Coupled Random Boolean Network Forming an Artificial Tissue

Size: px
Start display at page:

Download "Coupled Random Boolean Network Forming an Artificial Tissue"

Transcription

1 Coupled Random Boolean Network Forming an Artificial Tissue M. Villani, R. Serra, P.Ingrami, and S.A. Kauffman 2 DSSC, University of Modena and Reggio Emilia, via Allegri 9, I-4200 Reggio Emilia villani.marco@unimore.it, serra.roberto@unimore.it, pingrami@gmail.com 2 Institute for Biocomplexity and Informatics, University of Calgary 2500 University Drive NW, Calgary AB T2N N4, Canada skauffman@ucalgary.ca Abstract. Random boolean networks (shortly, RBN) have proven useful in describing complex phenomena occurring at the unicellular level. It is therefore interesting to investigate how their dynamical behavior is affected by cell-cell interactions, which mimics those occurring in tissues in multicellular organisms. It has also been suggested that evolution may tend to adjust the parameters of the genetic network so that it operates close to a critical state, which should provide evolutionary advantage ; this hypothesis has received intriguing, although not definitive support from recent findings. It is therefore particularly interesting to consider how the tissue-like organization alters the dynamical behavior of the networks close to a critical state. In this paper we define a model tissue, which is a cellular automaton each of whose cells hosts a full RBN, and we report preliminary studies of the way in which the dynamics is affected. Introduction A very interesting line of research on the study of biological organization is the ensemble approach, pioneered several years ago by one of us [][2] in the study of genetic networks. According to this line the emphasis is placed on the typical properties of networks which are supposed to capture some characteristics of real biological systems, instead of concentrating upon the study of specific cases. While the detailed study of specific organisms and specific genetic circuits is of the utmost importance, it is claimed here that the ensemble approach provides a useful complement to it. The search for typical (often called universal ) behaviors has proven very useful also in the study e.g. of phase transitions and dynamical systems Random boolean networks (RBN) have been proposed as a model of genetic regulatory networks, precisely with the aim of devising a model which should be manageable enough to draw conclusions about its generic behaviors, which should be compared with experimental data. Many excellent presentations of the model exist [2][3], and we will only very briefly outline it below (section 2). S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 473, pp , Springer-Verlag Berlin Heidelberg 2006

2 Coupled Random Boolean Network Forming an Artificial Tissue 549 In most cases, the RBN model has been used to model a single cell, or a population of single cells, and it has proven able to capture some of their properties, including the response to perturbations in gene knock-out experiments [4][5]. It has also been suggested that evolution may tend to adjust the parameters of the genetic network so that it operates close to a critical state, which should provide evolutionary advantage; this hypothesis has received intriguing, although not definitive support from recent findings [6][7]. On the other hand, multicellular organisms are organized in tissues composed by similar cells which are often close in space, and it is natural to ask whether the multicellular organization affects the dynamics. Does interaction lead to a higher order, or rather the contrary? Kauffman recently suggested that it is likely that the whole tissue operates close to the critical state, and that the single cells might be slightly more ordered than if they were alone. While some work addressing this issue in the context of scale-free RBN has been performed [8], in this paper we investigate on the effects of interactions among neighboring cells using classical random boolean networks (precisely defined in section 2). In particular, we set up a 2D CA model, described in section 3, where each lattice site is occupied by a RBN, and introduce a mechanism whereby neighboring RBN can influence each other. Section 4 describes the experiments which have been performed with this model, in order to analyze the effects of coupling on the dynamics. Finally, in section 5 we draw some brief conclusions and indications for further work. 2 A Brief Description of RBN There exist some different realizations of the idea of a random boolean network, which may differ in the network topology, the choice of the set of boolean functions, the updating strategies [2][3][9]. We will described here only the model which we used in our study, which is the same as that originally proposed by Kauffman, and which will be briefly called the classical RBN. Let us consider a network composed of N genes, or nodes, which can take either the value 0 (inactive) or (active). Let x i (t) {0,} be the activation value of node i at time t, and let X(t)=[x (t), x 2 (t) x N (t)] be the vector of activation values of all the genes (for simplicity, it will be assumed that activations are boolean). Real genes influence each other through their corresponding products and through the interaction of these products with other chemicals, by promoting or inhibiting the activation of target genes. In the corresponding model network these relationships are lumped in directed links (directed from node A to node B, if the product of gene A influences the activation of gene B) and boolean functions (which model the response of each node to the values of its input nodes). In a classical RBN each node has the same number of incoming connections k in, and its k in input nodes are chosen at random with uniform probability among the remaining N- nodes. The probability that a particular combination of input activities gives the response is the same for all the nodes and is specified by the value p. Both the topology and the boolean function associated to each gene do not change in time (i.e. we use the so-called quenched model). The network dynamics therefore is discrete and synchronous, so all

3 550 M. Villani et al. the nodes update their values at the same time: once the connections and the boolean functions of each node have been specified, X(t) uniquely determines X(t+). A careful analysis of some known real biological control circuits has shown that a) Boolean functions with a low probability of activation (i.e. a relatively high number of outputs which are 0) are more frequent than the others b) In most cases the functions are limited to those which are canalizing In this preliminary work we take (a) into account, while the set of boolean functions is built, as usual, by choosing one with probability p and 0 with probability -p (therefore these functions are not necessarily canalizing). The model shows two main dynamical regimes: by observing for example how the average number of attractors and the average cycle length scales with the number of nodes N we can note that these variables could increase their values as a power law (ordered region) or could diverge exponentially (disordered region), depending upon the value of the parameter k in and the bias p (see Figure a). Systems near the interface between the two regions (i.e. in the critical region) show a particularly interesting behavior, as described in the introduction. Several observations (summarized in [2][0]) indicate that biological cells, because of this biological constraints, tend to be found in the ordered region not too far from the border between ordered and disordered regimes (the edge of chaos ) thus allowing both control and evolution. In this work we are interested in understanding what happens when the cells are grouped in a higher order organization like a tissue, asking what is the influence (if any) of this grouping on the ordered/chaotic behavior of cells. A priori, it could be argued that cells in tissues should be rather more ordered than isolated ones, thus simplifying system-level control, but also the opposite, i.e. that the additional interactions could introduce more constraints, leading to a more frustrated (and disordered) system. These hypotheses need testing, and this can be done in a disciplined way using particular models. (a) (b) Fig.. (a) Ordered and disordered regions for a single random boolean network; the border between the two region is given by the formula (k in ) - =2p(-p)[3] (b) the mathematical idealization of a tissue utilized in this article: each square cell is a complete random boolean network; a subset of its nodes interacts with the first four neighbors RBNs

