Yesterday s Picture UNIT 3D

Size: px
Start display at page:

Download "Yesterday s Picture UNIT 3D"

Transcription

1 Warm-Up Blood types are determined by a single gene with several alleles. The allele encoding the Type A phenotype (I A ) is dominant to the allele encoding the Type O phenotype (i). Determine the phenotype and genotype distributions resulting from a cross between a Type O individual and a heterozygous Type A individual.

2 Yesterday s Picture

3

4 Mendel s Law of Segregation: During meiosis, each allele is segregated to different gametes. 1m 1p 2p 2m m p 3p 3m allele a allele A 4m 4p 2n n = 4

5 Mendel s Law of Segregation: During meiosis, each allele is segregated to different gametes. Mendel s Law of Independent Assortment: During meiosis, two genes segregate independently from each other 1m 2p 1p 2m m p 3p 3m allele a allele A 4m 4p m allele F p allele f 2n n = 4

6 Mendel s Law of Segregation: During meiosis, each allele is segregated to different gametes. Mendel s Law of Independent Assortment: During meiosis, two genes segregate independently from each other a F one possibility A f

7 Mendel s Law of Segregation: During meiosis, each allele is segregated to different gametes. Mendel s Law of Independent Assortment: During meiosis, two genes segregate independently from each other because of random alignment during meiosis. m p 1m 2p 3p 1p 2m 3m allele a allele A 4p 4m p m 2n n = 4 allele f allele F

8 Mendel s Law of Segregation: During meiosis, each allele is segregated to different gametes. one possibility Mendel s Law of Independent Assortment: During meiosis, two genes segregate independently from each other because of random alignment during meiosis. a F A f another possibility a f A F

9 Mendel s Law of Segregation: During meiosis, each allele is segregated to different gametes. Mendel s Law of Independent Assortment: During meiosis, two genes segregate independently from each other because of random alignment during meiosis. c a B A b C For n different genes on n different chromosomes, there are 2 n possibilities of gamete combinations. d D 2 4 = 16 possible gametes: a B c d a b c d a b C d a b c D a B C d a B C D a b C D a B c D A B c d A b c d A b C d A b c D A B C d A B C D A b C D A B c D

10 CTQ #1 In pea plants, the q gene is present on a separate chromosome from the r gene. Draw a somatic pea plant cell (2n) heterozygous for the q gene and the r gene. Label the maternal and the paternal chromosomes which contain the q gene and the maternal and paternal chromosomes which contain the r gene, and label the dominant Q, recessive q, dominant R, or recessive r on the appropriate chromosomes. Draw FOUR possible gametes (1n) produced through meiotic division of this cell depending on the alignment of the chromosomes, and indicate the genotype of each gamete. (LO 3.12)

11 A dihybrid or multi-hybrid cross is used to predict genotype and phenotype probabilities with multiple genes.

12 A dihybrid or multi-hybrid cross is used to predict genotype and phenotype probabilities with multiple genes. For each gene, perform a monohybrid cross and multiply the probabilities. PpSs x PpSs gene 1 gene 2 gene 1 gene 2 parent 1 parent 2 S s P p

13 A dihybrid or multi-hybrid cross is used to predict genotype and phenotype probabilities with multiple genes. For each gene, perform a monohybrid cross and multiply the probabilities. PpSs x PpSs gene 1 gene 2 gene 1 gene 2 parent 1 parent 2 P p S s P PP Pp 1# 4 S 1# 4 SS Ss 1# 4 1# 4 p Pp pp s Ss ss 1# 1 4 # 4 1# 1 4 # 4

14 A dihybrid or multi-hybrid cross is used to predict genotype and phenotype probabilities with multiple genes. For each gene, perform a monohybrid cross and multiply the probabilities. PpSs x PpSs gene 1 gene 2 gene 1 gene 2 parent 1 parent 2 Genotype Distribution: PP: ¼ Pp: ¼ + ¼ = ½ pp: ¼ Phenotype Distribution: Purple: ¼ + ¼ + ¼ = ¾ White: ¼ Genotype Distribution: SS: ¼ Ss: ¼ + ¼ = ½ ss: ¼ Phenotype Distribution: Smooth: ¼ + ¼ + ¼ = ¾ wrinkled: ¼

15 A dihybrid or multi-hybrid cross is used to predict genotype and phenotype probabilities with multiple genes. For each gene, perform a monohybrid cross and multiply the probabilities. PpSs x PpSs gene 1 gene 2 gene 1 gene 2 parent 1 parent 2 Genotype Distribution: PP SS: ¼ x ¼ = PP Ss: ¼ x ½ = PP ss: ¼ x ¼ = Pp SS: ½ x ¼ = Pp Ss: ½ x ½ = ¼ Pp ss: ½ x ¼ = pp SS: ¼ x ¼ = pp Ss: ¼ x ½ = pp ss: ¼ x ¼ = Phenotype Distribution: purple, smooth: ¼ = purple, wrinkled: + = white, smooth: + = white, round:

