Systems Biology. Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig. A Textbook

Size: px
Start display at page:

Download "Systems Biology. Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig. A Textbook"

Transcription

1 Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig Systems Biology A Textbook WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA

2 v Contents Preface XVII Part One Introduction to Systems Biology 1 1 Introduction Biology in Time and Space Models and Modeling What is a Model? Purpose and Adequateness of Models Advantages of Computational Modeling Basic Notions for Computational Models Model Scope Model Statements System State Variables, Parameters, and Constants Model Behavior Model Classification Steady States Model Assignment is not Unique Data Integration Standards 12 References 12 2 Modeling of Biochemical Systems Kinetic Modeling of Enzymatic Reactions The Law of Mass Action Reaction Kinetics and Thermodynamics Michaelis Menten Kinetics How to Derive a Rate Equation Parameter Estimation and Linearization of the Michaelis Menten Equation The Michaelis Menten Equation for Reversible Reactions 22 Systems Biology: A Textbook. Edda Klipp, Wolfram Liebermeister, Christoph \Vierling, Axel Kowald, Hans Lehrach, and Ralf Herwig Copyright 2009 WILEYWCH Verlag GmbH & Co. KGaA, Weinheim ISBN:

3 VI Contents Regulation of Enzyme Activity by Effectors Substrate Inhibition Binding of Ligands to Proteins Positive Homotropic Cooperativity and the Hill Equation The Monod Wyman Changeux Model for Sigrnoid Kinetics Generalized Mass Action Kinetics Approximate Kinetic Formats Convenience Kinetics Structural Analysis of Biochemical Systems Systems Equations Information Encoded in the Stoichiometric Matrix N Elementary Flux Modes and Extreme Pathways Flux Cone Conservation Relations: Null Space of NT Kinetic Models of Biochemical Systems Describing Dynamics with ODEs Notations Linearization of Autonomous Systems Solution of Linear ODE Systems Stability of Steady States Global Stability of Steady States Limit Cydes Metabolic Control Analysis The Coefficients of Control Analysis The Elastidty Coefficients Control Coefficients Response Coefficients Matrix Representation of the Coefficients The Theorems of Metabolic Control Theory The Summation Theorems The Connectivity Theorems Derivation of Matrix Expressions for Control Coefficients Tools and Data Formats for Modeling Simulation Techniques Petri Nets Cellular Automata Simulation Tools CellDesigner COPASI PyBioS Data Formats Systems Biology Markup Language BioPAX Systems Biology Graphical Notation 73

4 Contents I VII Standards for Systems Biology Data Resources Pathway Databases Databases of Kinetic Data Model Databases 77 References 79 3 Specific Biochemical Systems Metabolic Systems Basic Elements of Metabolic Modeling Toy Model of Upper Glycolysis Threonine Synthesis Pathway Model Signaling Pathways Introduction Function and Structure of Intra- and Intercellular Communication Receptor Ligand Interactions Structural Components of Signaling Pathways G proteins Small G proteins Phosphorelay Systems MAP Kinase Cascades Jak/Stat Pathways Signaling Dynamic and Regulatory Features Quantitative Measures for Properties of Signaling Pathways Crosstalk in Signaling Pathways The Cell Cyde Steps in the Cyde Minimal Cascade Model of a Mitotic Oscillator Models of Budding Yeast Cell Cyde Modeling Nudeo/Cytoplasmatic Compartmentalization Spatial Models Types of Spatial Models Compartment Models and Partial Differential Equations Stochastic Models Cellular Automata Compartment Models Reaction Diffusion Systems The Diffusion Equation Solutions of -the Diffusion Equation Reaction Diffusion Equation Pattern Formation in Tissue Development Spontaneous Pattern Formation Apoptosis Molecular Biology of Apoptosis 132

5 VIII I Contents Modeling of Apoptosis 135 References Model Fitting Data for Small Metabolic and Signaling Systems Databases for Kinetic Modeling Measuring Promoter Activities Using GFP Reporter Genes Parameter Estimation Regression Estimators Method of Least Squares and Maximum-Likelihood Estimation Identifiability Bootstrapping Crossvalidation Bayesian Parameter Estimation Local and Global Optimization Local Optimization Global Optimization Sampling Methods Genetic Algorithms Reduction and Coupling of Models Model Simplification Tacit Model Assumptions Reduction of Fast Processes Response Time Time-Scale Separation Global Model Reduction Linearized Biochemical Models Linear Relaxation Modes Coupled Systems and Emergent Behavior Modeling of Coupled Systems Bottom-Up and Top-Down Modeling Modeling the System Boundary Coupling of Submodels Model Merging Model Selection What is a Good Model? Statistical Tests and Model Selection Maximum-Likelihood Estimation and x 2-Test Overfitting Likelihood Ratio Test Selection Criteria Bayesian Model Selection Cycle of Experiments and Modeling 186