4 Coupled Random Boolean Network Forming an Artificial Tissue 55 3 A Model Tissue Now we have to define a mathematical analogue of a generic tissue. This requires to define: (a) a topology of the tissue (b) the kind of random boolean networks present on each cell of the tissue (c) the rules of interaction among the cells of the tissue A simple topology like that of Figure b, where square cells interact with their first four neighbors inside a two dimensional world, represents a schematization of the spatial topology of some tissues, and will be used here. Each tissue is composed by homogeneous cells, and in general all the cells of a given multicellular individual share the same genetic material, therefore in each cell we have to consider a copy of the same random boolean network (same topology of the RBN and same boolean function). The rules of interaction among cells are very important. It is possible to take into account several possibilities, however the physics of the problem provides useful suggestions. A gene in cell A can influence another gene in cell B by synthesizing a protein which (may trigger a cascade of reactions some of whose products) may cross the cell membrane. Therefore, if a gene is active in A (so that its value is ) it may affect B, but if it is inactive it has no effect. Therefore we assume that: only a subset of the total number of nodes that define the RBN can be influenced by neighboring cells (not all the proteins cross membranes) ( described by a parameter fraction of interacting nodes, frin) the effective input given to the other nodes by node a ij (activity of node j belonging to cell i), whose protein can diffuse through the membrane, is if at least one of the four nodes with the same value of j, belonging to the RBNs present in the four neighboring cells of cell i, is the interactions are limited to nearest neighbors (we adopted the von Neumann neighborhood N,S,E,W) The model defined above is clearly a square cellular automaton, where each cell has a fairly complicated behavior, since it hosts a full RBN. 4 Results 4. Description of Parameters and Methods In our initial testing of this system, we concentrated on networks which are close to their critical point. This choice should allow us to better detect the effects of embedding them in a higher order system. Therefore, taking into account the fact that in nature those activation functions which (in the boolean approximation) show a bias towards the value 0 seems to be preferred, we chose k in =3 and p close to 0.2 (the critical value for k in =3, cfr the legend to Figure a). Incidentally, this choice implies a large presence of canalizing functions (as it is found in biology []): also with the

5 552 M. Villani et al. highest p value we utilized (p=0.22), more that 78% of boolean functions are canalizing in at least one input. The initial condition is chosen at random for every RBN, independently from those of the other cells. The number of nodes of every RBN (N) is 00, and the dimension of our artificial tissue is a square of 20x20 elements (so the total number of genes in the tissue is ); the global topology is that of a torus. In order to find the attractors of each RBN, we run the system for 600 steps (a step being a complete update of each node of each RBN present in the system), and check the presence of an attractor in each RBN belonging to the tissue during the last 200 steps (therefore, we are not able to find attractors whose period is higher than 200 steps, nor those which are reached after a very long transient). When each RBN reaches an attractor (or when the system reaches 600 step) the search ends. For each level of the intensity of interaction frin (the fraction of nodes whose outcome can affect neighboring cells) we made a series of 000 runs, each run involving a different RBN (same kin and p, but different topology and boolean functions) and different initial conditions. We consider the following variables. For each series of runs: the fraction of runs α where all the cells of the system reach the same attractor (out of 000 runs) the fraction of runs β where all the cells of the system reach an attractor (out of 000 runs) the fraction of runs γ where no cell reaches an attractor (out of 000 runs) and, for each run of each series: the number of different attractors present at the end of the run the number of different periods present at the end of the run the average length of the 20x20 RBN periods at the end of the run the structural factor sfct (see below) at the end of the run sfct is an aggregate variable we utilize as a first indicator of presence of homogeneous zones inside the artificial tissue. For each RBN i, we compute the number of nearest neighboring RBNs that are in the same attractor of RBN i, and sum all the 20x20 quantities. If all the RBN share the same attractor (the idealized situation where all the cells of the system belong to only one kind of tissue) this variable reaches its maximum value 600 (20x20x4), otherwise the cells self organize in more sparse structures. 4.2 Experimental Results First of all, we analyze the behavior of the aggregate variables α, β and γ as function of the interaction intensity. As the strength of this interaction grows, the fraction of runs β where all the cells of the system reaches an attractor decreases; contemporarily, the fraction of runs γ where no cell reaches an attractor increases. Obviously, these measures are influenced by the search parameters we utilized, but this general behavior seems to happen for many sets of parameters. This indicates that the increase of interaction strength introduces more and more disorder into the systems.

6 Coupled Random Boolean Network Forming an Artificial Tissue 553 But this is not the whole story of the phenomenon: as the strength of this interaction grows, the fraction of runs α where all the cells of the system reach the same attractor increases. What's more, if we consider the fraction of runs (out of the runs where all the cells of the system reach an attractor) where all the cells of the system reach the same attractor, this increase is even more evident. This is an evidence that the increase of interaction strength introduces more and more order into the systems, if the system is already prone to the order (Figure 2a). (a) (b) Fig. 2. Fraction of runs where all the cells of the system reach the same attractor (α),where all the cells of the system reach an attractor (β) and where no cell reach an attractor (γ). (a) Tissue constituted by ordered RBN (k in =3, p=0.20); (b) tissue constituted by slightly disordered RBN (k in =3, p=0.22). A tentative explanation may be based on the observation that, also for RBN well inside the ordered region, exists a small but finite subset of networks that are chaotic [2]. That is, a possible interpretation of our result is that the increasing strength of interaction among neighboring RBNs amplifies the already present tendencies (or at least the already present tendencies of the majority of RBN present inside the tissue). Networks prone to disorder are more disordered, and networks already prone to order can reinforce their tendency and are more ordered. This description is enforced by a new series of simulations (Figure 2b), where the RBN are more slightly into the chaotic region (this series has p=0.22; we remember that the border between order and chaos for systems with k i n=3 is approximately p=0.2). The runs where all the cells reach an attractor decrease in a more evident way, but the system is still able to increase the fraction of cases where all the cells reach the same attractor (phenomenon again more evident if we consider the fraction of cells that reach the same attractor out the fraction of runs where all the cells reach an attractor). Then, what happens to fairly ordered systems? We have to carefully interpret, or select, the data we produced: how we can compare systems where all the cells reach an attractor and systems where only 30% (5%, 75%, ) of the cells do it? As a first step we decided to take into account only the systems where all the cells reach an attractor (but a survey of some less conservative cases shows that the general conclusions could be quite similar).