16 A dihybrid or multi-hybrid cross is used to predict genotype and phenotype probabilities with multiple genes. For each gene, perform a monohybrid cross and multiply the probabilities. example x Bbww Tan body (B), white eyes (w) bbww Black body (b), red eyes (W)

17 CTQ #2 Determine the phenotype distributions from the cross between an individual heterozygous for two genes, A and B (AaBb), and an individual homozygous dominant for A and homozygous recessive for B (AAbb). (LO 3.14)

18 Closure If two genes are on the same chromosome, explain why a dihybrid cross would not follow Mendel s Law of Independent Assortment. (LO 3.15)

Heredity and Genetics WKSH

Heredity and Genetics WKSH Chapter 6, Section 3 Heredity and Genetics WKSH KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. Vocabulary trait purebred law of segregation genetics cross MAIN IDEA:

More information

Mendelian Genetics. Introduction to the principles of Mendelian Genetics

Mendelian Genetics. Introduction to the principles of Mendelian Genetics + Mendelian Genetics Introduction to the principles of Mendelian Genetics + What is Genetics? n It is the study of patterns of inheritance and variations in organisms. n Genes control each trait of a living

More information

Dropping Your Genes. A Simulation of Meiosis and Fertilization and An Introduction to Probability

Dropping Your Genes. A Simulation of Meiosis and Fertilization and An Introduction to Probability Dropping Your Genes A Simulation of Meiosis and Fertilization and An Introduction to To fully understand Mendelian genetics (and, eventually, population genetics), you need to understand certain aspects

More information

Family resemblance can be striking!

Family resemblance can be striking! Family resemblance can be striking! 1 Chapter 14. Mendel & Genetics 2 Gregor Mendel! Modern genetics began in mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas

More information

Reinforcement Unit 3 Resource Book. Meiosis and Mendel KEY CONCEPT Gametes have half the number of chromosomes that body cells have.

Reinforcement Unit 3 Resource Book. Meiosis and Mendel KEY CONCEPT Gametes have half the number of chromosomes that body cells have. 6.1 CHROMOSOMES AND MEIOSIS KEY CONCEPT Gametes have half the number of chromosomes that body cells have. Your body is made of two basic cell types. One basic type are somatic cells, also called body cells,

More information

Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have.

Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have. Section 1: Chromosomes and Meiosis KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous

More information

Meiosis and Mendel. Chapter 6

Meiosis and Mendel. Chapter 6 Meiosis and Mendel Chapter 6 6.1 CHROMOSOMES AND MEIOSIS Key Concept Gametes have half the number of chromosomes that body cells have. Body Cells vs. Gametes You have body cells and gametes body cells

More information

Unit 7 Genetics. Meiosis

Unit 7 Genetics. Meiosis NAME: 1 Unit 7 Genetics 1. Gregor Mendel- was responsible for our 2. What organism did Mendel study? 3. Mendel stated that physical traits were inherited as 4. Today we know that particles are actually

More information

Ch. 10 Sexual Reproduction and Genetics. p

Ch. 10 Sexual Reproduction and Genetics. p Ch. 10 Sexual Reproduction and Genetics p. 270 - 10.1 Meiosis p. 270-276 Essential Question Main Idea! Meiosis produces haploid gametes Where are the instructions for each trait located in a cell?! On

More information

Exam 5 Review Questions and Topics

Exam 5 Review Questions and Topics Exam 5 Review Questions and Topics 1. In your own words, define Methodological Naturalism and what it can and cannot test: 2. Fill out the following table: Discovery Science What it does? Hypothesis-based

More information

Unit 6 Reading Guide: PART I Biology Part I Due: Monday/Tuesday, February 5 th /6 th

Unit 6 Reading Guide: PART I Biology Part I Due: Monday/Tuesday, February 5 th /6 th Name: Date: Block: Chapter 6 Meiosis and Mendel Section 6.1 Chromosomes and Meiosis 1. How do gametes differ from somatic cells? Unit 6 Reading Guide: PART I Biology Part I Due: Monday/Tuesday, February

More information

Chapter 11 INTRODUCTION TO GENETICS

Chapter 11 INTRODUCTION TO GENETICS Chapter 11 INTRODUCTION TO GENETICS 11-1 The Work of Gregor Mendel I. Gregor Mendel A. Studied pea plants 1. Reproduce sexually (have two sex cells = gametes) 2. Uniting of male and female gametes = Fertilization

More information

Biology 211 (1) Exam 4! Chapter 12!

Biology 211 (1) Exam 4! Chapter 12! Biology 211 (1) Exam 4 Chapter 12 1. Why does replication occurs in an uncondensed state? 1. 2. A is a single strand of DNA. When DNA is added to associated protein molecules, it is referred to as. 3.

