Phylogeny 9/8/2014. Evolutionary Relationships. Data Supporting Phylogeny. Chapter 26

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Phylogeny 9/8/2014. Evolutionary Relationships. Data Supporting Phylogeny. Chapter 26"

Transcription

1 Phylogeny Chapter 26 Taxonomy Taxonomy: ordered division of organisms into categories based on a set of characteristics used to assess similarities and differences Carolus Linnaeus developed binomial nomenclature, a two-part naming system that consists of the genus to which the species belongs as well as the organisms species within the genus Tyrannosaurus rex, Escherichia coli, Homo sapien The hierarchical classification of organisms consists of the following levels, from largest to most specific. Each level is called a taxon. Domain kingdom phylum class order family genus species Taxonomic Classification of Three Mammals Taxon Human Lion Dog Domain Eukarya Eukarya Eukarya Animalia Animalia Animalia Phylum Chordata Chordata Chordata Class Mammalia Mammalia Mammalia Order Primates Carnivora Carnivora Family Hominidae Felidae Canidae Genus Homo Panthera Canus Species sapiens leo familiaris Phylogeny Evolutionary history of a species or a group of related species It is created by using evidence from systematics, a discipline that focuses on classifying organisms and their evolutionary relationships Based on common ancestries involving fossils, morphology, genes, and molecular evidence Systematics hypothesizes phylogenies using molecular data Applies the principle of parsimony simplest explanation; fewest evolutionary events that explain the data Choose the tree that explains the data invoking the fewest number of evolutionary events Involves taxonomy and binomial nomenclature Evolutionary Relationships Phylogenetic trees are used to depict hypotheses about evolutionary relationships Branches reflect hierarchical classifications of groups nested within more inclusive groups Phylogenies are inferred from morphological and molecular data Similarities are based on common ancestry, but beware of analogous structures and convergent evolution! Homologous structures Convergent evolution Analogous structures Molecular systematics Data Supporting Phylogeny Homologous structures: similarities due to shared ancestry Whale s flipper and tiger s paw Convergent evolution: takes place when two organisms develop similarities as they adapted to similar environmental challenges, but not as a result of common ancestry Streamlined bodies of tuna and a dolphin Likenesses that are a result of converge evolution are considered analogous they do not indicate relatedness, but similar solutions to similar problem Butterfly and bat wings both are adapted for flight Molecular systematics: uses DNA and other molecular data to determine phylogeny; the more alike the DNA sequences of two organisms, the more closely related they are evolutionarily 1

2 Phylogenetic Trees Groupings Show how each species is related to other closely related species Shows common ancestors Use fossils and other evidence to reconstruct an organisms history Monophyletic group (clade): an ancestral species and ALL descendants Trace a single common ancestor and every species that descended from it Paraphyletic group: ancestral species and some descendants, but not all Polyphyletic group: includes species that may not share the same common ancestor Outgroup: group that diverged before the lineage evolved Constructing Phylogenetic Trees Cladogram: depicts patterns of shared characteristics among taxa serves as the basis of a phylogenetic tree A clade, within a tree, is a group of species that includes an ancestral species and all descendants Shared derived characters are used to construct cladograms they are evolutionary novelties unique to a particular clade. Hair is a shared derived character of mammals Organizing the World of Organisms The Tree of Life Organize creatures by structure and function Organize them into groups of closely related creatures Constantly being revised, but currently there is a 3-domain system in place 3 Domains: Eukarya (eukaryotic), Archaea (prokaryotic), and Bacteria (prokaryotic) Prokaryotes Characteristic Bacteria Archaea Eukarya Nuclear envelope Bacteria Archaebacteria Eukaryotes Protist Membrane-enclosed organelles Introns Histone proteins associated with DNA Circular chromosome Fungi Plant Animal 2

3 Note: Every phylogenetic tree is a hypothesis! Scientists narrow down the possibilities by using the principle of maximum parsimony This states that one should follow the simplest explanation that coincides with the facts AKA don t make things too complicated! Vertebral column (backbone) Derived Traits for Building a Phylogenetic Tree Lancelet (outgroup) Lamprey Bass Frog Turtle Leopard Hinged jaws Four walking legs Amnion Hair Genomic Changes Includes comparison the similarities and differences in DNA and protein differences DNA sequence evolution varies from one part of the genome to another Comparing different sequences helps investigate relationships between groups of organisms that diverged a long time ago DNA coding for rrna changes relatively slowly and is useful for divergence that occurred hundreds of millions of years ago DNA coding for mtdna evolves rapidly and can be used to explore recent evolutionary events Molecular Analysis Advantages Most accurate Large numbers of traits/proteins to analyze Allows us to differentiate between closely related species that appear very similar Disadvantages Individuals of the same species differ in DNA Molecular Clocks Methods used to measure the absolute time of evolutionary change based on the observation that some genes and other regions of the genome appear to evolve at constant rates Trace variations in genomes to date evolutionary changes by plotting base differences and branch points Rate of change is calculated and then extrapolate back DNA Base Pair Differences 1 x x x x x 3