7 554 M. Villani et al. Therefore, we extract from our data (k in =3 and p=0.20) all the systems where all the cells reach an attractor; the data are very noisy (the number of possible different RBNs and the number of possible different initial conditions are enormous, and therefore any realistic set of runs is always an undersampling), nevertheless some interesting trends are visible (see Figure 3). The most tangible changes are evident on the distributions of the number of different periods and of the average period (Figure 3b and Figure 3c): the higher the strength of the interaction among neighboring cells, the narrower are the distributions. That is, the system decrease the number of different periods that are present on the artificial tissue at the end of the runs, and their average becomes smaller; on average, the RBNs are compelled to share some characteristics. A second observation is that a large part of the effect is already present at the first switch on of the interaction: the further strengthening of the interaction results in changes of smaller entity. Frequency 0, 0,0 0 0, 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 Frequency 0, 0,0 0 0, 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0, , Number of different attractors Number of different periods (a) (b) Frequency 0, 0,0 0, Average period 0 0, 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 (c) (d) Fig. 3. Distribution of the number of different attractors (a), of the number of different periods (b), of the average of periods presents on the artificial tissue (c) and of the structural parameter sfct (d) as function of the strength of interaction coupling (spanning from 0.0 to.0 see the legends). The involved RBNs are ordered networks (k in =3 and p=0.20); the total number of RBNs that normalize the distributions is shown by line α in Figure 2a. Let us now consider the number of attractors present inside the artificial tissue. Figure 3a (the distribution of the number of different attractors present at the end of each run) shows that there is a small effect due to the growing strength among neighboring RBN, but this distribution doesn t allow us to observe, for example, the

8 Coupled Random Boolean Network Forming an Artificial Tissue 555 formation of islands of attractors inside the matrix (which might be an interesting phenomenon). Therefore we need another indicator: as a first attempt, we propose the quantity sfct discussed above. The sfct distribution has an evident peak on it maximum value (that is, the cells tend to reach the same attractor); moreover, this peak grows hardly as the interaction strength increases (Figure 3d and its insert). When the system doesn t reach this so homogeneous situation, it could be found in a very high number of situations (the long tails at the left of the peaks), but the importance of these tails decreases as the strength of interaction becomes more intense. That is, the presence of homogeneous zones inside the system is more and more intense as the interaction strength grows up (see Figure 4 for an example of association between the presence of homogeneous zones and the value of sfct). (a) (b) (c) (d) Fig. 4. Emerging of homogeneous zones inside the artificial tissue; the variable shown is the kind of attractor. (a) interaction strength at 0 and sfct=323; (b) interaction strength at 0. and sfct=308; (c) interaction strength at 0.3 and sfct=38; (d) interaction strength at 0.7 and sfct=600. This last case shows a complete homogeneous tissue, with only one attractor. There is another more subtle and interesting issue: in Figure 4 we are observing the kind of attractors, but this is not NECESSARILY WHAT MATTERS FROM A FUNCTIONAL VIEWPOINT. If we consider one node (whose product can pass through the cell membrane) of one particular RBN and if its activation is 0, this doesn t means that the real effect of this activation is 0. It is enough that one of its neighboring RBNs has the same node with activation, that under all the functional aspects this node behaves as the state. That is, it is possible that a part of differences we are now observing among the cells doesn t exists as functional

9 556 M. Villani et al. difference. And, for a tissue, it is important that all the cells be similar under the functional aspect. This aspect of the problem will be the subject of further analysis. 5 Conclusions This work is a preliminary study of the effects of the interactions among several RBN: an intriguing phenomenon has been observed, i.e. that the interaction, as it has been modeled here, can have different effects on different kinds of RBN. In particular, the fraction of networks which do not reach an attractor increases, indicating a growth of dynamical disorder. But, limiting our considerations to those networks which reach an attractor within the time limits of our simulations, we observe that they tend to more homogeneous attractors. It is interesting to speculate about the possible implications of this finding from the viewpoint of evolution theory; since a certain degree of order is needed to allow robust functionality, those networks which reach an attractor might have been selected, and in this case the ordering effect of interaction would prevail a finding which seems biologically plausible. Further work has to been done in order to investigate, inter alia, the effect of different coupling interactions, different values of parameters, and to investigate the interaction between genomic and functional differences. References. Kauffman, S.A.: Gene Regulation Networks: A Theory of their Global Structure and Behavior. Curr. Top. Dev. Biol 6 (97), Kauffman, S. A.: The origins of order. Oxford University Press (993) 3. M. Aldana, S. Coppersmith, L. P. Kadanoff, Boolean Dynamics with Random Couplings, in E. Kaplan, J.E. Marsden, K.R. Sreenivasan (eds), Perspectives and Problems in Nonlinear Science. Springer Applied Mathematical Sciences Series (2003). Also available at 4. Serra, R., Villani, M. & Semeria, A.: Robustness to damage of biological and synthetic networks. In W. Banzhaf, T. Christaller, P. Dittrich, J.T. Kim & J. Ziegler (eds): Advances in Artificial Life. Berlin: Springer Lecture Notes in Artificial Intelligence 280, (2003) Serra, R., Villani, M. & Semeria, A.: Genetic network models and statistical properties of gene expression data in knock-out experiments. J. Theor. Biol. 227 () (2004) P.Ramo, J.Kesseli, O. Yli-Harja 2005 Perturbation avalanches and criticality in gene regulatory networks Journal of Theoretical Biology, submitted 7. Shmulevich, I. and Kauffman, S.A. Activities and Sensitivities in Boolean Network Models, Phys Rev. Lett. 93(4), (-4) (2004) 8. S.Kauffman, C.Peterson, B.Samuelsson, C.Troein Genetic networks with canalyzing Boolean rules are always stable PNAS vol. 0 no.49 (2004) 9. Harvey, I., and Bossomaier, T. Time out of joint: Attractors in asynchronous random boolean networks. In Husbands, P., and Harvey, I., eds., Proceedings of the Fourth European Conference on Artificial Life (ECAL97) MIT Press (997) Kauffman, S.A.: Investigations. Oxford University Press (2000). Harris, S.E., Sawhill, B.K., Wuensche, A. & Kauffman, S.A.: A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complexity 7 (2002) U. Bastolla and G. Parisi The modular structure of Kauffman networks Physica D 5 (998)

Measures for information propagation in Boolean networks

Measures for information propagation in Boolean networks Physica D 227 (2007) 100 104 www.elsevier.com/locate/physd Measures for information propagation in Boolean networks Pauli Rämö a,, Stuart Kauffman b, Juha Kesseli a, Olli Yli-Harja a a Institute of Signal

More information

Classification of Random Boolean Networks

Classification of Random Boolean Networks Classification of Random Boolean Networks Carlos Gershenson, School of Cognitive and Computer Sciences University of Sussex Brighton, BN1 9QN, U. K. C.Gershenson@sussex.ac.uk http://www.cogs.sussex.ac.uk/users/carlos