6 Contents 11X Models are Growing in Complexity 186 References Analysis of High-Throughput Data High-Throughput Experiments DNA Array Platforms Platform Comparison Next Generation Sequencing Image Analysis and Data Quality Control Grid Finding Spot Quantification Signal Validity Preprocessing Global Measures Linear Models Nonlinear and Spatial Effects Other Approaches Analysis of Gene Expression Data Planning and Designing Experiments for Case-Control Studies Tests for Differential Expression DNA Arrays Next Generation Sequencing Multiple Testing ROC Curve Analysis Clustering Algorithms Hierarchical Clustering Self-Organizing Maps (SOMs) K-Means Cluster Validation Overrepresentation and Enrichment Analyses Classification Methods Support Vector Machines Other Approaches 229 References Gene Expression Models Mechanisms of Gene Expression Regulation Transcription-Factor Initiated Gene Regulation General Promoter Structure Prediction and Analysis of Promoter Elements Sequence-Based Analysis Approaches that Incorporate Additional Information Posttranscriptional Regulation Through micrornas Identification of micrornas in the Genome Sequence MicroRNA Target Prediction 246

7 XI Contents Experimental Implications RNA Interference 246 Gene Regulation Functions 248 The Lac Operon in Escherichia coli 249 Gene Regulation Functions Derived from Equilibrium Binding 250 Occupation Probability Derived from Statistical Thermodynamics 251 Gene Regulation Function of the Lac Operon 253 Transcriptional Regulation in Larger Networks 254 Network Component Analysis 254 Dynamic Models of Gene Regulation 256 One Gene Regulatory Network: Different Approaches 256 Representation of a Gene Regulatory Network as Graph 256 Bayesian Networks 258 Boolean Networks 259 Description with Ordinary Differential Equations 262 Gene Expression Modeling with Stochastic Processes 264 References Stochastic Systems and Variability Stochastic Modeling of Biochemical Reactions Chemical Random Process for Molecule Numbers The Chemical Master Equation Stochastic Simulation Direct Method Explicit r-leaping Method Stochastic Simulation and Spatial Models The Chemical Langevin Equation Deterministic and Stochastic Modeling Frameworks Temporal Fluctuations Fluctuations in Gene Expression Stochastic Model of Transcription and Translation Macroscopic Kinetic Model Microscopic Stochastic Model Fluctuations and Protein Bursts Measuring the Intrinsic and Extrinsic Variability Temporal Fluctuations in a Gene Cascade Linear Model of Two Genes Measuring the Time Correlations in Protein Levels Biological Functions of Noise Random Switching Exploration Strategies Variability and Uncertainty Models with Uncertain Constant Parameters Computing the Distribution of Output Variables Monte Carlo Simulation 293

8 Approximation for Narrow Parameter Distributions Temporal Parameter Fluctuations Uncertainty Analysis of Biochemical Models Sampling of Reaction Elasticities Distributions for Kinetic Parameters Principle of Minimal Information Thermodynamic Constraints an Parameters Obtaining Parameter Distributions from Experimental Data Robustness Robustness Properties in Biochemical Systems Biological Robustness Properties Mathematical Robustness Criteria Precise Robustness in a Bacterial Two-Component System Structural Robustness in Large Networks Backup Genes Backup Pathways Quantitative Robustness by Feedback Negative Feedback Integral Feedback Scaling Laws, Invariance, and Dimensional Analysis Summation Laws and Homogeneous Functions Summation Theorems Conservation Laws for Sensitivity Compensation of Correlated Fluctuations Robustness and Evolvability Robustness and Modeling 310 References Network Structures, Dynamics, and Function Structure of Biochemical Networks Mathematical Graphs Random Graphs Erdios R6nyi Random Graphs Geometric Random Graphs Random Graphs with Predefined Degree Sequence Scale-Free Networks Clustering and Local Structure Clustering Coefficient Small-World Networks Network Motifs Structure of Metabolic Networks The Network Picture Network Motifs Transcription Networks and Network Motifs Single Regulation Arrows and Their Steady-State Response 328 Contents 1X1

9 XIII Contents Adaptation Motif 329 Negative Feedback 330 Feed-Forward Loops 331 Dynamic Model of the Feed-Forward Loop 332 Dynamics and Function of Network Motifs 333 Modularity 335 Modularity as a Fact or as an Assumption 336 Aspects of Modularity: Structure, Function, Dynamics, Regulation, and Genetics 337 Structural Modules in Cellular Networks 337 Modular Response Analysis 338 Functional Modules Detected by Epistasis 339 Evolution of Modularity and Complexity 341 Tinkering and Engineering 341 Analogy in Evolution 342 Modularity, Robustness, and Evolvability 342 References Optimality and Evolution Optimality and Constraint-Based Models Optimization by Evolution Optimality Studies in Systems Biology The Fitness Function Optimality and Compromise Cost-Benefit Calculations Inequality Constraints Local Optima Constraint-Based Flux Optimization Flux-Balance Analysis Geometrie Interpretation of Flux-Balance Analysis Thermodynamic Constraints Applications and Tests of Flux-Optimization Paradigm Optimal Enzyme Concentrations Optimization of Catalytic Properties of Single Enzymes Optimal Distribution of Enzyme Concentrations in a Metabolic Pathway Temporal Transcription Programs Evolutionary Garne Theory Game Theory Hawk Dove Game and Prisoner's Dilemma Best Choices and Nash Equilibrium Evolutionary Garne Theory Replicator Equation for Population Dynamics The Replicator Equation Outcomes of Frequency-Dependent Selection 372

