, Cummings & Spencer Chapter 2 Life depends on cell division and reproduction of organisms. Process involves transfer of genetic material. New somatic (body) cells

More information

Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction

Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction NC Essential Standard: 1.2.2 Analyze how cells grow and reproduce in terms of interphase, mitosis, and cytokinesis

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Homologous Chromosomes and Chromatids How many chromatids in a pair of duplicated homologous chromosomes? (instant math question) Meiosis

Homologous Chromosomes and Chromatids How many chromatids in a pair of duplicated homologous chromosomes? (instant math question) Meiosis 10.1 Meiosis Meiosis Section 10.1 ody ells & Gametes somatic = body do NOT pass on N to offspring 46 chromosomes (23 pairs) gametes = sex eggs (females) and sperm (males) pass on N to offspring 23 chromosomes,

More information

Meiosis. The sexy shuffling machine. LO: Describe the events of meiosis Explain how meiosis creates uniqueness Compare & contrast mitosis & meiosis

Meiosis. The sexy shuffling machine. LO: Describe the events of meiosis Explain how meiosis creates uniqueness Compare & contrast mitosis & meiosis Meiosis The sexy shuffling machine LO: Describe the events of meiosis Explain how meiosis creates uniqueness Compare & contrast mitosis & meiosis http://www.youtube.com/watch?v=kvmb4js99ta Meiosis Intro

More information

Overview. Overview: Variations on a Theme. Offspring acquire genes from parents by inheriting chromosomes. Inheritance of Genes

Overview. Overview: Variations on a Theme. Offspring acquire genes from parents by inheriting chromosomes. Inheritance of Genes Chapter 13 Meiosis and Sexual Life Cycles Overview I. Cell Types II. Meiosis I. Meiosis I II. Meiosis II III. Genetic Variation IV. Reproduction Overview: Variations on a Theme Figure 13.1 Living organisms

More information

GETTING READY TO LEARN Preview Key Concepts 6.1 Chromosomes and Meiosis Gametes have half the number of chromosomes that body cells have.

GETTING READY TO LEARN Preview Key Concepts 6.1 Chromosomes and Meiosis Gametes have half the number of chromosomes that body cells have. CHAPTER 6 Meiosis and Mendel GETTING READY TO LEARN Preview Key Concepts 6.1 Chromosomes and Meiosis Gametes have hal the number o chromosomes that body cells have. 6.2 Process o Meiosis During meiosis,

More information

The Cellular Basis of Inheritance

The Cellular Basis of Inheritance CHAPTER 9 The Cellular Basis of Inheritance Summary of Key Concepts Concept 9.1 All cells come from cells. (pp. 180 181) Cell reproduction is an important process. Three functions of cell reproduction

More information

UNIT. Chapters. Genetics. 11 Introduction to Genetics 12 DNA 13 RNA and Protein Synthesis 14 Human Heredity 15 Genetic Engineering

UNIT. Chapters. Genetics. 11 Introduction to Genetics 12 DNA 13 RNA and Protein Synthesis 14 Human Heredity 15 Genetic Engineering Genetics UNIT Chapters 11 Introduction to Genetics 12 DNA 13 RNA and Protein Synthesis 14 Human Heredity 15 Genetic Engineering 5? NK A + P ), the Information and Heredity Cellular Basis of Life Science

More information

12.1 Mendel s Experiments and the Laws of Probability

12.1 Mendel s Experiments and the Laws of Probability 314 Chapter 12 Mendel's Experiments and Heredity 12.1 Mendel s Experiments and the Laws of Probability By the end of this section, you will be able to: Describe the scientific reasons for the success of

More information

Typical Life Cycle of Algae and Fungi. 5 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Typical Life Cycle of Algae and Fungi. 5 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Module 3B Meiosis and Sexual Life Cycles In this module, we will examine a second type of cell division used by eukaryotic cells called meiosis. In addition, we will see how the 2 types of eukaryotic cell

More information

Sexual reproduction & Meiosis

Sexual reproduction & Meiosis Sexual reproduction & Meiosis Sexual Reproduction When two parents contribute DNA to the offspring The offspring are the result of fertilization the unification of two gametes (sperm & egg) Results in