More information

BENCHMARK 1 STUDY GUIDE SPRING 2017

BENCHMARK 1 STUDY GUIDE SPRING 2017 BENCHMARK 1 STUDY GUIDE SPRING 2017 Name: There will be semester one content on this benchmark as well. Study your final exam review guide from last semester. New Semester Material: (Chapter 10 Cell Growth

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics We ve all heard of it, but What is genetics? Genetics: the study of gene structure and action and the patterns of inheritance of traits from parent to offspring. Ancient ideas

More information

Name Date Class CHAPTER 10. Section 1: Meiosis

Name Date Class CHAPTER 10. Section 1: Meiosis Name Date Class Study Guide CHAPTER 10 Section 1: Meiosis In your textbook, read about meiosis I and meiosis II. Label the diagrams below. Use these choices: anaphase I anaphase II interphase metaphase

More information

Ch 11.Introduction to Genetics.Biology.Landis

Ch 11.Introduction to Genetics.Biology.Landis Nom Section 11 1 The Work of Gregor Mendel (pages 263 266) This section describes how Gregor Mendel studied the inheritance of traits in garden peas and what his conclusions were. Introduction (page 263)

More information

I. GREGOR MENDEL - father of heredity

I. GREGOR MENDEL - father of heredity GENETICS: Mendel Background: Students know that Meiosis produces 4 haploid sex cells that are not identical, allowing for genetic variation. Essential Question: What are two characteristics about Mendel's

More information

genome a specific characteristic that varies from one individual to another gene the passing of traits from one generation to the next

genome a specific characteristic that varies from one individual to another gene the passing of traits from one generation to the next genetics the study of heredity heredity sequence of DNA that codes for a protein and thus determines a trait genome a specific characteristic that varies from one individual to another gene trait the passing

More information

Chapter 10 Sexual Reproduction and Genetics

Chapter 10 Sexual Reproduction and Genetics Sexual Reproduction and Genetics Section 1: Meiosis Section 2: Mendelian Genetics Section 3: Gene Linkage and Polyploidy Click on a lesson name to select. Chromosomes and Chromosome Number! Human body

More information

Advance Organizer. Topic: Mendelian Genetics and Meiosis

Advance Organizer. Topic: Mendelian Genetics and Meiosis Name: Row Unit 8 - Chapter 11 - Mendelian Genetics and Meiosis Advance Organizer Topic: Mendelian Genetics and Meiosis 1. Objectives (What should I be able to do?) a. Summarize the outcomes of Gregor Mendel's

More information

Biol. 303 EXAM I 9/22/08 Name

Biol. 303 EXAM I 9/22/08 Name Biol. 303 EXAM I 9/22/08 Name -------------------------------------------------------------------------------------------------------------- This exam consists of 40 multiple choice questions worth 2.5

More information

Chapter 4 Lesson 1 Heredity Notes

Chapter 4 Lesson 1 Heredity Notes Chapter 4 Lesson 1 Heredity Notes Phases of Meiosis I Prophase I Nuclear membrane breaks apart and chromosomes condense. 3.1 Sexual Reproduction and Meiosis Metaphase I Sister chromatids line up along

More information

CELL BIOLOGY - CLUTCH CH MEIOSIS AND SEXUAL REPRODUCTION.

CELL BIOLOGY - CLUTCH CH MEIOSIS AND SEXUAL REPRODUCTION. !! www.clutchprep.com CONCEPT: BASICS OF MEIOTIC GENETICS Sexual reproduction involves mixing DNA from individuals to produce genetically distinct offspring Beneficial because it allows for genetic diversity

More information

Name Class Date. Pearson Education, Inc., publishing as Pearson Prentice Hall. 33

Name Class Date. Pearson Education, Inc., publishing as Pearson Prentice Hall. 33 Chapter 11 Introduction to Genetics Chapter Vocabulary Review Matching On the lines provided, write the letter of the definition of each term. 1. genetics a. likelihood that something will happen 2. trait

More information

Name Date Class. Meiosis I and Meiosis II

Name Date Class. Meiosis I and Meiosis II Concept Mapping Meiosis I and Meiosis II Complete the events chains about meiosis I and meiosis II. These terms may be used more than once: chromosomes, condense, cytokinesis, equator, line up, nuclei,

More information

Unit 8 Meiosis and Mendel. Genetics and Inheritance Quiz Date: Jan 14 Test Date: Jan. 22/23

Unit 8 Meiosis and Mendel. Genetics and Inheritance Quiz Date: Jan 14 Test Date: Jan. 22/23 Unit 8 Meiosis and Mendel Genetics and Inheritance Quiz Date: Jan 14 Test Date: Jan. 22/23 UNIT 8 - INTRODUCTION TO GENETICS Although the resemblance between generations of organisms had been noted for

More information

Meiosis -> Inheritance. How do the events of Meiosis predict patterns of heritable variation?

