Positively versus Negatively Frequency-Dependent Selection

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Positively versus Negatively Frequency-Dependent Selection"

Transcription

1 Positively versus Negatively Frequency-Dependent Selection Robert Morris and Tim Watson Faculty of Technology, De Montfort University, Leicester, United Kingdom, LE1 9BH Abstract. Frequency-dependent selection (FDS) refers to situations where individual fitnesses are dependent (to some degree) on where the individual s alleles lie in the proximate allele frequency distribution. If the dependence is negative that is, if alleles become increasingly detrimental to fitness as they become increasingly common at a given locus then genetic diversity may be maintained. If the dependence is positive, then alleles may converge at given loci. A hypothetical evolutionary model of FDS is here presented, in which the individuals themselves determined by means of a gene whether their fitnesses were positively or negatively frequency-dependent. The population ratio of the two types of individual was monitored in runs with different parameters, and explanations of what happened are offered. Key words: Frequency-dependent selection, multiple alleles, meta gene 1 Introduction Ridley s textbook Evolution [6] contains a good entry on FDS, the opening of which is reproduced here. Frequency-dependent selection occurs when the fitness of a genotype depends on its frequency. It is possible for the fitness of a genotype to increase (positively frequency-dependent) or decrease (negatively frequency-dependent) as the genotype frequency in the population increases. Many abstract models of FDS have been studied, with the principal aims being to strengthen the theory underpinning these phenomena, and to explore the surrounding space of possibilities. Curtsinger [3] looked at many different selection modes, and found a condition that determined whether or not the system would stably converge. Asmussen and Basnayake [1] studied several models, focussing on the potential for the maintenance of genetic diversity, and Roff [7] looked at maintaining both phenotypic and additive variation via FDS. Bürger [2] performed an extensive analysis of a general model (of which previous known models could be considered special cases) and gave a near-complete characterisation of the equilibrium structure. Schneider [8] carried out a similar study, with multiple alleles and loci, and found no equilibria possible with more than two alleles at a locus. And Trotter and Spencer [9] investigated the potential for maintaining polymorphism taking into account the presence of positive FDS.

2 2 Positively versus Negatively Frequency-Dependent Selection In every previous simulation of FDS, the selection regime has been imposed on the individuals by (essentially) the environment, in order to reproduce realworld conditions. In the present FDS model, the novel step is taken of putting the form of the frequency-dependence under the control of the individuals. In more precise terms, the individuals have a meta-gene in their genotype that dictates whether their fitness will be proportional to how similar they are to their neighbours, or how different they are to them. (Cf. the meta-genes in [4] and [5].) The purpose here is not to model any known natural phenomena, but to speculatively extend the domain of theoretical FDS in an interesting what if? way. 2 Experiments and Analysis A standard genetic algorithm was written whose genotype consisted of one meta gene plus a chromosome. The meta gene was a bit, and the chromosome consisted of non-negative integers in a given range. A zero allele in the meta gene told the fitness function to reward that individual for similarity, and a one told the function to reward it for difference. The measures were based on the concept of Hamming distance, and were implemented here in two different ways: pairwise, and population-wide. In the pairwise method, an individual s fitness was calculated by comparing it to a randomly chosen individual from the population (which could have been itself). If the individual in question had a meta gene of zero, its fitness was given by 1 plus the total number of genes 1 by locus which it had in common with the other individual, ignoring the meta genes. If the meta gene was a one, the fitness was given by 1 plus the total number of genes which they did not have in common. For example, for the individuals < > and < >, the fitness of the first w.r.t. the second would be 4 (= 1 + 3), whereas the fitness of the second w.r.t. the first would be 3. In the population-wide method, an individual s fitness was calculated by comparing it to every individual in the population (including itself). This was performed by applying the pairwise method down the whole population, and tallying up the points. These were the only components of the fitnesses. Six runs were executed for every combination of the following parameter ranges: population size = 10 and 100; chromosome length = 1, 4, and 40; allele range = 2 (i.e. bitstrings), 3, and 4; fitness calculation = pairwise and population wide; mutation rate = zero, low, and high ; crossover = off and on ( 70% across each new population). The chromosomes were initialised randomly, but the metabits were set alternately to 0 and 1, to prevent biased starts. The main datum that was tracked during every run was the ratio of the two types of individual in the population per generation this is what the vertical axes represent in most of the figures. A value of 1 indicates that the population is dominated by individuals whose fitness is negatively frequency-dependent (hereafter NFDs ); a value of 0 1 The minimal possible fitness was 1 so no individual could have a zero probability of being selected.

3 Positively versus Negatively Frequency-Dependent Selection 3 indicates domination by individuals with positively frequency-dependent fitness (PFDs); a value of 0.5 indicates a 50:50 mixture. 2.1 Two Alleles When the bitstring results were plotted and compared, it was seen that neither the presence of crossover nor the choice of fitness function (pairwise or population wide) made much difference. The mutation rate was not particularly important either, so long as it was neither vanishingly small nor excessively high. And the population size and the chromosome length only changed the destiny of the system when they were very small. Figure 1 shows what usually happened in the experiments for all but the extreme settings. The PFDs made more copies of themselves than the NFDs from the outset, and the population soon became dominated by PFDs. The system entered an evolutionarily stable state, which mutation and crossover could not overturn. Fig. 1. How the ratio of binary PFDs (meta gene = 0) to NFDs (meta gene = 1) varied over the first 200 generations of two sets of six runs. Plot (a) shows a noisy case, and plot (b) shows a more representative case. Why the PFDs always defeated the NFDs in base-2 (in non-extreme conditions) can be understood in the following terms. If two bitstrings are generated completely at random, the Hamming distance between them will lie somewhere between zero and their length, according to a bell-shaped probability distribution with a peak at half their length. In other words, they will probably have half their bits in common. This means that in a random initial population of 50% PFDs and 50% NFDs, the mixture of fitnesses found in the PFD group will probably be the same as that of the NFD group. In the first few generations therefore, selection will effectively be random. This means that different individuals will make varying numbers of copies of themselves, so after the first few generations, the population will comprise a number of (near-)homogenous groups of PFDs, a number of (near-)homogenous groups of NFDs, and a mixture of unique individuals of both type. (Crossover is temporally being ignored here, but when it is factored in it does not change the result.) In the pairwise fitness method, a member of a group will be compared to one of three other kinds of individual: a fellow group member, a member of another group, or one of the singletons. A PFD will get maximum points from a fellow group member, and (essentially) random points from the others. A NFD, on the other hand, will