10 Contents 1X Evolutionary Stable Strategies Dynamical Behavior in the Rock-Scissors-Paper Game Evolution of Cooperative Behavior Kin Selection Other Scenarios for Evolution of Cooperation Yield and Efficiency in Metabolism Trade-off Between Fast and Efficient Energy Metabolism Multicellularity Enables Cells to Profit from Respiration 377 References Cell Biology Introduction The Origin of Life Molecular Biology of the Cell Chemical Bonds and Forces Important in Biological Molecules Functional Groups in Biological Molecules Major Classes of Biological Molecules Carbohydrates Lipids Proteins Nucleic Acids Structural Cell Biology Structure and Function of Biological Membranes Nudeus Cytosol Mitochondria Endoplasmatic Reticulum and Golgi Complex Other Organelles Expression of Genes Transcription Processing of the mrna Translation Protein Sorting and Posttranslational Modifications Regulation of Gene Expression 416 References Experimental Techniques in Molecular Biology Introduction Restriction Enzymes and Gel Electrophoresis Cloning Vectors and DNA Libraries D and 2D Protein Gels Hybridization and Blotting Techniques Southern Blotting Northern Blotting Western Blotting 429

11 XIV I Contents In Situ Hybridization 430 Further Protein Separation Techniques 430 Centrifugation 430 Column Chromatography 431 Polymerase Chain Reaction 432 DNA and Protein Chips 433 DNA Chips 433 Protein Chips 434 Yeast Two-Hybrid System 434 Mass Spectrometry 435 Transgenic Animals 436 RNA Interference 437 ChIP an Chip and ChIP-PET 439 Surface Plasmon Resonance 441 Population Heterogeneity and Single Entity Experiments 442 References Mathematics Linear Modeling Linear Equations The Gaussian Elimination Algorithm Systematic Solution of Linear Systems Matrices Basic Notions Linear Dependency Basic Matrix Operations Dimension and Rank Eigenvalues and Eigenvectors of a Square Matrix Ordinary Differential Equations Notions Regarding Differential Equations Linearization of Autonomous Systems Solution of Linear ODE Systems Stability of Steady States Global Stability of Steady States Limit Cydes Difference Equations Graph and Network Theory Linear Networks Boolean Networks Bayesian Networks 473 References Statistics Basic Concepts of Probability Theory Random Variables, Densities, and Distribution Functions 478

12 Contents 1XV Transforming Probability Densities Product Experiments and Independence Limit Theorems Descriptive Statistics Statistics for Sample Location Statistics for Sample Variability Density Estimation Correlation of Samples Testing Statistical Hypotheses Statistical Framework Two Sample Location Tests Linear Models ANOVA Multiple Linear Regression Principal Component Analysis 496 References Stochastic Processes Basic Notions for Random Processes Reduced and Conditional Distributions Markov Processes Markov Chains Jump Processes in Continuous Time: The Master Equation Continuous Random Processes Langevin Equations The Fokker Planck Equation 509 References Control of Linear Systems Linear Dynamical Systems System Response Random Fluctuations and Spectral Density The Gramian Matrices Databases Databases of the National Center for Biotechnology Databases of the European Bioinformatics Institute EMBL Nucleotide Sequence Database Ensembl InterPro Swiss-Prot, TrEMBL, and UniProt Protein Databank BioNumbers Gene Ontology Pathway Databases 524

13 XVII Contents ConsensusPathDB 524 References Modeling Tools Introduction Mathematica and Matlab Mathematica Example Matlab Example Dizzy Systems Biology Workbench Tools Compendium 536 References 551 Index 553

Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig. Systems Biology

Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig. Systems Biology Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig Systems Biology Related Titles Helms, V. Principles of Computational Cell Biology From Protein Complexes

More information

Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig. Systems Biology

Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig. Systems Biology Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig Systems Biology Related Titles Helms, V. Principles of Computational Cell Biology From Protein Complexes

More information

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models Markus W. Covert Stanford University 0 CRC Press Taylor & Francis Group Boca Raton London New York Contents /... Preface, xi

More information

Biological Pathways Representation by Petri Nets and extension

Biological Pathways Representation by Petri Nets and extension Biological Pathways Representation by and extensions December 6, 2006 Biological Pathways Representation by and extension 1 The cell Pathways 2 Definitions 3 4 Biological Pathways Representation by and

More information

Basic modeling approaches for biological systems. Mahesh Bule

Basic modeling approaches for biological systems. Mahesh Bule Basic modeling approaches for biological systems Mahesh Bule The hierarchy of life from atoms to living organisms Modeling biological processes often requires accounting for action and feedback involving

More information

Computer Simulation and Data Analysis in Molecular Biology and Biophysics

Computer Simulation and Data Analysis in Molecular Biology and Biophysics Victor Bloomfield Computer Simulation and Data Analysis in Molecular Biology and Biophysics An Introduction Using R Springer Contents Part I The Basics of R 1 Calculating with R 3 1.1 Installing R 3 1.1.1

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

Computational Systems Biology Exam

Computational Systems Biology Exam Computational Systems Biology Exam Dr. Jürgen Pahle Aleksandr Andreychenko, M.Sc. 31 July, 2012 Name Matriculation Number Do not open this exam booklet before we ask you to. Do read this page carefully.

More information

GACE Biology Assessment Test I (026) Curriculum Crosswalk

GACE Biology Assessment Test I (026) Curriculum Crosswalk Subarea I. Cell Biology: Cell Structure and Function (50%) Objective 1: Understands the basic biochemistry and metabolism of living organisms A. Understands the chemical structures and properties of biologically

More information

Lecture 7: Simple genetic circuits I

Lecture 7: Simple genetic circuits I Lecture 7: Simple genetic circuits I Paul C Bressloff (Fall 2018) 7.1 Transcription and translation In Fig. 20 we show the two main stages in the expression of a single gene according to the central dogma.