Meiosis -> Inheritance. How do the events of Meiosis predict patterns of heritable variation? Meiosis -> Inheritance How do the events of Meiosis predict patterns of heritable variation? Mendel s peas 1. Genes determine appearance (phenotype) 2. Genes vary and they are inherited 3. Their behavior

More information

Essential Questions. Meiosis. Copyright McGraw-Hill Education

Essential Questions. Meiosis. Copyright McGraw-Hill Education Essential Questions How does the reduction in chromosome number occur during meiosis? What are the stages of meiosis? What is the importance of meiosis in providing genetic variation? Meiosis Vocabulary

More information

BIOLOGY 321. Answers to text questions th edition: Chapter 2

BIOLOGY 321. Answers to text questions th edition: Chapter 2 BIOLOGY 321 SPRING 2013 10 TH EDITION OF GRIFFITHS ANSWERS TO ASSIGNMENT SET #1 I have made every effort to prevent errors from creeping into these answer sheets. But, if you spot a mistake, please send

More information

Section 11 1 The Work of Gregor Mendel

Section 11 1 The Work of Gregor Mendel Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) What is the principle of dominance? What happens during segregation? Gregor Mendel s Peas (pages 263 264) 1. The

More information

UNIT 3: GENETICS 1. Inheritance and Reproduction Genetics inheritance Heredity parent to offspring chemical code genes specific order traits allele

UNIT 3: GENETICS 1. Inheritance and Reproduction Genetics inheritance Heredity parent to offspring chemical code genes specific order traits allele UNIT 3: GENETICS 1. Inheritance and Reproduction Genetics the study of the inheritance of biological traits Heredity- the passing of traits from parent to offspring = Inheritance - heredity is controlled

More information

Mendel and the Gene Idea. Biology Exploring Life Section Modern Biology Section 9-1

Mendel and the Gene Idea. Biology Exploring Life Section Modern Biology Section 9-1 Mendel and the Gene Idea Biology Exploring Life Section 10.0-10.2 Modern Biology Section 9-1 Objectives Summarize the Blending Hypothesis and the problems associated with it. Describe the methods used

More information

Results. Experiment 1: Monohybrid Cross for Pea Color. Table 1.1: P 1 Cross Results for Pea Color. Parent Descriptions: 1 st Parent: 2 nd Parent:

Results. Experiment 1: Monohybrid Cross for Pea Color. Table 1.1: P 1 Cross Results for Pea Color. Parent Descriptions: 1 st Parent: 2 nd Parent: Results Experiment 1: Monohybrid Cross for Pea Color Table 1.1: P 1 Cross Results for Pea Color Green Peas Yellow Peas Green Peas: Yellow Peas: Table 1.2: F 1 Cross Results for Pea Color: Green Peas Yellow

More information

Genetics (patterns of inheritance)

Genetics (patterns of inheritance) MENDELIAN GENETICS branch of biology that studies how genetic characteristics are inherited MENDELIAN GENETICS Gregory Mendel, an Augustinian monk (1822-1884), was the first who systematically studied

More information

Introduction to Genetics

Introduction to Genetics Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) This section describes how Gregor Mendel studied the inheritance of traits in garden peas and what his conclusions

More information

Genetics_2011.notebook. May 13, Aim: What is heredity? Homework. Rd pp p.270 # 2,3,4. Feb 8 11:46 PM. Mar 25 1:15 PM.

Genetics_2011.notebook. May 13, Aim: What is heredity? Homework. Rd pp p.270 # 2,3,4. Feb 8 11:46 PM. Mar 25 1:15 PM. Aim: What is heredity? LE1 3/25/11 Do Now: 1.Make a T Chart comparing and contrasting mitosis & meiosis. 2. Have your lab out to be collected Homework for Tuesday 3/29 Read pp. 267 270 p.270 # 1,3 Vocabulary:

More information

10. How many chromosomes are in human gametes (reproductive cells)? 23

10. How many chromosomes are in human gametes (reproductive cells)? 23 Name: Key Block: Define the following terms: 1. Dominant Trait-characteristics that are expressed if present in the genotype 2. Recessive Trait-characteristics that are masked by dominant traits unless

More information

Unit 5: Chapter 11 Test Review

Unit 5: Chapter 11 Test Review Name: Date: Period: Unit 5: Chapter 11 Test Review 1. Vocabulary you should know. Recommendation (optional): make flashcards, or write the definition down. Make sure you understand the meanings of all

More information

Keys to Success on the Quarter 3 EXAM

Keys to Success on the Quarter 3 EXAM Name: Pd: Date: Keys to Success on the Quarter 3 EXAM 7.L.1.1 Compare the structures and life functions of single-celled organisms that carry out all of the basic functions of life. 1. Fill out the following

More information

-Genetics- Guided Notes

-Genetics- Guided Notes -Genetics- Guided Notes Chromosome Number The Chromosomal Theory of Inheritance genes are located in specific on chromosomes. Homologous Chromosomes chromosomes come in, one from the male parent and one

More information

Natural Selection. Population Dynamics. The Origins of Genetic Variation. The Origins of Genetic Variation. Intergenerational Mutation Rate

Natural Selection. Population Dynamics. The Origins of Genetic Variation. The Origins of Genetic Variation. Intergenerational Mutation Rate Natural Selection Population Dynamics Humans, Sickle-cell Disease, and Malaria How does a population of humans become resistant to malaria? Overproduction Environmental pressure/competition Pre-existing