4 4 Positively versus Negatively Frequency-Dependent Selection get minimum points from a fellow group member, and random points from the others. This means that as the population evolves, the PFDs get progressively fitter and the NFDs get progressively less fit, and at the same time, PFD groups that are similar to each other will grow faster than PFD groups that are more genetically isolated. The inevitable outcome is that the NFDs all die out as the population drives towards uniformity. The same occurs with the population-wide fitness method, because the same fitness mixture is there. A converged PFD-only population cannot be invaded by an NFD mutant, because such a mutant would have a minimal (or near minimal) fitness compared to the maximal (or near maximal) fitnesses of the PFDs. A diverse PFD-only population is resistant to NFD mutants by an amount that negatively correlates to its diversity: if it is approaching convergence, it will have a high resistance, but if it is very mixed, then an NFD mutant could arise with a fitness comparable to those of the PFDs. However, if an NFD mutant does manage to get into a mixed population and starts spreading, the mutant group will die down, for the same reason as their kind dies out from the start. 2.2 Three Alleles When the base-3 results were plotted, it was seen that the mutation rate and fitness function were similarly (ir)relevant as for base 2, but that the chromosome length and the population size were important, as was crossover in certain circumstances. One of the most important differences between the two-allele and the three-allele systems was how they behaved initially, from a random start. Whereas with two alleles, the population generally converged quickly to zeroes at the meta-locus (i.e. the PFDs dominated), with three alleles the population generally did the opposite, and converged to ones at the meta-locus. This was because in every initial population, any two individuals could expect to have on average only 1 3 of their genes in common (as opposed to the bitstring case, where it was 1 2 ). The NFDs could thus expect fitnesses of 2 3 of the maximum, while the PFDs could only expect 1 3 of the maximum. Consequently, the NFDs made around twice as many copies of themselves during the first few generations, so quickly wiped out the PFDs. Hence in every run (excepting some with extreme parameters) the populations took themselves into a negativelyfrequency-dependent selection regime. (This is also what happens for all larger allele alphabets, so the two-allele situation is exceptional in this regard.) These NFD convergences did not always last: they often turned out to be merely the first of two phases. When the population was large, and particularly when the chromosome was short as well, the NFD domination seemed very stable. Figure 2 shows two examples of this stability, as well as the fast convergences mentioned previously. No PFDs could invade during the timescales of the experiments, some of which went as far as 5000 generations, so these situations were the complements in terms of the PFD:NFD ratio of the two-allele situations (though they were not complementary in terms of diversity, because NFD populations stay diverse while PFD populations converge).

5 Positively versus Negatively Frequency-Dependent Selection 5 Fig. 2. How the ratio of PFDs to NFDs varied during the first and last 100 generations of two sets of six 2000-generation runs. The NFDs dominate in both cases, partly because the chromosomes were short and the populations large. Two examples of the second phase are plotted in figure 3. In (a), which is representative of most small-population cases, the NFDs died out nearly as quickly as they took over, whereas in (b) where the populations were large it took varying lengths of time for the PFDs to successfully invade, with the longest being around 300 generations. As stated earlier, PFD-domination states, where the genotypes are converged or converging, are global attractors in this kind of system, and a return to NFD domination may only occur via a vastly improbable mutation and/or selection sequence. Fig. 3. How the ratio of PFDs to NFDs varied over the first 200 and 400 generations of two sets of six runs. The PFDs eventually dominate in both cases. 2.3 Multiple Alleles The sets of results gathered for base-4 chromosomes were almost the same as their counterparts in base-3, and preliminary runs in even higher bases indicated that the patterns continue. Explanations of why certain multi-allele populations can support long-term NFD domination, but others cannot, are now offered. It was found that the configurations most conducive to stable NFD-domination were those of very large populations and allele alphabets, but very short chromosomes, ideally single-locus. Reducing the population size, reducing the number of alleles, and increasing the chromosome length all tended to reduce the length of time the NFDs could survive before before displaced by PFDs. This result can be explained with an example. In a population of 200 NFD-individuals with base-5 single-gene chromosomes (i.e. the genotype comprises 2 genes: the meta gene [0..1] + the chromosomal gene [0..4]) where there are 40 of each allele, every

6 6 Positively versus Negatively Frequency-Dependent Selection individual s fitness as measured by the inclusive population-wide method is 161. If an individual experienced a mutation in its meta gene, its fitness would be 41: with only 1 4 the fitness of its neighbours, it would struggle to survive. And if it did survive and spread a little, its group would continue to struggle, because no matter how many copies it made, as long as there were at least two other alleles in the population, those others would be fitter. The experimental reality would be that the mutant would disappear in a generation or two s time, as would any copies it managed to make. An observer would have to wait a long time to see a PFD takeover. Now, if the allele range is increased, the expected fitness of a PFD mutant decreases, and if the population size is increased, the amount of work it must do to dominate the population increases with it. This is why those settings have the effect they do. Regarding the chromosome length, the effect of increasing it is perhaps counter-intuitive; one might have thought that longer chromosomes would have more capacity to be different from each other, thereby making NFDdomination stabler and longer lasting. Not only is this not the case, it is the opposite of the case, for the following reason. In a well-spaced-out population, at each locus there should be approximately equal ratios of the alleles across the population (so for example, in a population of 100 base-4 individuals, 25 individuals should have a 0 as their first gene, 25 should have a 1, etc.). When the chromosome is short, the low capacity for difference means that every gene is important, so every gene has healthy selective pressure on it. But when the chromosome is long, a given gene is less important, as it represents only a very small portion of the distance between individuals, so the selective pressure applied on it is relatively light. Consequently, whereas for short chromosomes the local allele ratios are kept under quite tight control, for long chromosomes they can drift and become skewed. This tends to reduce the genetic distance between individuals, making it easier (to some degree) for PFD mutants to establish themselves in the population. 2.4 Crossover The last parameter to be discussed is crossover. This operator did not discernably change the results in most of the runs, but when the populations and chromosomes were (relatively) large and the number of alleles greater than two, it made a difference. The disappearance of NFDs shown in figure 3(b) did not happen in that same time period in different runs when the only difference in settings was the absence of crossover. This may seem strange at first, when it is considered that crossover does not change population-wide gene frequencies at any loci, and that it is those frequencies that control the fitnesses. Something subtle was happening. In a mutation-only system (with a big population, long chromosomes, and multiple alleles) where NFDs are dominant, the population is usually made up of several roughly-equally-fit groups, within each of which there is homogeneity or near homogeneity. If a group happens to expand, its members fitnesses dip, and the fitnesses of the non-members rise, so the group

