Phylum Echinodermata

Size: px
Start display at page:

Download "Phylum Echinodermata"

Transcription

1 Phylum Echinodermata

2 About 7,000 species Strictly marine, mostly benthic. Typical deuterostomes. Phylum Echinodermata

3 Class Crinoidea (sea lilies) Phylum Echinodermata

4 Class Crinoidea Class Asteroidea (sea stars) Phylum Echinodermata

5 Class Crinoidea Class Asteroidea Class Ophiuroidea (brittle stars and basket stars) Phylum Echinodermata

6 Phylum Echinodermata Class Crinoidea Class Asteroidea Class Ophiuroidea Class Echinoidea (sea urchins and sand dollars)

7 Phylum Echinodermata Class Crinoidea Class Asteroidea Class Ophiuroidea Class Echinoidea Class Holothuroidea (sea cucumbers)

8 What do Echinoderms look like? Pentamerous radial symmetry. Oral and aboral surfaces. Oral surface has ambulacral grooves associated with tubefeet called podia.

9 Oral and aboral surfaces. What do Echinoderms look like?

10 What do Echinoderms look like? Arms (ambulacra) numbered with reference to the madreporite. Ambulacrum opposite is A then proceed couterclockwise. Ambulara C and D are the bivium, A B and E are the trivium.

11 Body wall What do Echinoderms look like? Epidermis covers entire body. Endoskeleton of ossicles with tubefeet and dermal branchia protruding through and spines and pedicellaria on outside.

12 Body wall What do Echinoderms look like? Ossicles can be fused into a test (urchins and sand dollars). Ossicles spread apart in cucumbers. Ossicles intermediate and variable in seastars. Muscle fibers beneath ossicles.

13 Body wall What do Echinoderms look like? Tubercles and moveable spines on skeletal plates of echinoids. Small muscles attach spines to test.

14 Body wall What do Echinoderms look like? Pedicellaria in echinoids and asreroids. Respond to external stimuli independent of nervous system. Keep debris and larvae from settling, protection, hold on to material for camouflage.

15 Water vascular system What do Echinoderms look like? Fluid-filled canals for internal transport and locomotion. Fluid similar to sewater but has coelomcytes and organic molecules. Moved through system with cilia.

16 Water vascular system What do Echinoderms look like? Asteroidea: Madreporite on aboral surface. Grooved with ciliated epidermis. May allow seawater into vascular system. Ampulla under madreporite connected to water vascular system and hemal system. Stone canal connects ampulla to rest of system. Connects to ring canal. Ring canal leads to radial canals in each arm. Also has Polian vessicles (maintain internal pressure) and Tiedemann s bodies (produce coelomcytes).

17 Water vascular system What do Echinoderms look like? Radial canals lead to lateral canals which pass through pores in the skeletal plates and end in tube feet. Each tube foot has an ampulla on top and a suckered muscular podium on bottom. Tube feet used for locomotion, prey capture, adherence to substratum. Terminal tubefeet are chemosensory.

18 Water vascular system What do Echinoderms look like? Tube feet move by combination of muscles and hydraulics. Valve at lateral canal that shuts and isolates the tubefoot. Ampulla contracts and pushes fluid into the tubefoot to extend it. Sucker pressed on substratum and sticks with adhesive secretions. Longitudinal muscles contract to raise middle of sucker to create a vacuum. Also shortens podium, forcing water back into ampulla. For release, longitudinal muscles relax, ampulla contracts and water forced back into podium. Suction released.

19 Water vascular system Ophiuroids: Madreporite on oral surface. Tudefeet don t have suckers. Flexible used for feeding. What do Echinoderms look like? Crinoids: Water vascular system entirely coelomic fluid. No madreporite, many stony canals. Radial canals extend up each arm. Suckerless podia on branches called pinnules.

20 Water vascular system What do Echinoderms look like? Echinoids: Madreporite on special plate around aboral pole. Podia pass through holes in ambulacral plates Holothuroids: Madreporite internal and open to coelom. Three rows of tube feet (trivium) on ventral surface, two rows (bivium) on dorsal surface.

21 How do Echinoderms support themselves and move? Support Calcareous endoskeleton with different degrees of calcification. Holothuroids have very muscular body walls.

22 How do Echinoderms support themselves and move? Movement Crinoids walk on the tips of their arms. Some swim. Asteroids crawl with tube feet.

23 How do Echinoderms support themselves and move? Movement Ophiuroids use flexible arms for crawling. Urchins use tube feet and moveable spines. Sand dollars use spines to burrow in sand. Cucumbers crawl on podia of trivium or by muscular action of the body wall.