More information

Guided Notes Unit 6: Classical Genetics

Guided Notes Unit 6: Classical Genetics Name: Date: Block: Chapter 6: Meiosis and Mendel I. Concept 6.1: Chromosomes and Meiosis Guided Notes Unit 6: Classical Genetics a. Meiosis: i. (In animals, meiosis occurs in the sex organs the testes

More information

UNIT 8 BIOLOGY: Meiosis and Heredity Page 148

UNIT 8 BIOLOGY: Meiosis and Heredity Page 148 UNIT 8 BIOLOGY: Meiosis and Heredity Page 148 CP: CHAPTER 6, Sections 1-6; CHAPTER 7, Sections 1-4; HN: CHAPTER 11, Section 1-5 Standard B-4: The student will demonstrate an understanding of the molecular

More information

VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis

VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis 6.1 CHROMOSOMES AND MEIOSIS Study Guide KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous

More information

is the scientific study of. Gregor Mendel was an Austrian monk. He is considered the of genetics. Mendel carried out his work with ordinary garden.

is the scientific study of. Gregor Mendel was an Austrian monk. He is considered the of genetics. Mendel carried out his work with ordinary garden. 11-1 The 11-1 Work of Gregor Mendel The Work of Gregor Mendel is the scientific study of. Gregor Mendel was an Austrian monk. He is considered the of genetics. Mendel carried out his work with ordinary

More information

Genetics Review Sheet Learning Target 11: Explain where and how an organism inherits its genetic information and this influences their

Genetics Review Sheet Learning Target 11: Explain where and how an organism inherits its genetic information and this influences their Genetics Review Sheet Learning Target 11: Explain where and how an organism inherits its genetic information and this influences their characteristics. 1. Define the following terms: Name Block a. Heredity

More information

Sexual Reproduction and Genetics

Sexual Reproduction and Genetics Chapter Test A CHAPTER 10 Sexual Reproduction and Genetics Part A: Multiple Choice In the space at the left, write the letter of the term, number, or phrase that best answers each question. 1. How many

More information

Outline. P o purple % x white & white % x purple& F 1 all purple all purple. F purple, 224 white 781 purple, 263 white

Outline. P o purple % x white & white % x purple& F 1 all purple all purple. F purple, 224 white 781 purple, 263 white Outline - segregation of alleles in single trait crosses - independent assortment of alleles - using probability to predict outcomes - statistical analysis of hypotheses - conditional probability in multi-generation

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics We ve all heard of it, but What is genetics? Genetics: the study of gene structure and action and the patterns of inheritance of traits from parent to offspring. Ancient ideas

More information

Animal Genetics - MENDELU

Animal Genetics - MENDELU Mendel and his experiments Animal Genetics Gregor Johann Mendel (1822-1884) was born in Heinzendorf, (nowadays in the Czech Republic). During the period in which Mendel developed his theory of heredity,

More information

Chapter 6 Meiosis and Mendel

Chapter 6 Meiosis and Mendel UNIT 3 GENETICS Chapter 6 Meiosis and Mendel 1 hairy ears (hypertrichosis)- due to holandric gene. (Y chromosome)-only occurs in males. Appears in all sons. 2 Polydactyly- having extra fingers Wendy the

More information

Name: Period: EOC Review Part F Outline

Name: Period: EOC Review Part F Outline Name: Period: EOC Review Part F Outline Mitosis and Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences

More information

Outline for today s lecture (Ch. 14, Part I)

Outline for today s lecture (Ch. 14, Part I) Outline for today s lecture (Ch. 14, Part I) Ploidy vs. DNA content The basis of heredity ca. 1850s Mendel s Experiments and Theory Law of Segregation Law of Independent Assortment Introduction to Probability

More information

HEREDITY: Objective: I can describe what heredity is because I can identify traits and characteristics

HEREDITY: Objective: I can describe what heredity is because I can identify traits and characteristics Mendel and Heredity HEREDITY: SC.7.L.16.1 Understand and explain that every organism requires a set of instructions that specifies its traits, that this hereditary information. Objective: I can describe

More information

THE WORK OF GREGOR MENDEL

THE WORK OF GREGOR MENDEL GENETICS NOTES THE WORK OF GREGOR MENDEL Genetics-. - Austrian monk- the father of genetics- carried out his work on. Pea flowers are naturally, which means that sperm cells fertilize the egg cells in

More information

Which of these best predicts the outcome of the changes illustrated in the diagrams?