More information

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 REVIEW: Signals that Start and Stop Transcription and Translation BUT, HOW DO CELLS CONTROL WHICH GENES ARE EXPRESSED AND WHEN? First of

More information

Preface. Contributors

Preface. Contributors CONTENTS Foreword Preface Contributors PART I INTRODUCTION 1 1 Networks in Biology 3 Björn H. Junker 1.1 Introduction 3 1.2 Biology 101 4 1.2.1 Biochemistry and Molecular Biology 4 1.2.2 Cell Biology 6

More information

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007 Understanding Science Through the Lens of Computation Richard M. Karp Nov. 3, 2007 The Computational Lens Exposes the computational nature of natural processes and provides a language for their description.

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180 Course plan 201-201 Academic Year Qualification MSc on Bioinformatics for Health Sciences 1. Description of the subject Subject name: Code: 30180 Total credits: 5 Workload: 125 hours Year: 1st Term: 3

More information

the noisy gene Biology of the Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB)

the noisy gene Biology of the Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB) Biology of the the noisy gene Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB) day III: noisy bacteria - Regulation of noise (B. subtilis) - Intrinsic/Extrinsic

More information

Prediction of Enzyme Kinetic Parameters Based on Statistical Learning

Prediction of Enzyme Kinetic Parameters Based on Statistical Learning 80 Genome Informatics 17(1): 80 87 (2006) Prediction of Enzyme Kinetic Parameters Based on Statistical Learning Simon Borger Wolfram Liebermeister Edda Klipp borger@molgen.mpg.de lieberme@molgen.mpg.de

More information

86 Part 4 SUMMARY INTRODUCTION

86 Part 4 SUMMARY INTRODUCTION 86 Part 4 Chapter # AN INTEGRATION OF THE DESCRIPTIONS OF GENE NETWORKS AND THEIR MODELS PRESENTED IN SIGMOID (CELLERATOR) AND GENENET Podkolodny N.L. *1, 2, Podkolodnaya N.N. 1, Miginsky D.S. 1, Poplavsky

More information

Lecture: Computational Systems Biology Universität des Saarlandes, SS Introduction. Dr. Jürgen Pahle

Lecture: Computational Systems Biology Universität des Saarlandes, SS Introduction. Dr. Jürgen Pahle Lecture: Computational Systems Biology Universität des Saarlandes, SS 2012 01 Introduction Dr. Jürgen Pahle 24.4.2012 Who am I? Dr. Jürgen Pahle 2009-2012 Manchester Interdisciplinary Biocentre, The University

More information

Introduction. Dagmar Iber Jörg Stelling. CSB Deterministic, SS 2015, 1.

Introduction. Dagmar Iber Jörg Stelling. CSB Deterministic, SS 2015, 1. Introduction Dagmar Iber Jörg Stelling joerg.stelling@bsse.ethz.ch CSB Deterministic, SS 2015, 1 Origins of Systems Biology On this assumption of the passage of blood, made as a basis for argument, and

More information

Network motifs in the transcriptional regulation network (of Escherichia coli):

Network motifs in the transcriptional regulation network (of Escherichia coli): Network motifs in the transcriptional regulation network (of Escherichia coli): Janne.Ravantti@Helsinki.Fi (disclaimer: IANASB) Contents: Transcription Networks (aka. The Very Boring Biology Part ) Network

More information

GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data

GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data 1 Gene Networks Definition: A gene network is a set of molecular components, such as genes and proteins, and interactions between

More information

Basic Synthetic Biology circuits

Basic Synthetic Biology circuits Basic Synthetic Biology circuits Note: these practices were obtained from the Computer Modelling Practicals lecture by Vincent Rouilly and Geoff Baldwin at Imperial College s course of Introduction to

More information

2. Mathematical descriptions. (i) the master equation (ii) Langevin theory. 3. Single cell measurements

2. Mathematical descriptions. (i) the master equation (ii) Langevin theory. 3. Single cell measurements 1. Why stochastic?. Mathematical descriptions (i) the master equation (ii) Langevin theory 3. Single cell measurements 4. Consequences Any chemical reaction is stochastic. k P d φ dp dt = k d P deterministic

More information

From cell biology to Petri nets. Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE

From cell biology to Petri nets. Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE From cell biology to Petri nets Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE Biology = Concentrations Breitling / 2 The simplest chemical reaction A B irreversible,

More information

Systems biology and complexity research

Systems biology and complexity research Systems biology and complexity research Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Interdisciplinary Challenges for

More information

Name Period The Control of Gene Expression in Prokaryotes Notes

Name Period The Control of Gene Expression in Prokaryotes Notes Bacterial DNA contains genes that encode for many different proteins (enzymes) so that many processes have the ability to occur -not all processes are carried out at any one time -what allows expression

More information

BMD645. Integration of Omics

BMD645. Integration of Omics BMD645 Integration of Omics Shu-Jen Chen, Chang Gung University Dec. 11, 2009 1 Traditional Biology vs. Systems Biology Traditional biology : Single genes or proteins Systems biology: Simultaneously study

More information

13.4 Gene Regulation and Expression

13.4 Gene Regulation and Expression 13.4 Gene Regulation and Expression Lesson Objectives Describe gene regulation in prokaryotes. Explain how most eukaryotic genes are regulated. Relate gene regulation to development in multicellular organisms.