24 How do Echinoderms support themselves and move? Nervous system Decentralized without cerebral ganglia. Relatively simple receptors: chemoreceptors, statocysts, touch. Some brittle stars have sclerites that act as tiny lenses across their dorsal surface and work together as one giant lens.

25 Crinoids How do Echinoderms feed and digest? Filter feed with oral side up and arms and pinnules outstretched. Food particles brought to mouth via cilia in ambulacral grooves. Mouth opens to short esophagus, to long intestine, to anus.

26 Asteroids How do Echinoderms feed and digest? Most are predators and scavengers. Eversible portion of stomach (cardiac stomach) extruded onto or into prey.

27 Asteroids How do Echinoderms feed and digest? Mouth ---> cardiac stomach ---> pyloric stomach ---> pyloric ducts ---> pyloric cecae ---> intestine ---> anus

28 Ophiuroids How do Echinoderms feed and digest? Predators, scavengers, filter feeders, deposit feeders. Food collected and passed along podia and spines to mouth. Digestive system reduced with no anus.

29 Echinoids How do Echinoderms feed and digest? Herbivores, suspension feeders, detritovores. Urchins have Aristotle s lantern. Hard plates and muscles that control protraction of five teeth. Teeth scrape algae off rocks and take bites of macroalgae. Can excavate holes in rocks.

30 Echinoids How do Echinoderms feed and digest? Digestive mouth system ---> esophagus out of Aristotle s lantern ---> long intestines ---> rectum ---> anus.

31 Holothuroids How do Echinoderms feed and digest? Suspension and deposit feeders. Extend mucus-covered buccal tentacles into water. Tentacles are pushed into mouth one at a time. Mouth ---> esophagus ---> long intestines ---> rectum ---> anus.

32 Holothuroids How do Echinoderms feed and digest? Cuverian tubules - blind sticky tubes at base of respiratory tree. Entangle predators. Evisceration.

33 Circulation How do Echinoderms maintain homeostasis? Internal transport by coeloms, water vascular system, and hemal systems. Hemal system - array of canals and spaces enclosed within coelomic channels called perihemal sinuses. Parallels water vascular system. Probably helps distribute respiratory gases and nutrients.

34 Gas exchange How do Echinoderms maintain homeostasis? Across podia and dermal gills (dermal branchia). Countercurrent exchange.

35 Gas exchange How do Echinoderms maintain homeostasis? Ophiuroids have ten invaginations in the body wall called bursae. Water circulated by cilia.

36 Gas exchange How do Echinoderms maintain homeostasis? Holothuroids have respiratory trees. Water is actively pumped by muscular hind end. Gases picked up by coelom and hemal system.

37 Osmoregulation How do Echinoderms maintain homeostasis? Osmoconformers. Waste is usually ammonia lost across podia and dermal branchia.

38 How do Echinoderms reproduce and develop? Asexual reproduction Most capable of regenerating lost parts. Holothuroids regenerate intestines and respiratory trees. Asteroids and ophiuroids regenerate lost arms and suckers.

39 How do Echinoderms reproduce and develop? Sexual reproduction Most gonochoristic. Gonads housed in genital sinuses. In classes with multiple gonads, each has own gonopore in an interambulacral area.

40 How do Echinoderms reproduce and develop? Sexual reproduction Free spawning with indirect development to brooding with direct development.

41 How do Echinoderms reproduce and develop? Sexual reproduction Isolecithal egg with small amount of yolk. Radial holoblastic cleavage ---> coeloblastula ---> coelogastrula by invagination ---> blastopore becomes anus ---> coelom formation by enterocoely ---> embryo becomes bilaterally symmetrical and develops into a larva. Vitellaria of crinoid Bipinnaria and brachiolaria of seastars

42 How do Echinoderms reproduce and develop? Sexual reproduction Isolecithal egg with small amount of yolk. Radial holoblastic cleavage ---> coeloblastula ---> coelogastrula by invagination ---> blastopore becomes anus ---> coelom formation by enterocoely ---> embryo becomes bilaterally symmetrical and develops into a larva. Ophiopluteus of brittle star Echinopluteus of urchin. Aricularia of sea cucumber

Superphylum Deuterostomia

Superphylum Deuterostomia Superphylum Deuterostomia Bởi: OpenStaxCollege The phyla Echinodermata and Chordata (the phylum in which humans are placed) both belong to the superphylum Deuterostomia. Recall that protostome and deuterostomes