7 Positively versus Negatively Frequency-Dependent Selection 7 usually shrinks back down. (This is a standard dynamic that one finds in populations subject to negatively FDS.) The crucial observation is that when a group expands, causing certain alleles become undesirably frequent at several loci, the undesirable genes are carried by identifiable individuals. Evolution can therefore remove these genes by selecting against the individuals that carry them. When crossover of any type is added, it breaks up the group structure of the population, but this in itself does not have too much impact on the system s behaviour. Crossing over can be described as dispersing or mixing up the alleles at each locus across the population. Thus, if any individuals now make extra copies of themselves, the alleles they add to the population are dispersed up and down the loci, so there are no identifiably-bad individuals that can be selected against. In other words, instead of selection having guilty individuals it can remove, the guilt is spread across the population, so there are no longer any outstandingly guilty individuals. Fig. 4. The mean fitnesses over the first 300 generations of three sets of six runs. To see the exact effect crossover had, the mean fitnesses were plotted for the relevant base-3 runs. Figure 4 shows how they varied for 0%, 10%, and 70% uniform crossover, where the other parameters were the same as those of plot (b) in figure 3. Figure 4(a) shows a case where the groups scenario was played out. The fitnesses quickly rose to around 2 3 of the maximum which was to be expected with three alleles and stayed there. The variability of the values reflects the group-sizes changing as well as the drifting of groups themselves. Plot (c) which represents the exact same runs as those in figure 3(b) differs in two keys way to (a). Firstly, there is a gradual drop after the initial rise, and secondly, the curves take off at those times that correspond to the PFD-mutant invasions, as PFD populations are fitter than NFD ones. Plot (b) shows that a very small amount of crossover changes the system s behaviour. It is roughly the same as (c), with the key differences being higher resistances to PFD invasions, and the shorter durations of those invasions when they occur. The former can be attributed to less dispersion of unwanted alleles; the latter shows that crossover slows down invasions, because the dispersals make the PFDs less similar to each other. Further runs with more alleles and other population sizes suggested that crossover causes the mean fitness to decay geometrically from its high early value to a stable value somewhere above the halfway value. (Also, the dip depth increased with the number of alleles, so the dips in figure 4 are the least severe examples of their kind.) It appears that it is in those resultant regions of stable

8 8 Positively versus Negatively Frequency-Dependent Selection fitness that selection can positively promote the rarer alleles as effectively as crossover can assist the commoner ones. 3 Conclusion This paper has sought to present and explain a novel hypothetical model of frequency-dependent selection in which the individuals determine for themselves whether the frequency dependence of their fitness is positive or negative. It was found that in this particular artificial evolutionary system, the important parameters are the population size, the chromosome length, the allele range, and the presence or not of crossover. When there are only two alleles (the binary case) a random initial population will become stably dominated by individuals whose fitness is positively frequency-dependent. When there are more than two alleles, the population will become dominated by individuals whose fitness is negatively frequencydependent. These converged states vary in their stability, with their durations depending on the parameters. When they end, they end with the imposition of stable positively-fds across the population, a state whose arrival can be hastened by making any of the following parameter changes: reducing the population size, increasing the chromosome length, and enabling crossover. References 1. Asmussen, M. A., Basnayake, E.: Frequency-Dependent Selection: The High Potential for Permanent Genetic Variation in the Diallelic, Pairwise Interaction Model. Genetics. 125, (1990) 2. Bürger, R.: A Multilocus Analysis of Intraspecific Competition and Stabilizing Selection on a Quantitative Trait. Journal of Math. Biology. 50, (2005) 3. Curtsinger, J. W.: Evolutionary Principles for Polynomial Models of Frequency- Dependent Selection. Proc. Natl. Acad. Sci. USA. 81, (1984) 4. Grefenstette, J. J.: Evolvability in Dynamic Fitness Landscapes: A Genetic Algorithm Approach. Proc. of the 1999 Conf. on Ev. Comp (1999) 5. Hillman, J. P. A., Hinde, C. J.: Evolving UAV Tactics with an Infected Genome. Proc. of the 5th UK Workshop on Comp. Intel (2005) 6. Ridley, M., 7. Roff, D. A.: The Maintenance of Phenotypic and Genetic Variation in Threshold Traits by Frequency-Dependent Selection. Journal of Evolutionary Biology. 11, (1998) 8. Schneider, K. A.: A Multilocus-Multiallele Analysis of Frequency- Dependent Selection Induced by Intraspecific Competition. Journal of Math. Biology. 52, (2006) 9. Trotter, M. V., Spencer, H. G.: Frequency-Dependent Selection and the Maintenance of Genetic Variation: Exploring the Parameter Space of the Multiallelic Pairwise Interaction Model. Genetics. 176, (2007)

Chapter 8: Introduction to Evolutionary Computation

Chapter 8: Introduction to Evolutionary Computation Computational Intelligence: Second Edition Contents Some Theories about Evolution Evolution is an optimization process: the aim is to improve the ability of an organism to survive in dynamically changing

More information

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME MATHEMATICAL MODELING AND THE HUMAN GENOME Hilary S. Booth Australian National University, Australia Keywords: Human genome, DNA, bioinformatics, sequence analysis, evolution. Contents 1. Introduction:

More information

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics.

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics. Evolutionary Genetics (for Encyclopedia of Biodiversity) Sergey Gavrilets Departments of Ecology and Evolutionary Biology and Mathematics, University of Tennessee, Knoxville, TN 37996-6 USA Evolutionary

More information

Classical Selection, Balancing Selection, and Neutral Mutations

Classical Selection, Balancing Selection, and Neutral Mutations Classical Selection, Balancing Selection, and Neutral Mutations Classical Selection Perspective of the Fate of Mutations All mutations are EITHER beneficial or deleterious o Beneficial mutations are selected

More information

Problems for 3505 (2011)

Problems for 3505 (2011) Problems for 505 (2011) 1. In the simplex of genotype distributions x + y + z = 1, for two alleles, the Hardy- Weinberg distributions x = p 2, y = 2pq, z = q 2 (p + q = 1) are characterized by y 2 = 4xz.

More information

Chapter 13 Meiosis and Sexual Reproduction

Chapter 13 Meiosis and Sexual Reproduction Biology 110 Sec. 11 J. Greg Doheny Chapter 13 Meiosis and Sexual Reproduction Quiz Questions: 1. What word do you use to describe a chromosome or gene allele that we inherit from our Mother? From our Father?