More information

Written Exam 15 December Course name: Introduction to Systems Biology Course no

Written Exam 15 December Course name: Introduction to Systems Biology Course no Technical University of Denmark Written Exam 15 December 2008 Course name: Introduction to Systems Biology Course no. 27041 Aids allowed: Open book exam Provide your answers and calculations on separate

More information

CELL BIOLOGY. by the numbers. Ron Milo. Rob Phillips. illustrated by. Nigel Orme

CELL BIOLOGY. by the numbers. Ron Milo. Rob Phillips. illustrated by. Nigel Orme CELL BIOLOGY by the numbers Ron Milo Rob Phillips illustrated by Nigel Orme viii Detailed Table of Contents List of Estimates xii Preface xv Acknowledgments xiii The Path to Biological Numeracy Why We

More information

arxiv: v2 [q-bio.qm] 12 Jan 2017

arxiv: v2 [q-bio.qm] 12 Jan 2017 Approximation and inference methods for stochastic biochemical kinetics - a tutorial review arxiv:1608.06582v2 [q-bio.qm] 12 Jan 2017 David Schnoerr 1,2,3, Guido Sanguinetti 2,3, and Ramon Grima 1,3,*

More information

Regulation of gene expression. Premedical - Biology

Regulation of gene expression. Premedical - Biology Regulation of gene expression Premedical - Biology Regulation of gene expression in prokaryotic cell Operon units system of negative feedback positive and negative regulation in eukaryotic cell - at any

More information

Modeling and Systems Analysis of Gene Regulatory Networks

Modeling and Systems Analysis of Gene Regulatory Networks Modeling and Systems Analysis of Gene Regulatory Networks Mustafa Khammash Center for Control Dynamical-Systems and Computations University of California, Santa Barbara Outline Deterministic A case study:

More information

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday 1. What is the Central Dogma? 2. How does prokaryotic DNA compare to eukaryotic DNA? 3. How is DNA

More information

New Computational Methods for Systems Biology

New Computational Methods for Systems Biology New Computational Methods for Systems Biology François Fages, Sylvain Soliman The French National Institute for Research in Computer Science and Control INRIA Paris-Rocquencourt Constraint Programming

More information

Virginia Western Community College BIO 101 General Biology I

Virginia Western Community College BIO 101 General Biology I BIO 101 General Biology I Prerequisites Successful completion of MTE 1, 2, 3, 4, and 5; and a placement recommendation for ENG 111, co-enrollment in ENF 3/ENG 111, or successful completion of all developmental

More information

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on Regulation and signaling Overview Cells need to regulate the amounts of different proteins they express, depending on cell development (skin vs liver cell) cell stage environmental conditions (food, temperature,

More information

Towards a framework for multi-level modelling in Computational Biology

Towards a framework for multi-level modelling in Computational Biology Towards a framework for multi-level modelling in Computational Biology Sara Montagna sara.montagna@unibo.it Alma Mater Studiorum Università di Bologna PhD in Electronics, Computer Science and Telecommunications

More information

Control of Gene Expression in Prokaryotes

Control of Gene Expression in Prokaryotes Why? Control of Expression in Prokaryotes How do prokaryotes use operons to control gene expression? Houses usually have a light source in every room, but it would be a waste of energy to leave every light

More information

Chapter One. Introduction

Chapter One. Introduction Chapter One Introduction With the ever-increasing influence of mathematical modeling and engineering on biological, social, and medical sciences, it is not surprising that dynamical system theory has played

More information

Bi 8 Lecture 11. Quantitative aspects of transcription factor binding and gene regulatory circuit design. Ellen Rothenberg 9 February 2016

Bi 8 Lecture 11. Quantitative aspects of transcription factor binding and gene regulatory circuit design. Ellen Rothenberg 9 February 2016 Bi 8 Lecture 11 Quantitative aspects of transcription factor binding and gene regulatory circuit design Ellen Rothenberg 9 February 2016 Major take-home messages from λ phage system that apply to many

More information

Cellular Automata Approaches to Enzymatic Reaction Networks

Cellular Automata Approaches to Enzymatic Reaction Networks Cellular Automata Approaches to Enzymatic Reaction Networks Jörg R. Weimar Institute of Scientific Computing, Technical University Braunschweig, D-38092 Braunschweig, Germany J.Weimar@tu-bs.de, http://www.jweimar.de

More information

Chapter 16 Lecture. Concepts Of Genetics. Tenth Edition. Regulation of Gene Expression in Prokaryotes

Chapter 16 Lecture. Concepts Of Genetics. Tenth Edition. Regulation of Gene Expression in Prokaryotes Chapter 16 Lecture Concepts Of Genetics Tenth Edition Regulation of Gene Expression in Prokaryotes Chapter Contents 16.1 Prokaryotes Regulate Gene Expression in Response to Environmental Conditions 16.2

More information

CS-E5880 Modeling biological networks Gene regulatory networks

CS-E5880 Modeling biological networks Gene regulatory networks CS-E5880 Modeling biological networks Gene regulatory networks Jukka Intosalmi (based on slides by Harri Lähdesmäki) Department of Computer Science Aalto University January 12, 2018 Outline Modeling gene