Which of these best predicts the outcome of the changes illustrated in the diagrams? 1. The diagrams below show two different scenarios for a pair of homologous chromosomes, known as a tetrad, undergoing a change where segments of DNA switch on parts of the chromosomes. In each scenario,

More information

3/4/2015. Review. Phenotype

3/4/2015. Review. Phenotype Review Phenotype 1 Genes Crossing Over Frequency cn cinnabar eyes Cy curly wings L lobe eyes pr purple eyes sm smooth abdomen pr - L 9% Cy - L 33% sm - pr 19% cn - pr 2% Cy - sm 43% cn - sm 17% Polygenic

More information

Biology Chapter 11: Introduction to Genetics

Biology Chapter 11: Introduction to Genetics Biology Chapter 11: Introduction to Genetics Meiosis - The mechanism that halves the number of chromosomes in cells is a form of cell division called meiosis - Meiosis consists of two successive nuclear

More information

Biology Chapter 10 Test: Sexual Reproduction and Genetics

Biology Chapter 10 Test: Sexual Reproduction and Genetics Class: Date: Biology Chapter 10 Test: Sexual Reproduction and Genetics True/False Indicate whether the statement is true or false. 1. A gamete has one-half the number of chromosomes of a regular body cell.

More information

Interest Grabber. Analyzing Inheritance

Interest Grabber. Analyzing Inheritance Interest Grabber Section 11-1 Analyzing Inheritance Offspring resemble their parents. Offspring inherit genes for characteristics from their parents. To learn about inheritance, scientists have experimented

More information

Chapter 11 Meiosis and Genetics

Chapter 11 Meiosis and Genetics Chapter 11 Meiosis and Genetics Chapter 11 Meiosis and Genetics Grade:«grade» Subject:Biology Date:«date» 1 What are homologous chromosomes? A two tetrads, both from mom or both from dad B a matching pair

More information

The Work of Gregor Mendel

The Work of Gregor Mendel 11-1 The 11-1 Work of Gregor Mendel The Work of Gregor Mendel Who was Gregor Mendel? Define genetics. Define heredity. In Mendel s time there were primarily two hypotheses concerning the mechanism of heredity.

More information

Biology Final Review Ch pg Biology is the study of

Biology Final Review Ch pg Biology is the study of Biology Final Review Ch. 1 1-3 pg. 17-25 1. Biology is the study of Ch.2 2-3 pg. 45-49 2. All organic compounds contain. 3. Starch is an example of which type of organic compound? 4. What monomers make

More information

BS 50 Genetics and Genomics Week of Oct 3 Additional Practice Problems for Section. A/a ; B/B ; d/d X A/a ; b/b ; D/d

BS 50 Genetics and Genomics Week of Oct 3 Additional Practice Problems for Section. A/a ; B/B ; d/d X A/a ; b/b ; D/d BS 50 Genetics and Genomics Week of Oct 3 Additional Practice Problems for Section 1. In the following cross, all genes are on separate chromosomes. A is dominant to a, B is dominant to b and D is dominant

More information

DNA Structure and Function

DNA Structure and Function DNA Structure and Function Nucleotide Structure 1. 5-C sugar RNA ribose DNA deoxyribose 2. Nitrogenous Base N attaches to 1 C of sugar Double or single ring Four Bases Adenine, Guanine, Thymine, Cytosine

More information

7.014 Problem Set 6 Solutions

7.014 Problem Set 6 Solutions 7.014 Problem Set 6 Solutions Question 1 a) Define the following terms: Dominant In genetics, the ability of one allelic form of a gene to determine the phenotype of a heterozygous individual, in which

More information

Biology I Level - 2nd Semester Final Review

Biology I Level - 2nd Semester Final Review Biology I Level - 2nd Semester Final Review The 2 nd Semester Final encompasses all material that was discussed during second semester. It s important that you review ALL notes and worksheets from the

More information

Introduc)on to Gene)cs How to Analyze Your Own Genome Fall 2013

Introduc)on to Gene)cs How to Analyze Your Own Genome Fall 2013 Introduc)on to Gene)cs 02-223 How to Analyze Your Own Genome Fall 2013 Overview Primer on gene

More information

CSS 350 Midterm #2, 4/2/01

CSS 350 Midterm #2, 4/2/01 6. In corn three unlinked dominant genes are necessary for aleurone color. The genotypes B-D-B- are colored. If any of these loci is homozygous recessive the aleurone will be colorless. What is the expected

More information

What is a sex cell? How are sex cells made? How does meiosis help explain Mendel s results?

What is a sex cell? How are sex cells made? How does meiosis help explain Mendel s results? CHAPTER 6 3 Meiosis SECTION Heredity BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a sex cell? How are sex cells made? How does meiosis help explain

More information

4º ESO BIOLOGY & GEOLOGY SUMMER REINFORCEMENT: CONTENTS & ACTIVITIES

4º ESO BIOLOGY & GEOLOGY SUMMER REINFORCEMENT: CONTENTS & ACTIVITIES COLEGIO INTERNACIONAL SEK ALBORÁN 4º ESO BIOLOGY & GEOLOGY SUMMER REINFORCEMENT: CONTENTS & ACTIVITIES 1 ST EVALUATION UNIT 4: CELLS 1. Levels of biological organization 2. Cell theory 3. Basic unit of

More information

Class Copy! Return to teacher at the end of class! Mendel's Genetics

Class Copy! Return to teacher at the end of class! Mendel's Genetics Class Copy! Return to teacher at the end of class! Mendel's Genetics For thousands of years farmers and herders have been selectively breeding their plants and animals to produce more useful hybrids. It

More information

GETTING READY TO LEARN Preview Key Concepts 6.1 Chromosomes and Meiosis Gametes have half the number of chromosomes that body cells have.