More information

EVOLUTION change in populations over time

EVOLUTION change in populations over time EVOLUTION change in populations over time HISTORY ideas that shaped the current theory James Hutton (1785) proposes that Earth is shaped by geological forces that took place over extremely long periods

More information

The concept of the adaptive landscape

The concept of the adaptive landscape 1 The concept of the adaptive landscape The idea of a fitness landscape was introduced by Sewall Wright (1932) and it has become a standard imagination prosthesis for evolutionary theorists. It has proven

More information

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section C: Genetic Variation, the Substrate for Natural Selection

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section C: Genetic Variation, the Substrate for Natural Selection CHAPTER 23 THE EVOLUTIONS OF POPULATIONS Section C: Genetic Variation, the Substrate for Natural Selection 1. Genetic variation occurs within and between populations 2. Mutation and sexual recombination

More information

Natural Selection results in increase in one (or more) genotypes relative to other genotypes.

Natural Selection results in increase in one (or more) genotypes relative to other genotypes. Natural Selection results in increase in one (or more) genotypes relative to other genotypes. Fitness - The fitness of a genotype is the average per capita lifetime contribution of individuals of that

More information

Name: Period Study Guide 17-1 and 17-2

Name: Period Study Guide 17-1 and 17-2 Name: Period Study Guide 17-1 and 17-2 17-1 The Fossil Record (pgs. 417-422) 1. What is the fossil record? 2. What evidence does the fossil record provide? 1. 2. 3. List the 2 techniques paleontologists

More information

Learning objectives. Evolution in Action. Chapter 8: Evolution and Natural Selection. By the end of today s topic students should be able to:

Learning objectives. Evolution in Action. Chapter 8: Evolution and Natural Selection. By the end of today s topic students should be able to: ANNOUNCEMENTS Thursday February 13, 2014 Chapter 8: Evolution and Natural Selection Dr. Traver returns next week. Movie on Tuesday afternoon What Darwin Never Knew. Midterm 2 is next week 2/20/2014 Use

More information

CSC 4510 Machine Learning

CSC 4510 Machine Learning 10: Gene(c Algorithms CSC 4510 Machine Learning Dr. Mary Angela Papalaskari Department of CompuBng Sciences Villanova University Course website: www.csc.villanova.edu/~map/4510/ Slides of this presenta(on

More information

Neutral Theory of Molecular Evolution

Neutral Theory of Molecular Evolution Neutral Theory of Molecular Evolution Kimura Nature (968) 7:64-66 King and Jukes Science (969) 64:788-798 (Non-Darwinian Evolution) Neutral Theory of Molecular Evolution Describes the source of variation

More information

Chapter 5 Evolution of Biodiversity. Sunday, October 1, 17

Chapter 5 Evolution of Biodiversity. Sunday, October 1, 17 Chapter 5 Evolution of Biodiversity CHAPTER INTRO: The Dung of the Devil Read and Answer Questions Provided Module 14 The Biodiversity of Earth After reading this module you should be able to understand

More information

Analysis of the 500 mb height fields and waves: testing Rossby wave theory

Analysis of the 500 mb height fields and waves: testing Rossby wave theory Analysis of the 500 mb height fields and waves: testing Rossby wave theory Jeffrey D. Duda, Suzanne Morris, Michelle Werness, and Benjamin H. McNeill Department of Geologic and Atmospheric Sciences, Iowa

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

Computational Aspects of Aggregation in Biological Systems

Computational Aspects of Aggregation in Biological Systems Computational Aspects of Aggregation in Biological Systems Vladik Kreinovich and Max Shpak University of Texas at El Paso, El Paso, TX 79968, USA vladik@utep.edu, mshpak@utep.edu Summary. Many biologically

More information

Maintenance of Species Diversity by Predation in the Tierra System

Maintenance of Species Diversity by Predation in the Tierra System Maintenance of Species Diversity by Predation in the Tierra System Jie Shao and Thomas S. Ray Department of Zoology, University of Oklahoma, Norman, Oklahoma 7319, USA jshao@ou.edu Abstract One of the

More information

Essential knowledge 1.A.2: Natural selection

Essential knowledge 1.A.2: Natural selection Appendix C AP Biology Concepts at a Glance Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring understanding 1.A: Change in the genetic makeup of a population over time

More information

UNIT V. Chapter 11 Evolution of Populations. Pre-AP Biology

UNIT V. Chapter 11 Evolution of Populations. Pre-AP Biology UNIT V Chapter 11 Evolution of Populations UNIT 4: EVOLUTION Chapter 11: The Evolution of Populations I. Genetic Variation Within Populations (11.1) A. Genetic variation in a population increases the chance

More information

Evolution (Chapters 15 & 16)

Evolution (Chapters 15 & 16) Evolution (Chapters 15 & 16) Before You Read... Use the What I Know column to list the things you know about evolution. Then list the questions you have about evolution in the What I Want to Find Out column.

More information

Chapter 17: Population Genetics and Speciation

Chapter 17: Population Genetics and Speciation Chapter 17: Population Genetics and Speciation Section 1: Genetic Variation Population Genetics: Normal Distribution: a line graph showing the general trends in a set of data of which most values are near

More information

Theory a well supported testable explanation of phenomenon occurring in the natural world.

Theory a well supported testable explanation of phenomenon occurring in the natural world. Evolution Theory of Evolution Theory a well supported testable explanation of phenomenon occurring in the natural world. Evolution the process by which modern organisms changed over time from ancient common

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Forces of Evolution Concept 15.4 Selection Can Be Stabilizing, Directional, or Disruptive Natural selection can act on quantitative traits in three ways: Stabilizing selection

More information

Population Genetics & Evolution

Population Genetics & Evolution The Theory of Evolution Mechanisms of Evolution Notes Pt. 4 Population Genetics & Evolution IMPORTANT TO REMEMBER: Populations, not individuals, evolve. Population = a group of individuals of the same

More information

Simulation of the Evolution of Information Content in Transcription Factor Binding Sites Using a Parallelized Genetic Algorithm

Simulation of the Evolution of Information Content in Transcription Factor Binding Sites Using a Parallelized Genetic Algorithm Simulation of the Evolution of Information Content in Transcription Factor Binding Sites Using a Parallelized Genetic Algorithm Joseph Cornish*, Robert Forder**, Ivan Erill*, Matthias K. Gobbert** *Department