More information

Multiple Choice Review- Eukaryotic Gene Expression

Multiple Choice Review- Eukaryotic Gene Expression Multiple Choice Review- Eukaryotic Gene Expression 1. Which of the following is the Central Dogma of cell biology? a. DNA Nucleic Acid Protein Amino Acid b. Prokaryote Bacteria - Eukaryote c. Atom Molecule

More information

Systems Biology Across Scales: A Personal View XIV. Intra-cellular systems IV: Signal-transduction and networks. Sitabhra Sinha IMSc Chennai

Systems Biology Across Scales: A Personal View XIV. Intra-cellular systems IV: Signal-transduction and networks. Sitabhra Sinha IMSc Chennai Systems Biology Across Scales: A Personal View XIV. Intra-cellular systems IV: Signal-transduction and networks Sitabhra Sinha IMSc Chennai Intra-cellular biochemical networks Metabolic networks Nodes:

More information

Biological Concepts and Information Technology (Systems Biology)

Biological Concepts and Information Technology (Systems Biology) Biological Concepts and Information Technology (Systems Biology) Janaina de Andréa Dernowsek Postdoctoral at Center for Information Technology Renato Archer Janaina.dernowsek@cti.gov.br Division of 3D

More information

Introduction. Gene expression is the combined process of :

Introduction. Gene expression is the combined process of : 1 To know and explain: Regulation of Bacterial Gene Expression Constitutive ( house keeping) vs. Controllable genes OPERON structure and its role in gene regulation Regulation of Eukaryotic Gene Expression

More information

Prokaryotic Gene Expression (Learning Objectives)

Prokaryotic Gene Expression (Learning Objectives) Prokaryotic Gene Expression (Learning Objectives) 1. Learn how bacteria respond to changes of metabolites in their environment: short-term and longer-term. 2. Compare and contrast transcriptional control

More information

Gene Regulation and Expression

Gene Regulation and Expression THINK ABOUT IT Think of a library filled with how-to books. Would you ever need to use all of those books at the same time? Of course not. Now picture a tiny bacterium that contains more than 4000 genes.

More information

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai Network Biology: Understanding the cell s functional organization Albert-László Barabási Zoltán N. Oltvai Outline: Evolutionary origin of scale-free networks Motifs, modules and hierarchical networks Network

More information

Midterm Review Guide. Unit 1 : Biochemistry: 1. Give the ph values for an acid and a base. 2. What do buffers do? 3. Define monomer and polymer.

Midterm Review Guide. Unit 1 : Biochemistry: 1. Give the ph values for an acid and a base. 2. What do buffers do? 3. Define monomer and polymer. Midterm Review Guide Name: Unit 1 : Biochemistry: 1. Give the ph values for an acid and a base. 2. What do buffers do? 3. Define monomer and polymer. 4. Fill in the Organic Compounds chart : Elements Monomer

More information

Predicting Protein Functions and Domain Interactions from Protein Interactions

Predicting Protein Functions and Domain Interactions from Protein Interactions Predicting Protein Functions and Domain Interactions from Protein Interactions Fengzhu Sun, PhD Center for Computational and Experimental Genomics University of Southern California Outline High-throughput

More information

Mathematical Biology - Lecture 1 - general formulation

Mathematical Biology - Lecture 1 - general formulation Mathematical Biology - Lecture 1 - general formulation course description Learning Outcomes This course is aimed to be accessible both to masters students of biology who have a good understanding of the

More information

Principles of Genetics

Principles of Genetics Principles of Genetics Snustad, D ISBN-13: 9780470903599 Table of Contents C H A P T E R 1 The Science of Genetics 1 An Invitation 2 Three Great Milestones in Genetics 2 DNA as the Genetic Material 6 Genetics

More information

Name: SBI 4U. Gene Expression Quiz. Overall Expectation:

Name: SBI 4U. Gene Expression Quiz. Overall Expectation: Gene Expression Quiz Overall Expectation: - Demonstrate an understanding of concepts related to molecular genetics, and how genetic modification is applied in industry and agriculture Specific Expectation(s):

More information

56:198:582 Biological Networks Lecture 8

56:198:582 Biological Networks Lecture 8 56:198:582 Biological Networks Lecture 8 Course organization Two complementary approaches to modeling and understanding biological networks Constraint-based modeling (Palsson) System-wide Metabolism Steady-state

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Systems biology Introduction to Bioinformatics Systems biology: modeling biological p Study of whole biological systems p Wholeness : Organization of dynamic interactions Different behaviour of the individual

More information

Curriculum Map. Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1)

Curriculum Map. Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1) 1 Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1) Focus Standards BIO1.LS1.2 Evaluate comparative models of various cell types with a focus on organic molecules

More information

Regulation of metabolism

Regulation of metabolism Regulation of metabolism So far in this course we have assumed that the metabolic system is in steady state For the rest of the course, we will abandon this assumption, and look at techniques for analyzing

More information

Hybrid Model of gene regulatory networks, the case of the lac-operon

Hybrid Model of gene regulatory networks, the case of the lac-operon Hybrid Model of gene regulatory networks, the case of the lac-operon Laurent Tournier and Etienne Farcot LMC-IMAG, 51 rue des Mathématiques, 38041 Grenoble Cedex 9, France Laurent.Tournier@imag.fr, Etienne.Farcot@imag.fr

More information

Bio 101 General Biology 1

Bio 101 General Biology 1 Revised: Fall 2016 Bio 101 General Biology 1 COURSE OUTLINE Prerequisites: Prerequisite: Successful completion of MTE 1, 2, 3, 4, and 5, and a placement recommendation for ENG 111, co-enrollment in ENF

More information

Genetic transcription and regulation

Genetic transcription and regulation Genetic transcription and regulation Central dogma of biology DNA codes for DNA DNA codes for RNA RNA codes for proteins not surprisingly, many points for regulation of the process DNA codes for DNA replication

More information

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes.