More information

Classification of Random Boolean Networks

Classification of Random Boolean Networks in Artificial Life VIII, Standish, Abbass, Bedau (eds)(mit Press) 2002. pp 1 8 1 Classification of Random Boolean Networks Carlos Gershenson, School of Cognitive and Computer Sciences University of Sussex

More information

Contextual Random Boolean Networks

Contextual Random Boolean Networks Contextual Random Boolean Networks Carlos Gershenson, Jan Broekaert, and Diederik Aerts Centrum Leo Apostel, Vrije Universiteit Brussel, Krijgskundestraat 33, Brussels, 1160, Belgium {cgershen, jbroekae,

More information

Controlling chaos in random Boolean networks

Controlling chaos in random Boolean networks EUROPHYSICS LETTERS 20 March 1997 Europhys. Lett., 37 (9), pp. 597-602 (1997) Controlling chaos in random Boolean networks B. Luque and R. V. Solé Complex Systems Research Group, Departament de Fisica

More information

Mathematical and computational modeling is becoming

Mathematical and computational modeling is becoming The role of certain Post classes in Boolean network models of genetic networks Ilya Shmulevich*, Harri Lähdesmäki*, Edward R. Dougherty, Jaakko Astola, and Wei Zhang* *Cancer Genomics Laboratory, University

More information

Cellular Automata. ,C ) (t ) ,..., C i +[ K / 2] Cellular Automata. x > N : C x ! N. = C x. x < 1: C x. = C N+ x.

Cellular Automata. ,C ) (t ) ,..., C i +[ K / 2] Cellular Automata. x > N : C x ! N. = C x. x < 1: C x. = C N+ x. and beyond Lindenmayer Systems The World of Simple Programs Christian Jacob Department of Computer Science Department of Biochemistry & Molecular Biology University of Calgary CPSC 673 Winter 2004 Random

More information

Motivation. Evolution has rediscovered several times multicellularity as a way to build complex living systems

Motivation. Evolution has rediscovered several times multicellularity as a way to build complex living systems Cellular Systems 1 Motivation Evolution has rediscovered several times multicellularity as a way to build complex living systems Multicellular systems are composed by many copies of a unique fundamental

More information

5.3 METABOLIC NETWORKS 193. P (x i P a (x i )) (5.30) i=1

5.3 METABOLIC NETWORKS 193. P (x i P a (x i )) (5.30) i=1 5.3 METABOLIC NETWORKS 193 5.3 Metabolic Networks 5.4 Bayesian Networks Let G = (V, E) be a directed acyclic graph. We assume that the vertices i V (1 i n) represent for example genes and correspond to

More information

CHAOTIC MEAN FIELD DYNAMICS OF A BOOLEAN NETWORK WITH RANDOM CONNECTIVITY

CHAOTIC MEAN FIELD DYNAMICS OF A BOOLEAN NETWORK WITH RANDOM CONNECTIVITY International Journal of Modern Physics C Vol. 18, No. 9 (2007) 1459 1473 c World Scientific Publishing Company CHAOTIC MEAN FIELD DYNAMICS OF A BOOLEAN NETWORK WITH RANDOM CONNECTIVITY MALIACKAL POULO

More information

Random Boolean Networks

Random Boolean Networks Random Boolean Networks Boolean network definition The first Boolean networks were proposed by Stuart A. Kauffman in 1969, as random models of genetic regulatory networks (Kauffman 1969, 1993). A Random

More information

Introduction to Random Boolean Networks

Introduction to Random Boolean Networks Introduction to Random Boolean Networks Carlos Gershenson Centrum Leo Apostel, Vrije Universiteit Brussel. Krijgskundestraat 33 B-1160 Brussel, Belgium cgershen@vub.ac.be http://homepages.vub.ac.be/ cgershen/rbn/tut

More information

Cellular Automata. and beyond. The World of Simple Programs. Christian Jacob

Cellular Automata. and beyond. The World of Simple Programs. Christian Jacob Cellular Automata and beyond The World of Simple Programs Christian Jacob Department of Computer Science Department of Biochemistry & Molecular Biology University of Calgary CPSC / MDSC 605 Fall 2003 Cellular

More information

Mutual information in random Boolean models of regulatory networks

Mutual information in random Boolean models of regulatory networks PHYSICAL REVIEW E 77, 090 2008 Mutual information in random Boolean models of regulatory networks Andre S. Ribeiro,, * Stuart A. Kauffman,,2 Jason Lloyd-Price, Björn Samuelsson, 3 and Joshua E. S. Socolar

More information

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Robert Kozma rkozma@memphis.edu Computational Neurodynamics Laboratory, Department of Computer Science 373 Dunn

More information

The Sandpile Model on Random Apollonian Networks

The Sandpile Model on Random Apollonian Networks 1 The Sandpile Model on Random Apollonian Networks Massimo Stella Bak, Teng and Wiesenfel originally proposed a simple model of a system whose dynamics spontaneously drives, and then maintains it, at the

More information

Spatial and Temporal Behaviors in a Modified Evolution Model Based on Small World Network

Spatial and Temporal Behaviors in a Modified Evolution Model Based on Small World Network Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 242 246 c International Academic Publishers Vol. 42, No. 2, August 15, 2004 Spatial and Temporal Behaviors in a Modified Evolution Model Based on Small

More information

ACTA PHYSICA DEBRECINA XLVI, 47 (2012) MODELLING GENE REGULATION WITH BOOLEAN NETWORKS. Abstract

ACTA PHYSICA DEBRECINA XLVI, 47 (2012) MODELLING GENE REGULATION WITH BOOLEAN NETWORKS. Abstract ACTA PHYSICA DEBRECINA XLVI, 47 (2012) MODELLING GENE REGULATION WITH BOOLEAN NETWORKS E. Fenyvesi 1, G. Palla 2 1 University of Debrecen, Department of Experimental Physics, 4032 Debrecen, Egyetem 1,

More information

Noisy Attractors and Ergodic Sets in Models. of Genetic Regulatory Networks

Noisy Attractors and Ergodic Sets in Models. of Genetic Regulatory Networks Noisy Attractors and Ergodic Sets in Models of Genetic Regulatory Networks Andre S. Ribeiro Institute for Biocomplexity and Informatics, Univ. of Calgary, Canada Department of Physics and Astronomy, Univ.