More information

Chapter 16. Table of Contents. Section 1 Genetic Equilibrium. Section 2 Disruption of Genetic Equilibrium. Section 3 Formation of Species

Chapter 16. Table of Contents. Section 1 Genetic Equilibrium. Section 2 Disruption of Genetic Equilibrium. Section 3 Formation of Species Population Genetics and Speciation Table of Contents Section 1 Genetic Equilibrium Section 2 Disruption of Genetic Equilibrium Section 3 Formation of Species Section 1 Genetic Equilibrium Objectives Identify

More information

I. Short Answer Questions DO ALL QUESTIONS

I. Short Answer Questions DO ALL QUESTIONS EVOLUTION 313 FINAL EXAM Part 1 Saturday, 7 May 2005 page 1 I. Short Answer Questions DO ALL QUESTIONS SAQ #1. Please state and BRIEFLY explain the major objectives of this course in evolution. Recall

More information

Computer Simulations on Evolution BiologyLabs On-line. Laboratory 1 for Section B. Laboratory 2 for Section A

Computer Simulations on Evolution BiologyLabs On-line. Laboratory 1 for Section B. Laboratory 2 for Section A Computer Simulations on Evolution BiologyLabs On-line Laboratory 1 for Section B Laboratory 2 for Section A The following was taken from http://www.biologylabsonline.com/protected/evolutionlab/ Introduction

More information

COMP6053 lecture: Sampling and the central limit theorem. Jason Noble,

COMP6053 lecture: Sampling and the central limit theorem. Jason Noble, COMP6053 lecture: Sampling and the central limit theorem Jason Noble, jn2@ecs.soton.ac.uk Populations: long-run distributions Two kinds of distributions: populations and samples. A population is the set

More information

Fitness. Fitness as Survival and Fertility. Secondary article

Fitness. Fitness as Survival and Fertility. Secondary article Troy Day, University of Toronto, Ontario, Canada Sarah P Otto, University of British Columbia, Vancouver, Canada Fitness is a measure of the survival and reproductive success of an entity. This entity

More information

Linear Regression (1/1/17)

Linear Regression (1/1/17) STA613/CBB540: Statistical methods in computational biology Linear Regression (1/1/17) Lecturer: Barbara Engelhardt Scribe: Ethan Hada 1. Linear regression 1.1. Linear regression basics. Linear regression

More information

These are my slides and notes introducing the Red Queen Game to the National Association of Biology Teachers meeting in Denver in 2016.

These are my slides and notes introducing the Red Queen Game to the National Association of Biology Teachers meeting in Denver in 2016. These are my slides and notes introducing the Red Queen Game to the National Association of Biology Teachers meeting in Denver in 2016. Thank you SSE and the Huxley Award for sending me to NABT 2016! I

More information

Introduction to population genetics & evolution

Introduction to population genetics & evolution Introduction to population genetics & evolution Course Organization Exam dates: Feb 19 March 1st Has everybody registered? Did you get the email with the exam schedule Summer seminar: Hot topics in Bioinformatics

More information

Evolution and the Genetics of Structured populations. Charles Goodnight Department of Biology University of Vermont

Evolution and the Genetics of Structured populations. Charles Goodnight Department of Biology University of Vermont Evolution and the Genetics of Structured populations Charles Goodnight Department of Biology University of Vermont Outline What is Evolution Evolution and the Reductionist Approach Fisher/Wright Controversy

More information

A) oldest on bottom layer, youngest on top. B) the type of environment it was

A) oldest on bottom layer, youngest on top. B) the type of environment it was Test date: BAT list: Evolution Chapters 10 & 11 Name: Evolution Unit Vocabulary Convergent evolution Evolution Divergent evolution Embryology Biogeography Genetic drift Gradualism Charles Darwin Natural

More information

9 Genetic diversity and adaptation Support. AQA Biology. Genetic diversity and adaptation. Specification reference. Learning objectives.

9 Genetic diversity and adaptation Support. AQA Biology. Genetic diversity and adaptation. Specification reference. Learning objectives. Genetic diversity and adaptation Specification reference 3.4.3 3.4.4 Learning objectives After completing this worksheet you should be able to: understand how meiosis produces haploid gametes know how

More information

EVOLUTIONARILY STABLE STRATEGIES AND GROUP VERSUS INDIVIDUAL SELECTION

EVOLUTIONARILY STABLE STRATEGIES AND GROUP VERSUS INDIVIDUAL SELECTION 39 EVOLUTIONARILY STABLE STRATEGIES AND GROUP VERSUS INDIVIDUAL SELECTION Objectives Understand the concept of game theory. Set up a spreadsheet model of simple game theory interactions. Explore the effects

More information

www.lessonplansinc.com Topic: Dinosaur Evolution Project Summary: Students pretend to evolve two dinosaurs using genetics and watch how the dinosaurs adapt to an environmental change. This is a very comprehensive

More information

Statistics 246 Spring 2006

Statistics 246 Spring 2006 Statistics 246 Spring 2006 Meiosis and Recombination Week 3, Lecture 1 1 - the process which starts with a diploid cell having one set of maternal and one of paternal chromosomes, and ends up with four

More information

Pre-Lab: Aipotu: Evolution

Pre-Lab: Aipotu: Evolution Name: Pre-Lab: Aipotu: Evolution 1) On page Aipotu:Evolution-5, the Lab Manual described a color trait with two alleles, red (R) and white (r). On page Aipotu: Evolution -8, the Lab Manual describes a

More information

Ch 5. Evolution, Biodiversity, and Population Ecology. Part 1: Foundations of Environmental Science

Ch 5. Evolution, Biodiversity, and Population Ecology. Part 1: Foundations of Environmental Science Ch 5 Evolution, Biodiversity, and Population Ecology Part 1: Foundations of Environmental Science PowerPoint Slides prepared by Jay Withgott and Heidi Marcum Copyright 2006 Pearson Education, Inc., publishing

More information

Gene regulation: From biophysics to evolutionary genetics

Gene regulation: From biophysics to evolutionary genetics Gene regulation: From biophysics to evolutionary genetics Michael Lässig Institute for Theoretical Physics University of Cologne Thanks Ville Mustonen Johannes Berg Stana Willmann Curt Callan (Princeton)

More information

António Manso Luís Correia

António Manso Luís Correia António Manso manso@ipt.pt Luís Correia Luis.Correia@ciencias.ulisboa.pt Populations, Multisets and MuGA SMuGA- Symbiogenetic MuGA Hosts and parasites Diversity guided parasite evolution Experimental results