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. A. Chemistry of Life B. Cells 1. Water How do the unique chemical

More information

L3.1: Circuits: Introduction to Transcription Networks. Cellular Design Principles Prof. Jenna Rickus

L3.1: Circuits: Introduction to Transcription Networks. Cellular Design Principles Prof. Jenna Rickus L3.1: Circuits: Introduction to Transcription Networks Cellular Design Principles Prof. Jenna Rickus In this lecture Cognitive problem of the Cell Introduce transcription networks Key processing network

More information

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization.

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization. 3.B.1 Gene Regulation Gene regulation results in differential gene expression, leading to cell specialization. We will focus on gene regulation in prokaryotes first. Gene regulation accounts for some of

More information

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus:

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: m Eukaryotic mrna processing Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: Cap structure a modified guanine base is added to the 5 end. Poly-A tail

More information

Control of Gene Expression

Control of Gene Expression Control of Gene Expression Mechanisms of Gene Control Gene Control in Eukaryotes Master Genes Gene Control In Prokaryotes Epigenetics Gene Expression The overall process by which information flows from

More information

Warm-Up. Explain how a secondary messenger is activated, and how this affects gene expression. (LO 3.22)

Warm-Up. Explain how a secondary messenger is activated, and how this affects gene expression. (LO 3.22) Warm-Up Explain how a secondary messenger is activated, and how this affects gene expression. (LO 3.22) Yesterday s Picture The first cell on Earth (approx. 3.5 billion years ago) was simple and prokaryotic,

More information

Prokaryotic Regulation

Prokaryotic Regulation Prokaryotic Regulation Control of transcription initiation can be: Positive control increases transcription when activators bind DNA Negative control reduces transcription when repressors bind to DNA regulatory

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Mutation Selection on the Metabolic Pathway and the Effects on Protein Co-evolution and the Rate Limiting Steps on the Tree of Life

Mutation Selection on the Metabolic Pathway and the Effects on Protein Co-evolution and the Rate Limiting Steps on the Tree of Life Ursinus College Digital Commons @ Ursinus College Mathematics Summer Fellows Student Research 7-21-2016 Mutation Selection on the Metabolic Pathway and the Effects on Protein Co-evolution and the Rate

More information

Bioinformatics 3. V18 Kinetic Motifs. Fri, Jan 8, 2016

Bioinformatics 3. V18 Kinetic Motifs. Fri, Jan 8, 2016 Bioinformatics 3 V18 Kinetic Motifs Fri, Jan 8, 2016 Modelling of Signalling Pathways Curr. Op. Cell Biol. 15 (2003) 221 1) How do the magnitudes of signal output and signal duration depend on the kinetic

More information

Bioinformatics 3! V20 Kinetic Motifs" Mon, Jan 13, 2014"

Bioinformatics 3! V20 Kinetic Motifs Mon, Jan 13, 2014 Bioinformatics 3! V20 Kinetic Motifs" Mon, Jan 13, 2014" Modelling of Signalling Pathways" Curr. Op. Cell Biol. 15 (2003) 221" 1) How do the magnitudes of signal output and signal duration depend on the

More information

AP* Biology Prep Course

AP* Biology Prep Course AP* Biology Prep Course SYLLABUS Welcome to the FlinnPREP AP* Biology Online Prep Course! Your enrollment in this course is your first step toward a 5 on the AP* Biology exam. FlinnPREP covers fundamental

More information

2. Cellular and Molecular Biology

2. Cellular and Molecular Biology 2. Cellular and Molecular Biology 2.1 Cell Structure 2.2 Transport Across Cell Membranes 2.3 Cellular Metabolism 2.4 DNA Replication 2.5 Cell Division 2.6 Biosynthesis 2.1 Cell Structure What is a cell?

More information

4. Why not make all enzymes all the time (even if not needed)? Enzyme synthesis uses a lot of energy.

4. Why not make all enzymes all the time (even if not needed)? Enzyme synthesis uses a lot of energy. 1 C2005/F2401 '10-- Lecture 15 -- Last Edited: 11/02/10 01:58 PM Copyright 2010 Deborah Mowshowitz and Lawrence Chasin Department of Biological Sciences Columbia University New York, NY. Handouts: 15A

More information

Networks in systems biology

Networks in systems biology Networks in systems biology Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2017 M. Macauley (Clemson) Networks in systems

More information

Controlling Gene Expression

Controlling Gene Expression Controlling Gene Expression Control Mechanisms Gene regulation involves turning on or off specific genes as required by the cell Determine when to make more proteins and when to stop making more Housekeeping

More information

Computational Systems Biology

Computational Systems Biology Computational Systems Biology Vasant Honavar Artificial Intelligence Research Laboratory Bioinformatics and Computational Biology Graduate Program Center for Computational Intelligence, Learning, & Discovery

More information

Welcome to Class 21!