More information

Toward a Better Understanding of Complexity

Toward a Better Understanding of Complexity Toward a Better Understanding of Complexity Definitions of Complexity, Cellular Automata as Models of Complexity, Random Boolean Networks Christian Jacob jacob@cpsc.ucalgary.ca Department of Computer Science

More information

Attractor period distribution for critical Boolean networks

Attractor period distribution for critical Boolean networks Attractor period distribution for critical Boolean networks Florian Greil Institut für Festkörperphysik, Technische Universität Darmstadt, D-64285 Darmstadt, Germany current address: Lehrstuhl für Bioinformatik,

More information

Evolutionary Games and Computer Simulations

Evolutionary Games and Computer Simulations Evolutionary Games and Computer Simulations Bernardo A. Huberman and Natalie S. Glance Dynamics of Computation Group Xerox Palo Alto Research Center Palo Alto, CA 94304 Abstract The prisoner s dilemma

More information

Coalescing Cellular Automata

Coalescing Cellular Automata Coalescing Cellular Automata Jean-Baptiste Rouquier 1 and Michel Morvan 1,2 1 ENS Lyon, LIP, 46 allée d Italie, 69364 Lyon, France 2 EHESS and Santa Fe Institute {jean-baptiste.rouquier, michel.morvan}@ens-lyon.fr

More information

Written Exam 15 December Course name: Introduction to Systems Biology Course no

Written Exam 15 December Course name: Introduction to Systems Biology Course no Technical University of Denmark Written Exam 15 December 2008 Course name: Introduction to Systems Biology Course no. 27041 Aids allowed: Open book exam Provide your answers and calculations on separate

More information

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008 CD2dBS-v2 Convergence dynamics of 2-dimensional isotropic and anisotropic Bak-Sneppen models Burhan Bakar and Ugur Tirnakli Department of Physics, Faculty of Science, Ege University, 35100 Izmir, Turkey

More information

biologically-inspired computing lecture 12 Informatics luis rocha 2015 INDIANA UNIVERSITY biologically Inspired computing

biologically-inspired computing lecture 12 Informatics luis rocha 2015 INDIANA UNIVERSITY biologically Inspired computing lecture 12 -inspired Sections I485/H400 course outlook Assignments: 35% Students will complete 4/5 assignments based on algorithms presented in class Lab meets in I1 (West) 109 on Lab Wednesdays Lab 0

More information

Networks in systems biology

Networks in systems biology Networks in systems biology Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2017 M. Macauley (Clemson) Networks in systems

More information

Phase transition of Boolean networks with partially nested canalizing functions

Phase transition of Boolean networks with partially nested canalizing functions University of Nebrasa at Omaha DigitalCommons@UNO Mathematics Faculty Publications Department of Mathematics 7-3 Phase transition of Boolean networs with partially nested canalizing functions Kayse Jansen

More information

A A A A B B1

A A A A B B1 LEARNING OBJECTIVES FOR EACH BIG IDEA WITH ASSOCIATED SCIENCE PRACTICES AND ESSENTIAL KNOWLEDGE Learning Objectives will be the target for AP Biology exam questions Learning Objectives Sci Prac Es Knowl

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Systems biology Introduction to Bioinformatics Systems biology: modeling biological p Study of whole biological systems p Wholeness : Organization of dynamic interactions Different behaviour of the individual

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

Simulation of cell-like self-replication phenomenon in a two-dimensional hybrid cellular automata model

Simulation of cell-like self-replication phenomenon in a two-dimensional hybrid cellular automata model Simulation of cell-like self-replication phenomenon in a two-dimensional hybrid cellular automata model Takeshi Ishida Nippon Institute of Technology ishida06@ecoinfo.jp Abstract An understanding of the

More information

AP Curriculum Framework with Learning Objectives

AP Curriculum Framework with Learning Objectives Big Ideas Big Idea 1: The process of evolution drives the diversity and unity of life. AP Curriculum Framework with Learning Objectives Understanding 1.A: Change in the genetic makeup of a population over

More information

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution. The AP Biology course is designed to enable you to develop advanced inquiry and reasoning skills, such as designing a plan for collecting data, analyzing data, applying mathematical routines, and connecting

More information

EVOLUTION OF COMPLEX FOOD WEB STRUCTURE BASED ON MASS EXTINCTION

EVOLUTION OF COMPLEX FOOD WEB STRUCTURE BASED ON MASS EXTINCTION EVOLUTION OF COMPLEX FOOD WEB STRUCTURE BASED ON MASS EXTINCTION Kenichi Nakazato Nagoya University Graduate School of Human Informatics nakazato@create.human.nagoya-u.ac.jp Takaya Arita Nagoya University

More information

Asynchronous random Boolean network model based on elementary cellular automata

Asynchronous random Boolean network model based on elementary cellular automata Asynchronous random Boolean networ model based on elementary cellular automata Mihaela T. Matache* Jac Heidel Department of Mathematics University of Nebrasa at Omaha Omaha, NE 6882-243, USA *dmatache@mail.unomaha.edu

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 3 Oct 2005

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 3 Oct 2005 Growing Directed Networks: Organization and Dynamics arxiv:cond-mat/0408391v2 [cond-mat.stat-mech] 3 Oct 2005 Baosheng Yuan, 1 Kan Chen, 1 and Bing-Hong Wang 1,2 1 Department of Computational cience, Faculty

More information

Coexistence of Dynamics for Two- Dimensional Cellular Automata

Coexistence of Dynamics for Two- Dimensional Cellular Automata Coexistence of Dynamics for Two- Dimensional Cellular Automata Ricardo Severino Department of Mathematics and Applications University of Minho Campus de Gualtar - 4710-057 Braga, Portugal Maria Joana Soares

More information

Cellular Automata CS 591 Complex Adaptive Systems Spring Professor: Melanie Moses 2/02/09

Cellular Automata CS 591 Complex Adaptive Systems Spring Professor: Melanie Moses 2/02/09 Cellular Automata CS 591 Complex Adaptive Systems Spring 2009 Professor: Melanie Moses 2/02/09 Introduction to Cellular Automata (CA) Invented by John von Neumann (circa~1950). A cellular automata consists

More information

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks Commun. Theor. Phys. (Beijing, China) 43 (2005) pp. 466 470 c International Academic Publishers Vol. 43, No. 3, March 15, 2005 Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire

More information

Lecture 1 Modeling in Biology: an introduction

Lecture 1 Modeling in Biology: an introduction Lecture 1 in Biology: an introduction Luca Bortolussi 1 Alberto Policriti 2 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste Via Valerio 12/a, 34100 Trieste. luca@dmi.units.it

More information

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

Map of AP-Aligned Bio-Rad Kits with Learning Objectives Map of AP-Aligned Bio-Rad Kits with Learning Objectives Cover more than one AP Biology Big Idea with these AP-aligned Bio-Rad kits. Big Idea 1 Big Idea 2 Big Idea 3 Big Idea 4 ThINQ! pglo Transformation