More information

Evolution PCB4674 Midterm exam2 Mar

Evolution PCB4674 Midterm exam2 Mar Evolution PCB4674 Midterm exam2 Mar 22 2005 Name: ID: For each multiple choice question select the single est answer. Answer questions 1 to 20 on your scantron sheet. Answer the remaining questions in

More information

1. T/F: Genetic variation leads to evolution. 2. What is genetic equilibrium? 3. What is speciation? How does it occur?

1. T/F: Genetic variation leads to evolution. 2. What is genetic equilibrium? 3. What is speciation? How does it occur? 1. T/F: Genetic variation leads to evolution. 2. What is genetic equilibrium? 3. What is speciation? How does it occur? Warm UP Notes on Environmental Factor Concept Map Brief 6 questions and Concept Map

More information

because more individuals are heterozygous than homozygous recessive.

because more individuals are heterozygous than homozygous recessive. 1. A pesticide that was rarely used in 1932 was used with increasing frequency until it was banned altogether by 1972. Fruit flies (Drosophila melanogaster) that are resistant to this pesticide carry the

More information

Evolution. Darwin s Voyage

Evolution. Darwin s Voyage Evolution Darwin s Voyage Charles Darwin Explorer on an observation trip to the Galapagos Islands. He set sail on the HMS Beagle in 1858 from England on a 5 year trip. He was a naturalist (a person who

More information

THE SIMPLE PROOF OF GOLDBACH'S CONJECTURE. by Miles Mathis

THE SIMPLE PROOF OF GOLDBACH'S CONJECTURE. by Miles Mathis THE SIMPLE PROOF OF GOLDBACH'S CONJECTURE by Miles Mathis miles@mileswmathis.com Abstract Here I solve Goldbach's Conjecture by the simplest method possible. I do this by first calculating probabilites

More information

Chapter 16: Evolutionary Theory

Chapter 16: Evolutionary Theory Chapter 16: Evolutionary Theory Section 1: Developing a Theory Evolution: Artificial Selection: Evolution: I. A Theory to Explain Change Over Time B. Charles Darwin C. Theory: D. Modern evolutionary theory

More information

EvolutionIntro.notebook. May 13, Do Now LE 1: Copy Now. May 13 12:28 PM. Apr 21 6:33 AM. May 13 7:22 AM. May 13 7:00 AM.

EvolutionIntro.notebook. May 13, Do Now LE 1: Copy Now. May 13 12:28 PM. Apr 21 6:33 AM. May 13 7:22 AM. May 13 7:00 AM. Different interpretations of cetacean evolutionary history 4/19/10 Aim: What is Evolution by Natural Selection Do Now: How do we know all life on earth is related? Homework Read pp. 375 379 p. 379 # 1,2,3

More information

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution 15.2 Intro In biology, evolution refers specifically to changes in the genetic makeup of populations over time.

More information

Evolutionary Computation. DEIS-Cesena Alma Mater Studiorum Università di Bologna Cesena (Italia)

Evolutionary Computation. DEIS-Cesena Alma Mater Studiorum Università di Bologna Cesena (Italia) Evolutionary Computation DEIS-Cesena Alma Mater Studiorum Università di Bologna Cesena (Italia) andrea.roli@unibo.it Evolutionary Computation Inspiring principle: theory of natural selection Species face

More information

An introduction to quantitative genetics

An introduction to quantitative genetics An introduction to quantitative genetics 1. What is the genetic architecture and molecular basis of phenotypic variation in natural populations? 2. Why is there phenotypic variation in natural populations?

More information

How do species change over time?

How do species change over time? Who first studied how species change over time? How do species change over time? Jean-Baptiste Lamarck (1744-1829) and Charles Darwin (1809-1882) both had ideas about how life on earth changed over time.

More information

The Wright Fisher Controversy. Charles Goodnight Department of Biology University of Vermont

The Wright Fisher Controversy. Charles Goodnight Department of Biology University of Vermont The Wright Fisher Controversy Charles Goodnight Department of Biology University of Vermont Outline Evolution and the Reductionist Approach Adding complexity to Evolution Implications Williams Principle

More information

Biology 11 UNIT 1: EVOLUTION LESSON 2: HOW EVOLUTION?? (MICRO-EVOLUTION AND POPULATIONS)

Biology 11 UNIT 1: EVOLUTION LESSON 2: HOW EVOLUTION?? (MICRO-EVOLUTION AND POPULATIONS) Biology 11 UNIT 1: EVOLUTION LESSON 2: HOW EVOLUTION?? (MICRO-EVOLUTION AND POPULATIONS) Objectives: By the end of the lesson you should be able to: Describe the 2 types of evolution Describe the 5 ways

More information

Evolutionary dynamics of populations with genotype-phenotype map

Evolutionary dynamics of populations with genotype-phenotype map Evolutionary dynamics of populations with genotype-phenotype map Esther Ibáñez Marcelo, Tomas Alarcon Cor Biomat 2013: Mathematics of Planet Earth CENTRE DE RECERCA MATEMÀTICA 17-21 June 2013 Esther Ibáñez

More information

Policing and group cohesion when resources vary

Policing and group cohesion when resources vary Anim. Behav., 996, 52, 63 69 Policing and group cohesion when resources vary STEVEN A. FRANK Department of Ecology and Evolutionary Biology, University of California at Irvine (Received 5 January 996;

More information

The Wright-Fisher Model and Genetic Drift

The Wright-Fisher Model and Genetic Drift The Wright-Fisher Model and Genetic Drift January 22, 2015 1 1 Hardy-Weinberg Equilibrium Our goal is to understand the dynamics of allele and genotype frequencies in an infinite, randomlymating population

More information

Experiments with. Cascading Design. Ben Kovitz Fluid Analogies Research Group Indiana University START

Experiments with. Cascading Design. Ben Kovitz Fluid Analogies Research Group Indiana University START START + -1.715 + 6.272 + 6.630 + 1.647 Experiments with + 8.667-5.701 Cascading Design P1 P2 P3 P4 Ben Kovitz Fluid Analogies Research Group Indiana University The coordination problem An old creationist

More information

1 Errors in mitosis and meiosis can result in chromosomal abnormalities.

1 Errors in mitosis and meiosis can result in chromosomal abnormalities. Slide 1 / 21 1 Errors in mitosis and meiosis can result in chromosomal abnormalities. a. Identify and describe a common chromosomal mutation. Slide 2 / 21 Errors in mitosis and meiosis can result in chromosomal

More information

List the five conditions that can disturb genetic equilibrium in a population.(10)

List the five conditions that can disturb genetic equilibrium in a population.(10) List the five conditions that can disturb genetic equilibrium in a population.(10) The five conditions are non-random mating, small population size, immigration or emigration, mutations, and natural selection.