Welcome to Class 21! Welcome to Class 21! Introductory Biochemistry! Lecture 21: Outline and Objectives l Regulation of Gene Expression in Prokaryotes! l transcriptional regulation! l principles! l lac operon! l trp attenuation!

More information

Types of biological networks. I. Intra-cellurar networks

Types of biological networks. I. Intra-cellurar networks Types of biological networks I. Intra-cellurar networks 1 Some intra-cellular networks: 1. Metabolic networks 2. Transcriptional regulation networks 3. Cell signalling networks 4. Protein-protein interaction

More information

European Conference on Mathematical and Theoretical Biology Gothenburg

European Conference on Mathematical and Theoretical Biology Gothenburg European Conference on Mathematical and Theoretical Biology 2014 - Gothenburg Minisymposium: Numerical methods for high-dimensional problems in biology Date: Monday, 16 th of June Time: 16:00-19:00 Organizers:

More information

I. Molecules & Cells. A. Unit One: The Nature of Science. B. Unit Two: The Chemistry of Life. C. Unit Three: The Biology of the Cell.

I. Molecules & Cells. A. Unit One: The Nature of Science. B. Unit Two: The Chemistry of Life. C. Unit Three: The Biology of the Cell. I. Molecules & Cells A. Unit One: The Nature of Science a. How is the scientific method used to solve problems? b. What is the importance of controls? c. How does Darwin s theory of evolution illustrate

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

REGULATION OF GENE EXPRESSION. Bacterial Genetics Lac and Trp Operon

REGULATION OF GENE EXPRESSION. Bacterial Genetics Lac and Trp Operon REGULATION OF GENE EXPRESSION Bacterial Genetics Lac and Trp Operon Levels of Metabolic Control The amount of cellular products can be controlled by regulating: Enzyme activity: alters protein function

More information

Organisms: We will need to have some examples in mind for our spherical cows.

Organisms: We will need to have some examples in mind for our spherical cows. Lecture 4: Structure and Composition (Sept. 15) 4.1 Reading Assignment for Lectures 3-4: Phillips, Kondev, Theriot (PKT), Chapter 2 Problem Set 1 (due Sept. 24) now posted on the website. Cellular materials:

More information

Gene Network Science Diagrammatic Cell Language and Visual Cell

Gene Network Science Diagrammatic Cell Language and Visual Cell Gene Network Science Diagrammatic Cell Language and Visual Cell Mr. Tan Chee Meng Scientific Programmer, System Biology Group, Bioinformatics Institute Overview Introduction Why? Challenges Diagrammatic

More information

1. CHEMISTRY OF LIFE. Tutorial Outline

1. CHEMISTRY OF LIFE. Tutorial Outline Tutorial Outline North Carolina Tutorials are designed specifically for the Common Core State Standards for English language arts, the North Carolina Standard Course of Study for Math, and the North Carolina

More information

Program for the rest of the course

Program for the rest of the course Program for the rest of the course 16.4 Enzyme kinetics 17.4 Metabolic Control Analysis 19.4. Exercise session 5 23.4. Metabolic Control Analysis, cont. 24.4 Recap 27.4 Exercise session 6 etabolic Modelling

More information

Control of Prokaryotic (Bacterial) Gene Expression. AP Biology

Control of Prokaryotic (Bacterial) Gene Expression. AP Biology Control of Prokaryotic (Bacterial) Gene Expression Figure 18.1 How can this fish s eyes see equally well in both air and water? Aka. Quatro ojas Regulation of Gene Expression: Prokaryotes and eukaryotes

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species 02-710 Computational Genomics Reconstructing dynamic regulatory networks in multiple species Methods for reconstructing networks in cells CRH1 SLT2 SLR3 YPS3 YPS1 Amit et al Science 2009 Pe er et al Recomb

More information

Compare and contrast the cellular structures and degrees of complexity of prokaryotic and eukaryotic organisms.

Compare and contrast the cellular structures and degrees of complexity of prokaryotic and eukaryotic organisms. Subject Area - 3: Science and Technology and Engineering Education Standard Area - 3.1: Biological Sciences Organizing Category - 3.1.A: Organisms and Cells Course - 3.1.B.A: BIOLOGY Standard - 3.1.B.A1:

More information

Overview of Kinetics

Overview of Kinetics Overview of Kinetics [P] t = ν = k[s] Velocity of reaction Conc. of reactant(s) Rate of reaction M/sec Rate constant sec -1, M -1 sec -1 1 st order reaction-rate depends on concentration of one reactant

More information

Topic 4 - #14 The Lactose Operon

Topic 4 - #14 The Lactose Operon Topic 4 - #14 The Lactose Operon The Lactose Operon The lactose operon is an operon which is responsible for the transport and metabolism of the sugar lactose in E. coli. - Lactose is one of many organic

More information

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of Enzyme Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of the process are called substrates and the enzyme

More information

Introduction on metabolism & refresher in enzymology

Introduction on metabolism & refresher in enzymology Introduction on metabolism & refresher in enzymology Daniel Kahn Laboratoire de Biométrie & Biologie Evolutive Lyon 1 University & INRA MIA Department Daniel.Kahn@univ-lyon1.fr General objectives of the

More information

Computational Cell Biology Lecture 4

Computational Cell Biology Lecture 4 Computational Cell Biology Lecture 4 Case Study: Basic Modeling in Gene Expression Yang Cao Department of Computer Science DNA Structure and Base Pair Gene Expression Gene is just a small part of DNA.

More information