More information

Emergence of Rules in Cell Society: Differentiation, Hierarchy, and Stability

Emergence of Rules in Cell Society: Differentiation, Hierarchy, and Stability Emergence of Rules in Cell Society: Differentiation, Hierarchy, and Stability arxiv:adap-org/9802002v1 13 Feb 1998 Chikara Furusawa and Kunihiko Kaneko Department of Pure and Applied Sciences University

More information

Biased Eukaryotic Gene Regulation Rules Suggest Genome Behavior Is Near Edge of Chaos

Biased Eukaryotic Gene Regulation Rules Suggest Genome Behavior Is Near Edge of Chaos Biased Eukaryotic Gene Regulation Rules Suggest Genome Behavior Is Near Edge of Chaos Stephen E. Harris Bruce Kean Sawhill Andrew Wuensche Stuart A. Kauffman SFI WORKING PAPER: 1997-05-039 SFI Working

More information

Lyapunov exponents in random Boolean networks

Lyapunov exponents in random Boolean networks Physica A 284 (2000) 33 45 www.elsevier.com/locate/physa Lyapunov exponents in random Boolean networks Bartolo Luque a;, Ricard V. Sole b;c a Centro de Astrobiolog a (CAB), Ciencias del Espacio, INTA,

More information

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 40 (2003) pp. 607 613 c International Academic Publishers Vol. 40, No. 5, November 15, 2003 Effects of Interactive Function Forms in a Self-Organized Critical Model

More information

Chaotic Dynamics in an Electronic Model of a Genetic Network

Chaotic Dynamics in an Electronic Model of a Genetic Network Journal of Statistical Physics, Vol. 121, Nos. 5/6, December 2005 ( 2005) DOI: 10.1007/s10955-005-7009-y Chaotic Dynamics in an Electronic Model of a Genetic Network Leon Glass, 1 Theodore J. Perkins,

More information

Synchronous state transition graph

Synchronous state transition graph Heike Siebert, FU Berlin, Molecular Networks WS10/11 2-1 Synchronous state transition graph (0, 2) (1, 2) vertex set X (state space) edges (x,f(x)) every state has only one successor attractors are fixed

More information

Network Structure and Activity in Boolean Networks

Network Structure and Activity in Boolean Networks Network Structure and Activity in Boolean Networks Abhijin Adiga 1, Hilton Galyean 1,3, Chris J. Kuhlman 1, Michael Levet 1,2, Henning S. Mortveit 1,2, and Sichao Wu 1 1 Network Dynamics and Simulation

More information

SELF-ORGANIZATION IN NONRECURRENT COMPLEX SYSTEMS

SELF-ORGANIZATION IN NONRECURRENT COMPLEX SYSTEMS Letters International Journal of Bifurcation and Chaos, Vol. 10, No. 5 (2000) 1115 1125 c World Scientific Publishing Company SELF-ORGANIZATION IN NONRECURRENT COMPLEX SYSTEMS PAOLO ARENA, RICCARDO CAPONETTO,

More information

Simulation of Gene Regulatory Networks

Simulation of Gene Regulatory Networks Simulation of Gene Regulatory Networks Overview I have been assisting Professor Jacques Cohen at Brandeis University to explore and compare the the many available representations and interpretations of

More information

Cell-based Model For GIS Generalization

Cell-based Model For GIS Generalization Cell-based Model For GIS Generalization Bo Li, Graeme G. Wilkinson & Souheil Khaddaj School of Computing & Information Systems Kingston University Penrhyn Road, Kingston upon Thames Surrey, KT1 2EE UK

More information

Robustness and evolvability in genetic regulatory networks

Robustness and evolvability in genetic regulatory networks Journal of Theoretical Biology 245 (27) 433 448 www.elsevier.com/locate/yjtbi Robustness and evolvability in genetic regulatory networks Maximino Aldana a,d,, Enrique Balleza a,d, Stuart Kauffman b, Osbaldo

More information

Looking Under the EA Hood with Price s Equation

Looking Under the EA Hood with Price s Equation Looking Under the EA Hood with Price s Equation Jeffrey K. Bassett 1, Mitchell A. Potter 2, and Kenneth A. De Jong 1 1 George Mason University, Fairfax, VA 22030 {jbassett, kdejong}@cs.gmu.edu 2 Naval

More information

Hybrid Model of gene regulatory networks, the case of the lac-operon

Hybrid Model of gene regulatory networks, the case of the lac-operon Hybrid Model of gene regulatory networks, the case of the lac-operon Laurent Tournier and Etienne Farcot LMC-IMAG, 51 rue des Mathématiques, 38041 Grenoble Cedex 9, France Laurent.Tournier@imag.fr, Etienne.Farcot@imag.fr

More information

arxiv: v1 [q-bio.mn] 27 Jan 2010

arxiv: v1 [q-bio.mn] 27 Jan 2010 Higher order Boolean networks as models of cell state dynamics arxiv:1001.4972v1 [q-bio.mn] 27 Jan 2010 Elke K Markert 1, Nils Baas 2, Arnold J. Levine 1,3 and Alexei Vazquez 1,3,4 1 Simons Center for

More information

UNDERSTANDING BOLTZMANN S ANALYSIS VIA. Contents SOLVABLE MODELS

UNDERSTANDING BOLTZMANN S ANALYSIS VIA. Contents SOLVABLE MODELS UNDERSTANDING BOLTZMANN S ANALYSIS VIA Contents SOLVABLE MODELS 1 Kac ring model 2 1.1 Microstates............................ 3 1.2 Macrostates............................ 6 1.3 Boltzmann s entropy.......................

More information

Biological networks CS449 BIOINFORMATICS

Biological networks CS449 BIOINFORMATICS CS449 BIOINFORMATICS Biological networks Programming today is a race between software engineers striving to build bigger and better idiot-proof programs, and the Universe trying to produce bigger and better

More information

arxiv:cond-mat/ v1 [cond-mat.other] 4 Aug 2004

arxiv:cond-mat/ v1 [cond-mat.other] 4 Aug 2004 Conservation laws for the voter model in complex networks arxiv:cond-mat/0408101v1 [cond-mat.other] 4 Aug 2004 Krzysztof Suchecki, 1,2 Víctor M. Eguíluz, 1 and Maxi San Miguel 1 1 Instituto Mediterráneo

More information

René Thomas Université de Bruxelles. Frontier diagrams: a global view of the structure of phase space.