More information

EXAM 4 CHAPTERS BIOL 1406 GENERAL BIOLOGY I DR. FARNSWORTH

EXAM 4 CHAPTERS BIOL 1406 GENERAL BIOLOGY I DR. FARNSWORTH EXAM 4 CHAPTERS 12-15 BIOL 1406 GENERAL BIOLOGY I DR. FARNSWORTH 1. The centromere is a region in which A. metaphase chromosomes become aligned at the metaphase plate. B. chromosomes are grouped during

More information

Dropping Your Genes. A Simulation of Meiosis and Fertilization and An Introduction to Probability

Dropping Your Genes. A Simulation of Meiosis and Fertilization and An Introduction to Probability Dropping Your Genes A Simulation of Meiosis and Fertilization and An Introduction to To fully understand Mendelian genetics (and, eventually, population genetics), you need to understand certain aspects

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 10 Meiosis and Sexual Life Cycles Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

2 points: Easy - Chromosomes. 2 points: Easy - Chromosomes. 2 points: Easy - Chromosomes. 2 points: Easy - Chromosomes. 2 points: Easy - Chromosomes

2 points: Easy - Chromosomes. 2 points: Easy - Chromosomes. 2 points: Easy - Chromosomes. 2 points: Easy - Chromosomes. 2 points: Easy - Chromosomes the cell cycle are these cells in? Be sure to hide the Interphase What are the two Chromatids halves of a called? By definition, which cells have ½ the total number of s? Haploid the cell cycle is this

More information

The Cell Cycle. The Cell Cycle

The Cell Cycle. The Cell Cycle The Cell Cycle Cells divide by Mitosis or Meiosis. Mitosis allows the organism to replace cells that have died or aren't working, and is how living things grow. It makes an exact copy of the parent cell.

More information

11.4 Meiosis. Vocabulary: Homologous Diploid Haploid Meiosis Crossing-over Tetrad

11.4 Meiosis. Vocabulary: Homologous Diploid Haploid Meiosis Crossing-over Tetrad 11.4 Meiosis Vocabulary: Homologous Diploid Haploid Meiosis Crossing-over Tetrad Key Concept: What happens during the process of meiosis? How is MEIOSIS different than mitosis? Blast from the past What

More information

Anaphase, Telophase. Animal cells divide their cytoplasm by forming? Cleavage furrow. Bacteria, Paramecium, Amoeba, etc. reproduce by...

Anaphase, Telophase. Animal cells divide their cytoplasm by forming? Cleavage furrow. Bacteria, Paramecium, Amoeba, etc. reproduce by... The 4 phases of mitosis Animal cells divide their cytoplasm by forming? Bacteria, Paramecium, Amoeba, etc. reproduce by... Cell which after division is identical to the original is called a Prophase, Metaphase,

More information

Meiosis & Sexual Reproduction (Ch. 13)

Meiosis & Sexual Reproduction (Ch. 13) Meiosis & Sexual Reproduction (Ch. 13) Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same amount of DNA same number of chromosomes

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 13 Meiosis and Sexual Life Cycles

More information

Cover Requirements: Name of Unit Colored picture representing something in the unit

Cover Requirements: Name of Unit Colored picture representing something in the unit Name: Period: Cover Requirements: Name of Unit Colored picture representing something in the unit Biology B1 1 Target # Biology Unit B1 (Genetics & Meiosis) Learning Targets Genetics & Meiosis I can explain

More information

Foldable. You need 6 pieces of printer paper. Stagger the pages about 1cm (width of pinky finger) DO NOT make the tabs too large!!!!!

Foldable. You need 6 pieces of printer paper. Stagger the pages about 1cm (width of pinky finger) DO NOT make the tabs too large!!!!! Meiosis Notes Foldable You need 6 pieces of printer paper Stagger the pages about 1cm (width of pinky finger) DO NOT make the tabs too large!!!!! Fold the stack of pages to make the foldable as diagramed

More information

Meiosis & Sexual Reproduction. AP Biology

Meiosis & Sexual Reproduction. AP Biology Meiosis & Sexual Reproduction Cell division / Asexual reproduction! Mitosis " produce cells with same information! identical daughter cells " exact copies! clones " same amount of DNA! same number of chromosomes!

More information