GETTING READY TO LEARN Preview Key Concepts 6.1 Chromosomes and Meiosis Gametes have half the number of chromosomes that body cells have. CHAPTER 6 Meiosis and Mendel GETTING READY TO LEARN Preview Key Concepts 6.1 Chromosomes and Meiosis Gametes have hal the number o chromosomes that body cells have. 6.2 Process o Meiosis During meiosis,

More information

Segregation and the Principle of independent assortment

Segregation and the Principle of independent assortment . Segregation and the Principle of independent assortment The Principle of Independent Assortment describes how different genes independently separate from one another when reproductive cells develop.

More information

Biology. Revisiting Booklet. 6. Inheritance, Variation and Evolution. Name:

Biology. Revisiting Booklet. 6. Inheritance, Variation and Evolution. Name: Biology 6. Inheritance, Variation and Evolution Revisiting Booklet Name: Reproduction Name the process by which body cells divide:... What kind of cells are produced this way? Name the process by which

More information

1 Errors in mitosis and meiosis can result in chromosomal abnormalities.

1 Errors in mitosis and meiosis can result in chromosomal abnormalities. Slide 1 / 21 1 Errors in mitosis and meiosis can result in chromosomal abnormalities. a. Identify and describe a common chromosomal mutation. Slide 2 / 21 Errors in mitosis and meiosis can result in chromosomal

More information

What kind of cell does it occur in? Produces diploid or haploid cells? How many cell divisions? Identical cells or different cells?

What kind of cell does it occur in? Produces diploid or haploid cells? How many cell divisions? Identical cells or different cells? Mitosis Meiosis What kind of cell does it occur in? Produces diploid or haploid cells? How many cell divisions? Identical cells or different cells? Ultimately produces cells that are how many N? Mitosis

More information

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells.

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells. Mitosis & Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences for genetic variation. 1. Students will describe

More information

Biology Fall Final Review 2005/2006 Mrs. Nuño

Biology Fall Final Review 2005/2006 Mrs. Nuño Biology Fall Final Review 2005/2006 Mrs. Nuño Unit 1: The Nature of Science (Chapter 1) 7 characteristics of life. 7 major themes of biology, including the definitions of science terms describing those

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics The Work of Gregor Mendel B.1.21, B.1.22, B.1.29 Genetic Inheritance Heredity: the transmission of characteristics from parent to offspring The study of heredity in biology is

More information

2014 Pearson Education, Inc.

2014 Pearson Education, Inc. Essential knowledge: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring Objective: You will be able to construct a

More information

Meiosis. ~ fragmentation - pieces split off and each piece becomes a new organism - starfish

Meiosis. ~ fragmentation - pieces split off and each piece becomes a new organism - starfish ** We are starting with section 3 because in order to understand Genetics, we must first understand how the cells and chromosomes divide to form the gametes! Meiosis 5 3 Just know the ones that are highlighted!

More information

The history of Life on Earth reflects an unbroken chain of genetic continuity and transmission of genetic information:

The history of Life on Earth reflects an unbroken chain of genetic continuity and transmission of genetic information: 9/26/05 Biology 321 Answers to optional challenge probability questions posed in 9/23/05lecture notes are included at the end of these lecture notes The history of Life on Earth reflects an unbroken chain

More information

Big Idea 3B Basic Review. 1. Which disease is the result of uncontrolled cell division? a. Sickle-cell anemia b. Alzheimer s c. Chicken Pox d.

Big Idea 3B Basic Review. 1. Which disease is the result of uncontrolled cell division? a. Sickle-cell anemia b. Alzheimer s c. Chicken Pox d. Big Idea 3B Basic Review 1. Which disease is the result of uncontrolled cell division? a. Sickle-cell anemia b. Alzheimer s c. Chicken Pox d. Cancer 2. Cancer cells do not exhibit, which can lead to the

More information

Teacher: Cheely/ Harbuck Course: Biology Period(s): All Day Week of: 1/12/15 EOCEP Lesson Plan/5E s

Teacher: Cheely/ Harbuck Course: Biology Period(s): All Day Week of: 1/12/15 EOCEP Lesson Plan/5E s EOCEP Lesson Plan/5E s Day of the Week Monday Curriculum 2005 SDE Support Doc Standard:: B-4: The student will demonstrate an understanding of the molecular basis of heredity. Indicator: B-4.5 Goals (Objectives