René Thomas Université de Bruxelles. Frontier diagrams: a global view of the structure of phase space. René Thomas Université de Bruxelles Frontier diagrams: a global view of the structure of phase space. We have the tools to identify and characterise steady states and trajectories. But WHY several steady

More information

Model of Motor Neural Circuit of C. elegans

Model of Motor Neural Circuit of C. elegans Model of Motor Neural Circuit of C. elegans Different models for oscillators There are several different models to generate oscillations. Among these models, some have different values for the same parameters,

More information

Boolean Dynamics with Random Couplings

Boolean Dynamics with Random Couplings This is page 1 Printer: Opaque this Boolean Dynamics with Random Couplings Maximino Aldana Susan Coppersmith Leo P. Kadanoff To Larry Sirovich on the occasion of his 70th birthday ABSTRACT This paper reviews

More information

Self Similar (Scale Free, Power Law) Networks (I)

Self Similar (Scale Free, Power Law) Networks (I) Self Similar (Scale Free, Power Law) Networks (I) E6083: lecture 4 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA {predrag}@ee.columbia.edu February 7, 2007

More information

Introduction. Spatial Multi-Agent Systems. The Need for a Theory

Introduction. Spatial Multi-Agent Systems. The Need for a Theory Introduction Spatial Multi-Agent Systems A spatial multi-agent system is a decentralized system composed of numerous identically programmed agents that either form or are embedded in a geometric space.

More information

Image Encryption and Decryption Algorithm Using Two Dimensional Cellular Automata Rules In Cryptography

Image Encryption and Decryption Algorithm Using Two Dimensional Cellular Automata Rules In Cryptography Image Encryption and Decryption Algorithm Using Two Dimensional Cellular Automata Rules In Cryptography P. Sanoop Kumar Department of CSE, Gayatri Vidya Parishad College of Engineering(A), Madhurawada-530048,Visakhapatnam,

More information

Extension of cellular automata by introducing an algorithm of recursive estimation of neighbors

Extension of cellular automata by introducing an algorithm of recursive estimation of neighbors Extension of cellular automata by introducing an algorithm of recursive estimation of neighbors Yoshihiko Kayama BAIKA Women s University, Japan (Tel: 81-72-643-6221, Fax: 81-72-643-8473) kayama@baika.ac.jp

More information

Ordered and disordered dynamics in random networks

Ordered and disordered dynamics in random networks EUROPHYSICS LETTERS 5 March 998 Eurohys. Lett., 4 (6),. 599-604 (998) Ordered and disordered dynamics in random networks L. Glass ( )andc. Hill 2,3 Deartment of Physiology, McGill University 3655 Drummond

More information

arxiv: v1 [physics.comp-ph] 14 Nov 2014

arxiv: v1 [physics.comp-ph] 14 Nov 2014 Variation of the critical percolation threshold in the Achlioptas processes Paraskevas Giazitzidis, 1 Isak Avramov, 2 and Panos Argyrakis 1 1 Department of Physics, University of Thessaloniki, 54124 Thessaloniki,

More information

Properties of a Natural Ordering Relation for Octagonal Neighborhood Sequences

Properties of a Natural Ordering Relation for Octagonal Neighborhood Sequences Properties of a Natural Ordering Relation for Octagonal Neighborhood Sequences Attila Fazekas Image Processing Group of Debrecen Faculty of Informatics, University of Debrecen P.O.Box 12, H-4010 Debrecen,

More information

arxiv: v1 [q-bio.mn] 7 Nov 2018

arxiv: v1 [q-bio.mn] 7 Nov 2018 Role of self-loop in cell-cycle network of budding yeast Shu-ichi Kinoshita a, Hiroaki S. Yamada b a Department of Mathematical Engineering, Faculty of Engeneering, Musashino University, -- Ariake Koutou-ku,

More information

Complex Systems Theory

Complex Systems Theory Complex Systems Theory 1988 Some approaches to the study of complex systems are outlined. They are encompassed by an emerging field of science concerned with the general analysis of complexity. Throughout

More information

ARTICLE IN PRESS. Journal of Theoretical Biology

ARTICLE IN PRESS. Journal of Theoretical Biology Journal of Theoretical Biology 256 (29) 35 369 Contents lists available at ScienceDirect Journal of Theoretical Biology journal homepage: www.elsevier.com/locate/yjtbi Intrinsic properties of Boolean dynamics

More information

On the Effect of Heterogeneity on the Dynamics and Performance of Dynamical Networks

On the Effect of Heterogeneity on the Dynamics and Performance of Dynamical Networks Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 1-1-212 On the Effect of Heterogeneity on the Dynamics and Performance of Dynamical Networks Alireza Goudarzi

More information

Oriented majority-vote model in social dynamics

Oriented majority-vote model in social dynamics Author: Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: M. Ángeles Serrano Mass events ruled by collective behaviour are present in our society every day. Some

More information

Asynchronous Stochastic Boolean Networks as Gene Network Models

Asynchronous Stochastic Boolean Networks as Gene Network Models Journal of Computational Biology Journal of Computational Biology: http://mc.manuscriptcentral.com/liebert/jcb Asynchronous Stochastic Boolean Networks as Gene Network Models Journal: Journal of Computational

More information

Visualizing Evolutionary Dynamics of Self-Replicators Using Graph-Based Genealogy

Visualizing Evolutionary Dynamics of Self-Replicators Using Graph-Based Genealogy Visualizing Evolutionary Dynamics of Self-Replicators Using Graph-Based Genealogy Chris Salzberg 1, Antony Antony 1, and Hiroki Sayama 2 1 Section Computational Science, Universiteit van Amsterdam, The

More information

Biological Networks. Gavin Conant 163B ASRC

Biological Networks. Gavin Conant 163B ASRC Biological Networks Gavin Conant 163B ASRC conantg@missouri.edu 882-2931 Types of Network Regulatory Protein-interaction Metabolic Signaling Co-expressing General principle Relationship between genes Gene/protein/enzyme

More information

Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother

Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother Mahdi Imani and Ulisses Braga-Neto Department of Electrical and Computer Engineering Texas A&M University College

More information

Biological Networks Analysis

Biological Networks Analysis Biological Networks Analysis Degree Distribution and Network Motifs Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein Networks: Networks vs. graphs A collection of nodesand

More information

Mathematical Biology - Lecture 1 - general formulation

Mathematical Biology - Lecture 1 - general formulation Mathematical Biology - Lecture 1 - general formulation course description Learning Outcomes This course is aimed to be accessible both to masters students of biology who have a good understanding of the

More information

Creative Genomic Webs -Kapil Rajaraman PHY 498BIO, HW 4

Creative Genomic Webs -Kapil Rajaraman PHY 498BIO, HW 4 Creative Genomic Webs -Kapil Rajaraman (rajaramn@uiuc.edu) PHY 498BIO, HW 4 Evolutionary progress is generally considered a result of successful accumulation of mistakes in replication of the genetic code.