4 1 x x x x x Practice (# of base pair differences in a gene) Phylogenetic Tree Cat Dog Wolf Skunk Otter Cat x Dog 28 x Wolf 26 2 x 9 8 Skunk x 2 Otter x Time Homology/Anatomy Analysis Find an adaptation that is present in one lineage, but not in another The phylogenetic tree branches when these new features evolved Cladistic Tables Different Species Character A? Yes Yes Yes Yes Yes Character B? No Yes Yes Yes Yes Character C? No No Yes Yes Yes Character D? No No No Yes Yes Character E? No No No No Yes 4

5 Time 9/8/2014 Character A? Yes Yes Yes Yes Yes Character B? No Yes Yes Yes Yes Character C? No No Yes Yes Yes Character D? No No No Yes Yes Character E? No No No No Yes Practice DNA Organelles Cell Walls Amnion Hair Reptiles Y Y N Y N Plants Y Y Y N N Mammals Y Y N Y Y Bacteria Y N N N N Amphibians Y Y N N N Ancestral reptile Ancestral fish Ancestral animal Advantages Homologous structures show relationships Allows us to determine when changes occurred (using fossils) Best way to analyze extinct species Anatomy Analysis Disadvantages Analogous structures do not and can be confused Not all species leave fossils The fossils we have collected are incomplete 5

6 Homology vs. Analogy Embryology Analysis Homology means two features are similar due to ancestry Wings in bats, arms in humans, fins in whales Called homologous structures Caused by divergent evolution Analogy is when two organisms have similar features but are not closely related Wings in bats and birds Caused by convergent evolution Evolved the same solution Advantages Allows us to see similarities even when adults of the species look very different i.e. reptiles and birds look more closely related Disadvantages Often similarities are lost later in development i.e. We have gills early on in development We did not evolve from chimpanzees! 6

Chapter 26 Phylogeny and the Tree of Life

Chapter 26 Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life Biologists estimate that there are about 5 to 100 million species of organisms living on Earth today. Evidence from morphological, biochemical, and gene sequence

More information

8/23/2014. Phylogeny and the Tree of Life

8/23/2014. Phylogeny and the Tree of Life Phylogeny and the Tree of Life Chapter 26 Objectives Explain the following characteristics of the Linnaean system of classification: a. binomial nomenclature b. hierarchical classification List the major

More information

Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships

Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships Chapter 26: Phylogeny and the Tree of Life You Must Know The taxonomic categories and how they indicate relatedness. How systematics is used to develop phylogenetic trees. How to construct a phylogenetic

More information

Chapter 26: Phylogeny and the Tree of Life

Chapter 26: Phylogeny and the Tree of Life Chapter 26: Phylogeny and the Tree of Life 1. Key Concepts Pertaining to Phylogeny 2. Determining Phylogenies 3. Evolutionary History Revealed in Genomes 1. Key Concepts Pertaining to Phylogeny PHYLOGENY

More information

Phylogeny and the Tree of Life

Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Phylogeny and the Tree of Life

Phylogeny and the Tree of Life LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 26 Phylogeny and the Tree of Life

More information

Phylogeny and the Tree of Life

Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life Lecture Outline Overview: Investigating the Tree of Life Evolutionary biology is about both process and pattern. o The processes of evolution are natural selection

More information

PHYLOGENY & THE TREE OF LIFE

PHYLOGENY & THE TREE OF LIFE PHYLOGENY & THE TREE OF LIFE PREFACE In this powerpoint we learn how biologists distinguish and categorize the millions of species on earth. Early we looked at the process of evolution here we look at

More information

1. Construct and use dichotomous keys to identify organisms.

1. Construct and use dichotomous keys to identify organisms. OBJECTIVE SHEET SYSTEMATICS AND CLASSIFICATION 1. Construct and use dichotomous keys to identify organisms. 2. Clarify the purpose behind systematics and phylogeny. 3. Identify the structures of a phylogenetic

More information

CHAPTER 26 PHYLOGENY AND THE TREE OF LIFE Connecting Classification to Phylogeny

CHAPTER 26 PHYLOGENY AND THE TREE OF LIFE Connecting Classification to Phylogeny CHAPTER 26 PHYLOGENY AND THE TREE OF LIFE Connecting Classification to Phylogeny To trace phylogeny or the evolutionary history of life, biologists use evidence from paleontology, molecular data, comparative

More information

2 Big Challenges of Classification

2 Big Challenges of Classification Classification Classification Classify to group things together based on similarities Why Classify? To make organisms/items easier to identify To make organisms/items easier to compare Allows us to predict

More information

AP Biology Notes Outline Enduring Understanding 1.B. Big Idea 1: The process of evolution drives the diversity and unity of life.