More information

Directed Reading B. Section: Traits and Inheritance A GREAT IDEA

Directed Reading B. Section: Traits and Inheritance A GREAT IDEA Skills Worksheet Directed Reading B Section: Traits and Inheritance A GREAT IDEA 1. One set of instructions for an inherited trait is a(n) a. allele. c. genotype. d. gene. 2. How many sets of the same

More information

T TT Tt. T TT Tt. T = Tall t = Short. Figure 11 1

T TT Tt. T TT Tt. T = Tall t = Short. Figure 11 1 Chapt 11 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The principles of probability can be used to a. predict the traits of the offspring of genetic

More information

BIOLOGY. Monday 29 Feb 2016

BIOLOGY. Monday 29 Feb 2016 BIOLOGY Monday 29 Feb 2016 Entry Task Grab a half sheet worksheet from the front table and tape into today s science notebook page. Complete the questions. Entry Task Agenda Entry Task Housekeeping Section

More information

Lecture 7 (FW) February 11, 2009 Phenotype and Genotype Reading: pp

Lecture 7 (FW) February 11, 2009 Phenotype and Genotype Reading: pp Lecture 7 (FW) February 11, 2009 Phenotype and Genotype Reading: pp. 51-62 Annoucement: A review session for the first mid term will be held on Tuesday, 2/24, from 5-6:30 PM in 159 Mulford Hall. The mid

More information

Q Expected Coverage Achievement Merit Excellence. Punnett square completed with correct gametes and F2.

Q Expected Coverage Achievement Merit Excellence. Punnett square completed with correct gametes and F2. NCEA Level 2 Biology (91157) 2018 page 1 of 6 Assessment Schedule 2018 Biology: Demonstrate understanding of genetic variation and change (91157) Evidence Q Expected Coverage Achievement Merit Excellence

More information

Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM

Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM Life Cycles, Meiosis and Genetic Variability iclicker: 1. A chromosome just before mitosis contains two double stranded DNA molecules. 2. This replicated chromosome contains DNA from only one of your parents

More information

Plant Propagation PLS 3221/5222

Plant Propagation PLS 3221/5222 Plant Propagation PLS 3221/5222 Dr. Sandra Wilson Dr. Mack Thetford Chapter 2 Introduction to the Biology of Plant Propagation -A review- 1 The Plant Breeder and the Plant Propagator Plant Breeder, The

More information

Objectives. Announcements. Comparison of mitosis and meiosis

Objectives. Announcements. Comparison of mitosis and meiosis Announcements Colloquium sessions for which you can get credit posted on web site: Feb 20, 27 Mar 6, 13, 20 Apr 17, 24 May 15. Review study CD that came with text for lab this week (especially mitosis

More information

Chapter 2: Extensions to Mendel: Complexities in Relating Genotype to Phenotype.

Chapter 2: Extensions to Mendel: Complexities in Relating Genotype to Phenotype. Chapter 2: Extensions to Mendel: Complexities in Relating Genotype to Phenotype. please read pages 38-47; 49-55;57-63. Slide 1 of Chapter 2 1 Extension sot Mendelian Behavior of Genes Single gene inheritance

More information

7.014 Problem Set 6. Question 1. MIT Department of Biology Introductory Biology, Spring 2004

7.014 Problem Set 6. Question 1. MIT Department of Biology Introductory Biology, Spring 2004 MIT Department of Biology 7.014 Introductory Biology, Spring 2004 Name: 7.014 Problem Set 6 Please print out this problem set and record your answers on the printed copy. Problem sets will not be accepted

More information

Cover Requirements: Name of Unit Colored picture representing something in the unit

Cover Requirements: Name of Unit Colored picture representing something in the unit Name: Period: Cover Requirements: Name of Unit Colored picture representing something in the unit Biology B1 1 Target # Biology Unit B1 (Genetics & Meiosis) Learning Targets Genetics & Meiosis I can explain

More information

Unit 2 Lesson 4 - Heredity. 7 th Grade Cells and Heredity (Mod A) Unit 2 Lesson 4 - Heredity

Unit 2 Lesson 4 - Heredity. 7 th Grade Cells and Heredity (Mod A) Unit 2 Lesson 4 - Heredity Unit 2 Lesson 4 - Heredity 7 th Grade Cells and Heredity (Mod A) Unit 2 Lesson 4 - Heredity Give Peas a Chance What is heredity? Traits, such as hair color, result from the information stored in genetic

More information

JUNE EXAM QUESTIONS (PAPER 2) 30 JULY 2014

JUNE EXAM QUESTIONS (PAPER 2) 30 JULY 2014 JUNE EXAM QUESTIONS (PAPER 2) 30 JULY 2014 Lesson Description In this lesson we: Revise questions appearing in paper 2 in some provinces for work covered in Term 1 and 2 Test Yourself Select the most correct

More information

Full file at CHAPTER 2 Genetics

Full file at   CHAPTER 2 Genetics CHAPTER 2 Genetics MULTIPLE CHOICE 1. Chromosomes are a. small linear bodies. b. contained in cells. c. replicated during cell division. 2. A cross between true-breeding plants bearing yellow seeds produces

More information