More information

Multiobjective Optimization of an Extremal Evolution Model

Multiobjective Optimization of an Extremal Evolution Model Multiobjective Optimization of an Extremal Evolution Model Mohamed Fathey Elettreby Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt Reprint requests to M. F. E.;

More information

Synchronization in delaycoupled bipartite networks

Synchronization in delaycoupled bipartite networks Synchronization in delaycoupled bipartite networks Ram Ramaswamy School of Physical Sciences Jawaharlal Nehru University, New Delhi February 20, 2015 Outline Ø Bipartite networks and delay-coupled phase

More information

Program Evolution by Integrating EDP and GP

Program Evolution by Integrating EDP and GP Program Evolution by Integrating EDP and GP Kohsuke Yanai and Hitoshi Iba Dept. of Frontier Informatics, Graduate School of Frontier Science, The University of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654,

More information

Discrete and Indiscrete Models of Biological Networks

Discrete and Indiscrete Models of Biological Networks Discrete and Indiscrete Models of Biological Networks Winfried Just Ohio University November 17, 2010 Who are we? What are we doing here? Who are we? What are we doing here? A population of interacting

More information

STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS

STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS International Journal of Bifurcation and Chaos, Vol 9, No 11 (1999) 19 4 c World Scientific Publishing Company STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS ZBIGNIEW

More information

Dynamics and Chaos. Melanie Mitchell. Santa Fe Institute and Portland State University

Dynamics and Chaos. Melanie Mitchell. Santa Fe Institute and Portland State University Dynamics and Chaos Melanie Mitchell Santa Fe Institute and Portland State University Dynamical Systems Theory: The general study of how systems change over time Calculus Differential equations Discrete

More information

A simple electronic circuit to demonstrate bifurcation and chaos

A simple electronic circuit to demonstrate bifurcation and chaos A simple electronic circuit to demonstrate bifurcation and chaos P R Hobson and A N Lansbury Brunel University, Middlesex Chaos has generated much interest recently, and many of the important features

More information

Blackouts in electric power transmission systems

Blackouts in electric power transmission systems University of Sunderland From the SelectedWorks of John P. Karamitsos 27 Blackouts in electric power transmission systems Ioannis Karamitsos Konstadinos Orfanidis Available at: https://works.bepress.com/john_karamitsos/9/

More information

Essential knowledge 1.A.2: Natural selection

Essential knowledge 1.A.2: Natural selection Appendix C AP Biology Concepts at a Glance Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring understanding 1.A: Change in the genetic makeup of a population over time

More information

Dynamical-Systems Perspective to Stem-cell Biology: Relevance of oscillatory gene expression dynamics and cell-cell interaction

Dynamical-Systems Perspective to Stem-cell Biology: Relevance of oscillatory gene expression dynamics and cell-cell interaction Dynamical-Systems Perspective to Stem-cell Biology: Relevance of oscillatory gene expression dynamics and cell-cell interaction Kunihiko Kaneko Universal Biology Inst., Center for Complex-Systems Biology,

More information

NETWORK REPRESENTATION OF THE GAME OF LIFE

NETWORK REPRESENTATION OF THE GAME OF LIFE JAISCR, 2011, Vol.1, No.3, pp. 233 240 NETWORK REPRESENTATION OF THE GAME OF LIFE Yoshihiko Kayama and Yasumasa Imamura Department of Media and Information, BAIKA Women s University, 2-19-5, Shukuno-sho,

More information

Expression arrays, normalization, and error models

Expression arrays, normalization, and error models 1 Epression arrays, normalization, and error models There are a number of different array technologies available for measuring mrna transcript levels in cell populations, from spotted cdna arrays to in

More information

ANALYSIS OF BIOLOGICAL NETWORKS USING HYBRID SYSTEMS THEORY. Nael H. El-Farra, Adiwinata Gani & Panagiotis D. Christofides

ANALYSIS OF BIOLOGICAL NETWORKS USING HYBRID SYSTEMS THEORY. Nael H. El-Farra, Adiwinata Gani & Panagiotis D. Christofides ANALYSIS OF BIOLOGICAL NETWORKS USING HYBRID SYSTEMS THEORY Nael H El-Farra, Adiwinata Gani & Panagiotis D Christofides Department of Chemical Engineering University of California, Los Angeles 2003 AIChE

More information

Organizing Diversity Taxonomy is the discipline of biology that identifies, names, and classifies organisms according to certain rules.

Organizing Diversity Taxonomy is the discipline of biology that identifies, names, and classifies organisms according to certain rules. 1 2 3 4 5 6 7 8 9 10 Outline 1.1 Introduction to AP Biology 1.2 Big Idea 1: Evolution 1.3 Big Idea 2: Energy and Molecular Building Blocks 1.4 Big Idea 3: Information Storage, Transmission, and Response

More information

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 121 125 c International Academic Publishers Vol. 42, No. 1, July 15, 2004 Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized

More information

Unravelling the biochemical reaction kinetics from time-series data

Unravelling the biochemical reaction kinetics from time-series data Unravelling the biochemical reaction kinetics from time-series data Santiago Schnell Indiana University School of Informatics and Biocomplexity Institute Email: schnell@indiana.edu WWW: http://www.informatics.indiana.edu/schnell

More information

550 XU Hai-Bo, WANG Guang-Rui, and CHEN Shi-Gang Vol. 37 the denition of the domain. The map is a generalization of the standard map for which (J) = J

550 XU Hai-Bo, WANG Guang-Rui, and CHEN Shi-Gang Vol. 37 the denition of the domain. The map is a generalization of the standard map for which (J) = J Commun. Theor. Phys. (Beijing, China) 37 (2002) pp 549{556 c International Academic Publishers Vol. 37, No. 5, May 15, 2002 Controlling Strong Chaos by an Aperiodic Perturbation in Area Preserving Maps

More information

The Structure of the Elementary Cellular Automata Rule Space

The Structure of the Elementary Cellular Automata Rule Space The Structure of the Elementary Cellular Automata Rule Space Wentian Li Santa Fe Institute, 1120 Canyon Road, Santa Fe, NM 87501, USA Norman Packard Center for Complex Systems Research, Physics Department,

More information

Brief Glimpse of Agent-Based Modeling

Brief Glimpse of Agent-Based Modeling Brief Glimpse of Agent-Based Modeling Nathaniel Osgood Using Modeling to Prepare for Changing Healthcare Need January 9, 2014 Agent-Based Models Agent-based model characteristics One or more populations

More information