AP Biology Notes Outline Enduring Understanding 1.B. Big Idea 1: The process of evolution drives the diversity and unity of life. AP Biology Notes Outline Enduring Understanding 1.B Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring Understanding 1.B: Organisms are linked by lines of descent from

More information

Evolution and Taxonomy Laboratory

Evolution and Taxonomy Laboratory Evolution and Taxonomy Laboratory 1 Introduction Evolution refers to the process by which forms of life have changed through time by what is described as descent with modification. Evolution explains the

More information

CLASSIFICATION OF LIVING THINGS. Chapter 18

CLASSIFICATION OF LIVING THINGS. Chapter 18 CLASSIFICATION OF LIVING THINGS Chapter 18 How many species are there? About 1.8 million species have been given scientific names Nearly 2/3 of which are insects 99% of all known animal species are smaller

More information

Classification and Phylogeny

Classification and Phylogeny Classification and Phylogeny The diversity it of life is great. To communicate about it, there must be a scheme for organization. There are many species that would be difficult to organize without a scheme

More information

PSI Biology Classification Classification

PSI Biology Classification Classification Classification Classification & Naming Classwork 1. What is the correct order of the current classification hierarchy, from most general to most specific? 2. Are two organisms in domain more or less closely

More information

9.3 Classification. Lesson Objectives. Vocabulary. Introduction. Linnaean Classification

9.3 Classification. Lesson Objectives. Vocabulary. Introduction. Linnaean Classification 9.3 Classification Lesson Objectives Outline the Linnaean classification, and define binomial nomenclature. Describe phylogenetic classification, and explain how it differs from Linnaean classification.

More information

Outline. Classification of Living Things

Outline. Classification of Living Things Outline Classification of Living Things Chapter 20 Mader: Biology 8th Ed. Taxonomy Binomial System Species Identification Classification Categories Phylogenetic Trees Tracing Phylogeny Cladistic Systematics

More information

Cladistics and Bioinformatics Questions 2013

Cladistics and Bioinformatics Questions 2013 AP Biology Name Cladistics and Bioinformatics Questions 2013 1. The following table shows the percentage similarity in sequences of nucleotides from a homologous gene derived from five different species

More information

Classification Cladistics & The Three Domains of Life. Biology Mrs. Flannery

Classification Cladistics & The Three Domains of Life. Biology Mrs. Flannery Classification Cladistics & The Three Domains of Life Biology Mrs. Flannery Finding Order in Diversity Earth is over 4.5 billion years old. Life on Earth appeared approximately 3.5 billion years ago and

More information

Chapter 18: Classification

Chapter 18: Classification Chapter 18: Classification Dichotomous Key A way to identify unknown organisms Contains major characteristics of groups of organisms Pairs of CONTRASTING descriptions 4. After each description key either

More information

Classification, Phylogeny yand Evolutionary History

Classification, Phylogeny yand Evolutionary History Classification, Phylogeny yand Evolutionary History The diversity of life is great. To communicate about it, there must be a scheme for organization. There are many species that would be difficult to organize

More information

The Tree of Life Classification Based on Evolutionary Relationships Modern classification is based on evolutionary relationships.

The Tree of Life Classification Based on Evolutionary Relationships Modern classification is based on evolutionary relationships. CHAPTER 17 The Tree of Life GETTING READY TO LEARN Preview Key Concepts 17.1 The Linnaean System of Classification Organisms can be classified based on physical similarities. 17.2 Classification Based

More information

chapter 18 Multiple Choice Identify the choice that best completes the statement or answers the question.

chapter 18 Multiple Choice Identify the choice that best completes the statement or answers the question. chapter 18 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. One goal of scientists is to assign every organism a universally accepted name according to

More information

Biodiversity. The Road to the Six Kingdoms of Life

Biodiversity. The Road to the Six Kingdoms of Life Biodiversity The Road to the Six Kingdoms of Life How the 6 kingdoms came about At first, only two kingdoms were recognized Then Haeckel proposed a third kingdom Protista (where protists had both plant