More information

Genetic Variation in Finite Populations

Genetic Variation in Finite Populations Genetic Variation in Finite Populations The amount of genetic variation found in a population is influenced by two opposing forces: mutation and genetic drift. 1 Mutation tends to increase variation. 2

More information

GENETIC ALGORITHM FOR CELL DESIGN UNDER SINGLE AND MULTIPLE PERIODS

GENETIC ALGORITHM FOR CELL DESIGN UNDER SINGLE AND MULTIPLE PERIODS GENETIC ALGORITHM FOR CELL DESIGN UNDER SINGLE AND MULTIPLE PERIODS A genetic algorithm is a random search technique for global optimisation in a complex search space. It was originally inspired by an

More information

Sorting Network Development Using Cellular Automata

Sorting Network Development Using Cellular Automata Sorting Network Development Using Cellular Automata Michal Bidlo, Zdenek Vasicek, and Karel Slany Brno University of Technology, Faculty of Information Technology Božetěchova 2, 61266 Brno, Czech republic

More information

Fundamentals of Genetic Algorithms

Fundamentals of Genetic Algorithms Fundamentals of Genetic Algorithms : AI Course Lecture 39 40, notes, slides www.myreaders.info/, RC Chakraborty, e-mail rcchak@gmail.com, June 01, 2010 www.myreaders.info/html/artificial_intelligence.html

More information

Solutions to Even-Numbered Exercises to accompany An Introduction to Population Genetics: Theory and Applications Rasmus Nielsen Montgomery Slatkin

Solutions to Even-Numbered Exercises to accompany An Introduction to Population Genetics: Theory and Applications Rasmus Nielsen Montgomery Slatkin Solutions to Even-Numbered Exercises to accompany An Introduction to Population Genetics: Theory and Applications Rasmus Nielsen Montgomery Slatkin CHAPTER 1 1.2 The expected homozygosity, given allele

More information

A Simple Model of Unbounded Evolutionary Versatility as a Largest-Scale Trend in Organismal Evolution

A Simple Model of Unbounded Evolutionary Versatility as a Largest-Scale Trend in Organismal Evolution Submitted to Artificial Life March 8, 2000 A Simple Model of Unbounded Evolutionary Versatility as a Largest-Scale Trend in Organismal Evolution Peter D. Turney Institute for Information Technology National

More information

Mendelian Genetics. Introduction to the principles of Mendelian Genetics

Mendelian Genetics. Introduction to the principles of Mendelian Genetics + Mendelian Genetics Introduction to the principles of Mendelian Genetics + What is Genetics? n It is the study of patterns of inheritance and variations in organisms. n Genes control each trait of a living

More information

MATH2206 Prob Stat/20.Jan Weekly Review 1-2

MATH2206 Prob Stat/20.Jan Weekly Review 1-2 MATH2206 Prob Stat/20.Jan.2017 Weekly Review 1-2 This week I explained the idea behind the formula of the well-known statistic standard deviation so that it is clear now why it is a measure of dispersion

More information

Dichotomous Key for Genus Problematica

Dichotomous Key for Genus Problematica Evolution Summative Assessment DO NOT WRITE ON TEST 1. Industrial melanism describes the change in moth color from pale to dark after pollution from factories resulting in coating tree trunks with a layer

More information

THE PROBLEM OF locating all the optima within a fitness

THE PROBLEM OF locating all the optima within a fitness IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 4, AUGUST 2007 453 Where Are the Niches? Dynamic Fitness Sharing Antonio Della Cioppa, Member, IEEE, Claudio De Stefano, and Angelo Marcelli,

More information

The neutral theory of molecular evolution

The neutral theory of molecular evolution The neutral theory of molecular evolution Introduction I didn t make a big deal of it in what we just went over, but in deriving the Jukes-Cantor equation I used the phrase substitution rate instead of

More information

Lesson 2 Evolution of population (microevolution)

Lesson 2 Evolution of population (microevolution) Lesson 2 Evolution of population (microevolution) 1. A gene pool consists of a. all the aleles exposed to natural selection. b. the total of all alleles present in a population. c. the entire genome of

More information

Laws of Adaptation. A course on biological evolution in eight lectures by Carlo Matessi. Lecture 7. Ways to diversity, or polymorphic LTE

Laws of Adaptation. A course on biological evolution in eight lectures by Carlo Matessi. Lecture 7. Ways to diversity, or polymorphic LTE 1 Laws of Adaptation A course on biological evolution in eight lectures by Carlo Matessi Lecture 7 Ways to diversity, or polymorphic LTE Part I discrete traits Wednesday October 18, 15:00-16:00 2 Adaptive

More information

Cooperation. Main points for today. How can altruism evolve? Group living vs. cooperation. Sociality-nocooperation. and cooperationno-sociality

Cooperation. Main points for today. How can altruism evolve? Group living vs. cooperation. Sociality-nocooperation. and cooperationno-sociality Cooperation Why is it surprising and how does it evolve Cooperation Main points for today Sociality, cooperation, mutualism, altruism - definitions Kin selection Hamilton s rule, how to calculate r Group

More information

Why Do Cave Fish Lose Their Eyes?

Why Do Cave Fish Lose Their Eyes? Why Do Cave Fish Lose Their Eyes? How evolution can lead to losing abilities as well as gaining them This StepRead is based on an article provided by the American Museum of Natural History. There are caves

More information

Local Search & Optimization

Local Search & Optimization Local Search & Optimization CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2017 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 4 Outline

More information

Genetic Changes Lesson 2 CW

Genetic Changes Lesson 2 CW Guiding Question What theory serves as the basis of what we believe about how evolutionary changes occur? 7 th GRADE SCIENCE Genetic Changes Lesson 2 CW # Name: Date: Homeroom: I can Activator At the beginning

More information

Name Date Class CHAPTER 15. In your textbook, read about developing the theory of natural selection. For each statement below, write true or false.