More information

Biology Classification Unit 11. CLASSIFICATION: process of dividing organisms into groups with similar characteristics

Biology Classification Unit 11. CLASSIFICATION: process of dividing organisms into groups with similar characteristics Biology Classification Unit 11 11:1 Classification and Taxonomy CLASSIFICATION: process of dividing organisms into groups with similar characteristics TAXONOMY: the science of classifying living things

More information

CLASSIFICATION. Finding Order in Diversity

CLASSIFICATION. Finding Order in Diversity CLASSIFICATION Finding Order in Diversity WHAT IS TAXONOMY? Discipline of classifying organisms and assigning each organism a universally accepted name. WHY CLASSIFY? To study the diversity of life, biologists

More information

Chapter 17A. Table of Contents. Section 1 Categories of Biological Classification. Section 2 How Biologists Classify Organisms

Chapter 17A. Table of Contents. Section 1 Categories of Biological Classification. Section 2 How Biologists Classify Organisms Classification of Organisms Table of Contents Section 1 Categories of Biological Classification Section 1 Categories of Biological Classification Classification Section 1 Categories of Biological Classification

More information

Classification Systems. - Taxonomy

Classification Systems. - Taxonomy Classification Systems - Taxonomy Why Classify? 2.5 million kinds of organisms Not complete- 20 million organisms estimated Must divide into manageable groups To work with the diversity of life we need

More information

The Tree of Life. Chapter 17

The Tree of Life. Chapter 17 The Tree of Life Chapter 17 1 17.1 Taxonomy The science of naming and classifying organisms 2000 years ago Aristotle Grouped plants and animals Based on structural similarities Greeks and Romans included

More information

Evolution and Biodiversity 5.3- Classification and Biodiversity

Evolution and Biodiversity 5.3- Classification and Biodiversity Essential idea: Species are named and classified using an internationally agreed system. Evolution and Biodiversity 5.3- Classification and Biodiversity Nature of science: Cooperation and collaboration

More information

Classification and Viruses Practice Test

Classification and Viruses Practice Test Classification and Viruses Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Biologists use a classification system to group organisms in part

More information

Summary Finding Order in Diversity Modern Evolutionary Classification

Summary Finding Order in Diversity Modern Evolutionary Classification ( Is (.'I.isiifiuilimi Summary 18-1 Finding Order in Diversity There are millions of different species on Earth. To study this great diversity of organisms, biologists must give each organ ism a name.

More information

LAB 21: Evolution and Classification

LAB 21: Evolution and Classification LAB 21: Evolution and Classification Introduction: This lab is an adapted version of one created by Robert P. Gendron of Indiana University of Pennsylvania. Humans classify almost everything, including

More information

Classification (aka Taxonomy) Living Environment

Classification (aka Taxonomy) Living Environment Classification (aka Taxonomy) Living Environment Why must we classify? There are SO MANY critters out there! How do we know who s who and what s what? Biologists use a classification system to name organisms

More information

Classification is the grouping of objects based on similarities. Examine the evolutionary basis of modern classification systems.

Classification is the grouping of objects based on similarities. Examine the evolutionary basis of modern classification systems. 1 Classification is the grouping of objects based on similarities. Examine the evolutionary basis of modern classification systems. (six kingdoms) 2 Classification Classification is an important In understanding

More information

Classification. Living. Things. Amy Brown Science Stuff

Classification. Living. Things. Amy Brown Science Stuff Classification of Living Amy Brown Science Stuff Things Scientists have described and named a total of: 1.5 million species. It is estimated that the total number of species is about: 10 million. Life

More information

Visualizing Phylogenetic Relationships

Visualizing Phylogenetic Relationships Visualizing Phylogenetic Relationships Figure 26.5 Instructors: Additional questions related to this Visualizing Figure can be assigned in MasteringBiology. A phylogenetic tree visually represents a hypothesis

More information

Phylogeny and the Tree of Life

Phylogeny and the Tree of Life 26 Phylogeny and the Tree of Life EVOLUTON K E Y C O N C E P T S Figure 26.1 What is this organism? 26.1 Phylogenies show evolutionary relationships 26.2 Phylogenies are inferred from morphological and

More information

If done properly, is based on evolutionary relationships (at least to some extent). Kingdom -> Phylum -> Class -> Order -> Family -> Genus -> species

If done properly, is based on evolutionary relationships (at least to some extent). Kingdom -> Phylum -> Class -> Order -> Family -> Genus -> species Taxonomy. (Your text makes a real mess of this. Use these notes as a guide through the book.) Study of classifying and naming organisms. Founded by Linnaeus. If done properly, is based on evolutionary

More information

Name Class Date. In the space provided, write the letter of the description that best matches the term or phrase.

Name Class Date. In the space provided, write the letter of the description that best matches the term or phrase. Assessment Chapter Test B Classification of Organisms In the space provided, write the letter of the description that best matches the term or phrase. 1. Archaea 2. Bacteria a. kingdom; includes Euglena

More information

Microbial Diversity and Assessment (II) Spring, 2007 Guangyi Wang, Ph.D. POST103B

Microbial Diversity and Assessment (II) Spring, 2007 Guangyi Wang, Ph.D. POST103B Microbial Diversity and Assessment (II) Spring, 007 Guangyi Wang, Ph.D. POST03B guangyi@hawaii.edu http://www.soest.hawaii.edu/marinefungi/ocn403webpage.htm General introduction and overview Taxonomy [Greek

More information

CHAPTERS 24-25: Evidence for Evolution and Phylogeny

CHAPTERS 24-25: Evidence for Evolution and Phylogeny CHAPTERS 24-25: Evidence for Evolution and Phylogeny 1. For each of the following, indicate how it is used as evidence of evolution by natural selection or shown as an evolutionary trend: a. Paleontology

More information

BIOLOGY. Classification & Phylogeny. Slide 1 / 92. Slide 2 / 92. Slide 3 / 92. Vocabulary Click on each word below to go to the definition.

BIOLOGY. Classification & Phylogeny. Slide 1 / 92. Slide 2 / 92. Slide 3 / 92. Vocabulary Click on each word below to go to the definition. Slide 1 / 92 Slide 2 / 92 BIOLOGY Classification & Phylogeny April 2013 www.njctl.org Vocabulary Click on each word below to go to the definition. Slide 3 / 92 acoelomate angiosperm bilateral symmetry

More information

What are living things, and how can they be classified?

What are living things, and how can they be classified? Classifying Organisms What are living things, and how can they be classified? binomial nomenclature species genus dichotomous key cladogram Classifying Living Things Classification: organizing information

More information

Biology Test Review: Classification/Taxonomy

Biology Test Review: Classification/Taxonomy Name: Period: Biology Test Review: Classification/Taxonomy MAKE SURE YOUR BOOKLET IS COMPLETELY FINISHED! If you are missing information, it can be found on your teacher s webpage. I. Definitions Try to

More information

Evolution. Darwin s Voyage

Evolution. Darwin s Voyage Evolution Darwin s Voyage Charles Darwin Explorer on an observation trip to the Galapagos Islands. He set sail on the HMS Beagle in 1858 from England on a 5 year trip. He was a naturalist (a person who

More information

CLASSIFICATION Classify= to group things according to similar/different features (structures) that they share

CLASSIFICATION Classify= to group things according to similar/different features (structures) that they share CLASSIFICATION Classify= to group things according to similar/different features (structures) that they share Imagine a grocery store- How is it organized? What would happen if it was NOT organized? Why

More information

Modern Evolutionary Classification. Section 18-2 pgs

Modern Evolutionary Classification. Section 18-2 pgs Modern Evolutionary Classification Section 18-2 pgs 451-455 Modern Evolutionary Classification In a sense, organisms determine who belongs to their species by choosing with whom they will mate. Taxonomic

More information

Carolus Linnaeus System for Classifying Organisms. Unit 3 Lesson 2

Carolus Linnaeus System for Classifying Organisms. Unit 3 Lesson 2 Carolus Linnaeus System for Classifying Organisms Unit 3 Lesson 2 Students will be able to: Conclude some of the classification benefits and importance. Define what is meant by species. Describe the binomial

More information

Classification of Living Things

Classification of Living Things Classification of Living Things Heather Spalding: University of Hawaii-Manoa GK-12 program VOCABULARY Write the term next to the definition. You will need to know these terms to understand the classification

More information

In a way, organisms determine who belongs to their species by choosing with whom they will! MODERN EVOLUTIONARY CLASSIFICATION 18-2 MATE

In a way, organisms determine who belongs to their species by choosing with whom they will! MODERN EVOLUTIONARY CLASSIFICATION 18-2 MATE MODERN EVOLUTIONARY CLASSIFICATION 18-2 In a way, organisms determine who belongs to their species by choosing with whom they will! MATE Taxonomic groups are invented by scientists to group organisms with

More information

Chapter 18: Classification

Chapter 18: Classification Chapter 18: Classification 1 KEY CONCEPT QUESTIONS: How are living things organized for study? What is binomial nomenclature? What is Linnaeus s system of classification? The Classification Game!! Divide