Name Date Class CHAPTER 15. In your textbook, read about developing the theory of natural selection. For each statement below, write true or false. Name Date Class Study Guide CHAPTER 15 Section 1: Darwin s Theory of Evolution by Natural Selection In your textbook, read about developing the theory of natural selection. For each statement below, write

More information

MEASUREMENTS ASSOCIATED WITH LEARNING MORE SECURE COMPUTER CONFIGURATION PARAMETERS XIN ZHOU. A Thesis Submitted to the Graduate Faculty of

MEASUREMENTS ASSOCIATED WITH LEARNING MORE SECURE COMPUTER CONFIGURATION PARAMETERS XIN ZHOU. A Thesis Submitted to the Graduate Faculty of MEASUREMENTS ASSOCIATED WITH LEARNING MORE SECURE COMPUTER CONFIGURATION PARAMETERS BY XIN ZHOU A Thesis Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES

More information

A Discrete Artificial Regulatory Network for Simulating the Evolution of Computation

A Discrete Artificial Regulatory Network for Simulating the Evolution of Computation A Discrete Artificial Regulatory Network for Simulating the Evolution of Computation W. Garrett Mitchener College of Charleston Mathematics Department July, 22 http://mitchenerg.people.cofc.edu mitchenerg@cofc.edu

More information

Non-local Evolutionary Adaptation in Gridplants

Non-local Evolutionary Adaptation in Gridplants Non-local Evolutionary Adaptation in Gridplants David Doty Computer Science Bioinformatics and Computational Biology Iowa State University Ames, IA 50010 Email: ddoty@iastate.edu Abstract A simulated model

More information

14.1. KEY CONCEPT Every organism has a habitat and a niche. 38 Reinforcement Unit 5 Resource Book

14.1. KEY CONCEPT Every organism has a habitat and a niche. 38 Reinforcement Unit 5 Resource Book 14.1 HABITAT AND NICHE KEY CONCEPT Every organism has a habitat and a niche. A habitat is all of the living and nonliving factors in the area where an organism lives. For example, the habitat of a frog

More information

The theory of evolution continues to be refined as scientists learn new information.

The theory of evolution continues to be refined as scientists learn new information. Section 3: The theory of evolution continues to be refined as scientists learn new information. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the conditions of the

More information

BIOL EVOLUTION OF QUANTITATIVE CHARACTERS

BIOL EVOLUTION OF QUANTITATIVE CHARACTERS 1 BIOL2007 - EVOLUTION OF QUANTITATIVE CHARACTERS How do evolutionary biologists measure variation in a typical quantitative character? Let s use beak size in birds as a typical example. Phenotypic variation

More information

Kalle Parvinen. Department of Mathematics FIN University of Turku, Finland

Kalle Parvinen. Department of Mathematics FIN University of Turku, Finland Adaptive dynamics: on the origin of species by sympatric speciation, and species extinction by evolutionary suicide. With an application to the evolution of public goods cooperation. Department of Mathematics

More information

The Origin of Species

The Origin of Species The Origin of Species A. Macroevolution: Up to this point we have discussed changes in alleles or microevolution, with evolution this is the evolution of new. is the origin of a new species. There are

More information

Station 1. What is Evolution? What causes Evolution? A primary example of Evolution, is different bird beak sizes. What caused this to occur?

Station 1. What is Evolution? What causes Evolution? A primary example of Evolution, is different bird beak sizes. What caused this to occur? Station 1 What is Evolution? What causes Evolution? A primary example of Evolution, is different bird beak sizes. What caused this to occur? Station 2 What is Survival of the Fittest? How is fitness measured?

More information

STABILIZING SELECTION ON HUMAN BIRTH WEIGHT

STABILIZING SELECTION ON HUMAN BIRTH WEIGHT STABILIZING SELECTION ON HUMAN BIRTH WEIGHT See Box 8.2 Mapping the Fitness Landscape in Z&E FROM: Cavalli-Sforza & Bodmer 1971 STABILIZING SELECTION ON THE GALL FLY, Eurosta solidaginis GALL DIAMETER

More information

Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have.

Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have. Section 1: Chromosomes and Meiosis KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous

More information

SAT in Bioinformatics: Making the Case with Haplotype Inference

SAT in Bioinformatics: Making the Case with Haplotype Inference SAT in Bioinformatics: Making the Case with Haplotype Inference Inês Lynce 1 and João Marques-Silva 2 1 IST/INESC-ID, Technical University of Lisbon, Portugal ines@sat.inesc-id.pt 2 School of Electronics

More information

11.6. Patterns in Evolution. Evolution through natural selection is not random.

11.6. Patterns in Evolution. Evolution through natural selection is not random. 11.6 Patterns in Evolution VOCABULARY convergent evolution divergent evolution coevolution extinction punctuated equilibrium adaptive radiation > Key Concept Evolution occurs in patterns. MAIN IDEAS Evolution

More information

Exploring the Evolution of Modularity in Gene Regulatory Networks

Exploring the Evolution of Modularity in Gene Regulatory Networks University of Vermont ScholarWorks @ UVM UVM Honors College Senior Theses Undergraduate Theses 2015 Exploring the Evolution of Modularity in Gene Regulatory Networks Mariko L. Totten University of Vermont,

More information

Complex Systems Theory and Evolution

Complex Systems Theory and Evolution Complex Systems Theory and Evolution Melanie Mitchell and Mark Newman Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501 In Encyclopedia of Evolution (M. Pagel, editor), New York: Oxford University

More information

Game Theory -- Lecture 4. Patrick Loiseau EURECOM Fall 2016

Game Theory -- Lecture 4. Patrick Loiseau EURECOM Fall 2016 Game Theory -- Lecture 4 Patrick Loiseau EURECOM Fall 2016 1 Lecture 2-3 recap Proved existence of pure strategy Nash equilibrium in games with compact convex action sets and continuous concave utilities

More information

Heterozygosity is variance. How Drift Affects Heterozygosity. Decay of heterozygosity in Buri s two experiments

Heterozygosity is variance. How Drift Affects Heterozygosity. Decay of heterozygosity in Buri s two experiments eterozygosity is variance ow Drift Affects eterozygosity Alan R Rogers September 17, 2014 Assumptions Random mating Allele A has frequency p N diploid individuals Let X 0,1, or 2) be the number of copies

More information

Objective 3.01 (DNA, RNA and Protein Synthesis)

Objective 3.01 (DNA, RNA and Protein Synthesis) Objective 3.01 (DNA, RNA and Protein Synthesis) DNA Structure o Discovered by Watson and Crick o Double-stranded o Shape is a double helix (twisted ladder) o Made of chains of nucleotides: o Has four types

More information