More information

Mr. Blacher's 7th Grade Biology

Mr. Blacher's 7th Grade Biology Classification There are around 2 million species that have been described and scientists believe there are anywhere from 4 million to over 100 million different kinds of life forms on this planet. How

More information

es tion Nota Classific

es tion Nota Classific Classification Notes Fractions Nouns and verbs Circumference of a circle Prepositions World War II The 60s Cells Mark Twain Iliad Periodic table Paragraph structure Genetics Square root What do McDonald

More information

OBJECTIVE 2: USE AND DEVELOP A SIMPLE CLASSIFICATION SYSTEM

OBJECTIVE 2: USE AND DEVELOP A SIMPLE CLASSIFICATION SYSTEM Terms to Know o Archaea o bacteria o binomialnomenclature o classify o domain o Eukarya o genus o species o taxonomy OBJECTIVE 2: USE AND DEVELOP A SIMPLE CLASSIFICATION SYSTEM Lesson Objectives Explain

More information

Patterns of Evolution

Patterns of Evolution Patterns of Evolution A tree that represents an estimate (hypothesis) of evolutionary relatedness is a phylogeny Classifications can be based on groupings within a phylogeny Groupings can be categorized

More information

SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION. Using Anatomy, Embryology, Biochemistry, and Paleontology

SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION. Using Anatomy, Embryology, Biochemistry, and Paleontology SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION Using Anatomy, Embryology, Biochemistry, and Paleontology Scientific Fields Different fields of science have contributed evidence for the theory of

More information

Classifications can be based on groupings g within a phylogeny

Classifications can be based on groupings g within a phylogeny Patterns of Evolution A tree that represents an estimate (hypothesis) of evolutionary relatedness is a phylogeny Classifications can be based on groupings g within a phylogeny y Groupings can be categorized

More information

Essence of Darwin s ideas. LaMarckian vs. Darwinian view. Convergent Evolution. Natural selection in action 9/7/2015

Essence of Darwin s ideas. LaMarckian vs. Darwinian view. Convergent Evolution. Natural selection in action 9/7/2015 Essence of Darwin s ideas Variation exists in natural populations Many more offspring are born each season than can possibly survive to maturity As a result, there is a struggle for existence competition

More information

Classification of Living Things

Classification of Living Things Classification of Living Things What is classification? Classification: putting things into orderly groups based on similar characteristics. Ways we classify things Supermarket aisles Libraries Classes

More information

Evidence for Evolution by Natural Selection Regents Biology

Evidence for Evolution by Natural Selection Regents Biology Evidence for Evolution by Natural Selection Objective: Determine the different types of evidence for proving evolution Evidence supporting evolution Fossil record shows change over time Comparative Anatomy

More information

Phylogeny and the Tree of Life

Phylogeny and the Tree of Life /5/4 LETURE PRESENTTIONS For MPELL IOLOY, NINTH EITION Jane. Reece, Lisa. Urry, Michael L. ain, Steven. Wasserman, Peter V. Minorsky, Robert. Jackson hapter 6 Phylogeny and the Tree of Life Overview: Investigating

More information

LS CH 7 practice. Multiple Choice Identify the choice that best completes the statement or answers the question.

LS CH 7 practice. Multiple Choice Identify the choice that best completes the statement or answers the question. LS CH 7 practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is NOT a characteristic that all living things share? a. a cellular

More information

Biodiversity and Patterns in Life

Biodiversity and Patterns in Life Biodiversity and Patterns in Life Classifying life Carl von Linne (1707-78) Botanist and naturalist Began to classify organisms based on observed characteristics Turn in your diagram/classification for

More information

A View of Life. Diversity of Life. Defining Life. Chapter 01. Biology NIXON. Chapter 1. Gastricbrooding. frog

A View of Life. Diversity of Life. Defining Life. Chapter 01. Biology NIXON. Chapter 1. Gastricbrooding. frog 1 Chapter 1 - -Process of Science Diversity of Life Gastricbrooding frog Defining Life 2 Defining Life (1) Living things vs. nonliving objects: Comprised of the same chemical elements Obey the same physical

More information

CLASS XI BIOLOGY NOTES CHAPTER 1: LIVING WORLD

CLASS XI BIOLOGY NOTES CHAPTER 1: LIVING WORLD CLASS XI BIOLOGY NOTES CHAPTER 1: LIVING WORLD Biology is the science of life forms and non-living processes. The living world comprises an amazing diversity of living organisms. In order to facilitate

More information

Biologists use a system of classification to organize information about the diversity of living things.

Biologists use a system of classification to organize information about the diversity of living things. Section 1: Biologists use a system of classification to organize information about the diversity of living things. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are

More information

How are living things classified?

How are living things classified? 31 species: group of organisms that look alike and can reproduce among themselves Simple Organisms genus: classification group made up of related species kingdom: largest classification group phylum: classification

More information

Biology 2. Lecture Material. For. Macroevolution. Systematics

Biology 2. Lecture Material. For. Macroevolution. Systematics Biology 2 Macroevolution & Systematics 1 Biology 2 Lecture Material For Macroevolution & Systematics Biology 2 Macroevolution & Systematics 2 Microevolution: Biological Species: Two Patterns of Evolutionary

More information

Taxonomy. Branch of Biology dealing with classification and naming of living things

Taxonomy. Branch of Biology dealing with classification and naming of living things Taxonomy Branch of Biology dealing with classification and naming of living things Species of Organisms There are an estimated 3 to 100 million species of organisms (most agree with 11 million) This is

More information

Building the Tree of Life

Building the Tree of Life Building the Tree of Life THINK ABOUT IT The process of identifying and naming all known organisms, living and extinct, is a huge first step toward the goal of systematics. Yet naming organisms is only

More information

Taxonomy, Systematics, and Phylogeny

Taxonomy, Systematics, and Phylogeny Taxonomy, Systematics, and Phylogeny Taxonomy the orderly classification of organisms and other objects Systematics scientific study of the diversity of organisms Classification arrangement into groups

More information

of!life!that!!on!the!planet.!!organisms!buried!!in!!rock!are!preserved!as!fossils.!

of!life!that!!on!the!planet.!!organisms!buried!!in!!rock!are!preserved!as!fossils.! HistoryandOrganizationofBiologicalDiversity Section14.1FossilEvidenceofChange Objectives1@2 Vocabulary:Definethefollowingterms: extinction@ fossil@ paleontologist@ relativedating@ LawofSuperposition@ radiometricdating@

More information

Test: Classification of Living Things

Test: Classification of Living Things : Classification of Living Things Date: Name: Class: Word Bank: Biodiversity Classification Taxonomy Binomial Nomenclature Phylogeny Cladistics Cladogram Specific Epithet Use the word bank above to match

More information

Taxonomy Taxonomy: field of biology that identifies and classifies organisms

Taxonomy Taxonomy: field of biology that identifies and classifies organisms Taxonomy Taxonomy: field of biology that identifies and classifies organisms Why do we need it? problems with different languages common names can be confusing examples: woodchuck, groundhog crayfish,

More information

Classification of Living Things Ch.11 Notes

Classification of Living Things Ch.11 Notes Classification of Living Things Ch.11 Notes Why do we classify things?! Supermarket aisles! Libraries! Classes! Teams/sports! Members of a family! Roads! Cities! Money What is classification?! Classification:

More information

Chapter 27: Evolutionary Genetics

Chapter 27: Evolutionary Genetics Chapter 27: Evolutionary Genetics Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand what the term species means to biology. 2. Recognize the various patterns

More information

Biodiversity and Classification

Biodiversity and Classification Biodiversity and Classification BIODIVERSITY AND CLASSIFICATION Biodiversity of life on earth There are a great variety of organisms (plants and animals) which co-inhabit the earth. These organisms occur

More information

and just what is science? how about this biology stuff?

and just what is science? how about this biology stuff? Welcome to Life on Earth! Rob Lewis 512.775.6940 rlewis3@austincc.edu 1 The Science of Biology Themes and just what is science? how about this biology stuff? 2 1 The Process Of Science No absolute truths

More information

Evolution Common Assessment 1

Evolution Common Assessment 1 Evolution Common Assessment 1 1. The field of biology that includes the study of the origin of new species through time is known as 5. A. biochemistry B. evolution C. ecology D. embryology 2. Evidence

More information

Sorting It All Out. Why Classify?

Sorting It All Out. Why Classify? 1 What You Will Learn Scientists use classification to study organisms and how organisms are related to each other. The eight levels of classification are domain, kingdom, phylum, class, order, family,

More information

Vocabulary Classification the process of arranging organisms into groups based on similarities Taxonomy the science of naming and classifying

Vocabulary Classification the process of arranging organisms into groups based on similarities Taxonomy the science of naming and classifying Classification.. Vocabulary Classification the process of arranging organisms into groups based on similarities Taxonomy the science of naming and classifying organisms trait a characteristic or behavior

More information

Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST

Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST Introduction Bioinformatics is a powerful tool which can be used to determine evolutionary relationships and

More information

C3020 Molecular Evolution. Exercises #3: Phylogenetics

C3020 Molecular Evolution. Exercises #3: Phylogenetics C3020 Molecular Evolution Exercises #3: Phylogenetics Consider the following sequences for five taxa 1-5 and the known outgroup O, which has the ancestral states (note that sequence 3 has changed from

More information

Face area (cm 2 ) Brain surface area (cm 2 ) Cranial capacity (cm 3 ) 1, Jaw Angle ( º )

Face area (cm 2 ) Brain surface area (cm 2 ) Cranial capacity (cm 3 ) 1, Jaw Angle ( º ) Honors Biology Test : Evolution GOOD LUCK! You ve learned so much! Multiple Choice: Identify the choice that best completes the statement or answers the question. (2 pts each) 1. As we move through the

More information

16.4 Evidence of Evolution

16.4 Evidence of Evolution 16.4 Evidence of Evolution Lesson Objectives Explain how geologic distribution of species relates to their evolutionary history. Explain how fossils and the fossil record document the descent of modern

More information

Classification of Living Things Test Review

Classification of Living Things Test Review Classification of Living Things Test Review #1 What is taxonomy? a. the scientific study of how living things are classified b. the name of Aristotle s classification system c. the process used by geologists

More information

Plant Names and Classification

Plant Names and Classification Plant Names and Classification Science of Taxonomy Identification (necessary!!) Classification (order out of chaos!) Nomenclature (why not use common names?) Reasons NOT to use common names Theophrastus

More information

Multiple Sequence Alignment. Sequences

Multiple Sequence Alignment. Sequences Multiple Sequence Alignment Sequences > YOR020c mstllksaksivplmdrvlvqrikaqaktasglylpe knveklnqaevvavgpgftdangnkvvpqvkvgdqvl ipqfggstiklgnddevilfrdaeilakiakd > crassa mattvrsvksliplldrvlvqrvkaeaktasgiflpe

More information

The Tree of Life. Living stromatolites. Fossil stromatolites 3.5 bya. Fossilized cellular life

The Tree of Life. Living stromatolites. Fossil stromatolites 3.5 bya. Fossilized cellular life The Tree of Life The Earth is at least 4.5 billion years old. Although the oldest rocks on Earth that can be aged date to 3.9 billion years, other objects in our solar system (the Moon and asteroids) date

More information

BINF6201/8201. Molecular phylogenetic methods

BINF6201/8201. Molecular phylogenetic methods BINF60/80 Molecular phylogenetic methods 0-7-06 Phylogenetics Ø According to the evolutionary theory, all life forms on this planet are related to one another by descent. Ø Traditionally, phylogenetics

More information

Finding Order in Diversity

Finding Order in Diversity 18.1 Finding order in diversity Binomial Nomenclature In the 1730s, Swedish botanist Carolus Linnaeus developed a two-word naming system called binomial nomenclature. In deciding how to place organisms

More information

Biology. Bio-: life -ology: study of What is life?

Biology. Bio-: life -ology: study of What is life? Biology Bio-: life -ology: study of What is life? Experiment time!!! Is this alive? The Atlanta Zoo, has announced that it is considering opening a protist exhibit, has been offered an item that its discoverer

More information

Evidences of Evolution

Evidences of Evolution Evidences of Evolution Darwin stated that all organisms descend from a common ancestor Darwin based his theory of Natural Selection on observations of: Traits, geographical distribution, selective breeding,

More information

The process by which the genetic structure of populations changes over time.

The process by which the genetic structure of populations changes over time. Evolution The process by which the genetic structure of populations changes over time. Divergent evolution Goldfields and Ahinahina (silversword) a highly evolved member of the composite family. Evolution

More information

History of Biological Diversity. Evolution: Darwin s travel

History of Biological Diversity. Evolution: Darwin s travel History of Biological Diversity Evolution: Darwin s travel Developing the Theory of Evolution The Galápagos Islands Darwin noticed that the different islands all seemed to have their own, slightly different

More information

Biology Keystone (PA Core) Quiz Theory of Evolution - (BIO.B ) Theory Of Evolution, (BIO.B ) Scientific Terms

Biology Keystone (PA Core) Quiz Theory of Evolution - (BIO.B ) Theory Of Evolution, (BIO.B ) Scientific Terms Biology Keystone (PA Core) Quiz Theory of Evolution - (BIO.B.3.2.1 ) Theory Of Evolution, (BIO.B.3.3.1 ) Scientific Terms Student Name: Teacher Name: Jared George Date: Score: 1) Evidence for evolution

More information