More information

Characteristics of Echinoderms

Characteristics of Echinoderms Characteristics of Echinoderms Adult echinoderms have a body plan with five parts organized symmetrically around a center Does not have an anterior nor posterior end or a brain Most echinoderms are two

More information

The "BIOLOGY OF--" Video Programs

The BIOLOGY OF-- Video Programs The "BIOLOGY OF--" Video Programs THE BIOLOGY OF ECHINODERMS Written and photographed by David Denning and Bruce Russell Produced by BioMEDIA ASSOCIATES 2000 - Running time 16 minutes. Order Toll Free

More information

Characteristics. Feather stars Family: Crinoidea. Sea stars Family: Asteroidea Reproduction. Basket and brittle stars Family: Ophiuroidea

Characteristics. Feather stars Family: Crinoidea. Sea stars Family: Asteroidea Reproduction. Basket and brittle stars Family: Ophiuroidea Subkingdom: Eumetazoa Superphylum: Deuterostomia Phylum: Echinodermata Echinodermata spiny skin Sand dollars, cucumbers, urchins Family: Holothuroidea and Echinoidea Ecological Roles Many members of the

More information

1 st Year Undergraduate Model 1 UGC Syllabus. Animal Diversity-1

1 st Year Undergraduate Model 1 UGC Syllabus. Animal Diversity-1 Academic Script Course Name: Paper No. & Title: Zoology 1 st Year Undergraduate Model 1 UGC Syllabus Z 101 B Animal Diversity-1 Topic No. & Title: Practical - 14 Echinoderms : Specimen Study Academic Script:

More information

Echinoderms and Chordates

Echinoderms and Chordates OpenStax-CNX module: m45531 1 Echinoderms and Chordates OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

UNIT 8A MARINE SCIENCE: Lower Invertebrates

UNIT 8A MARINE SCIENCE: Lower Invertebrates UNIT 8A MARINE SCIENCE: Lower Invertebrates Essential Questions: What are the characteristics of the simple body structured organisms? Unit Objectives/I Can Statements: General Invertebrates 1. List taxa

More information

DEUTEROSTOME LABORATORY

DEUTEROSTOME LABORATORY DEUTEROSTOME LABORATORY Phylum Echinodermata Class Crinoidea 1. Comatulid crinoid observe the loss of a stalk, free-living crinoids Antedon bifida thin, pinnate arms, 25 short cirri arising from a central

More information

Animals contain specialized cells

Animals contain specialized cells What is an Animal? Kingdom Animalia Main Characteristics Members of the Animal Kingdom are: Eukaryotic Multicellular Heterotrophic Have cells with membranes BUT NO cell wall Animals contain specialized

More information

COMPARISON BETWEEN PORIFERA AND CNIDARIA. Colwyn Sleep

COMPARISON BETWEEN PORIFERA AND CNIDARIA. Colwyn Sleep COMPARISON BETWEEN PORIFERA AND CNIDARIA Colwyn Sleep INTRODUCTION Porifera Cnidaria Porifera and Cnidaria are organisms which share similar characteristics with one another. -They are both multicellular,

More information

Multiple origins of respiratory structures of sea urchins OR I Didn t Know They Could Breathe!

Multiple origins of respiratory structures of sea urchins OR I Didn t Know They Could Breathe! Multiple origins of respiratory structures of sea urchins OR I Didn t Know They Could Breathe! Cara Marie Breslin Dr. Rich Mooi Department of Invertebrate Zoology and Geology Slide 1: Title and introduction.

More information

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia What Is an Animal? What characteristics do all animals have? Animals come in many shapes, forms, and sizes. Scientists estimate that there are between 1 and 2 million species of animals! Some, like whales

More information

Sponges and Cnidarians

Sponges and Cnidarians The Animal Kingdom Multicellular Sponges and Cnidarians Biology : Chapter 26 Eukaryotic Heterotrophs Cells lack cell walls 95% are invertebrates What Animals Do to Survive Feeding Response Respiration

More information

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda Animal Body Plans Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod Sponges Cnidaria, Ctenophora, Platyhelminthes Acoelomate -Eucoelomate Annelid Mollusca Arthropoda Size Constraints

More information

Life Science 7 th NOTES: Ch Animals Invertebrates

Life Science 7 th NOTES: Ch Animals Invertebrates Life Science 7 th NOTES: Ch 10-11 Animals Invertebrates Write the correct word in the blanks to show directions on an animal body: ** Word Bank (Posterior, Ventral, Dorsal, Anterior) top surface front

More information

The Mollusks. Phylum Mollusca

The Mollusks. Phylum Mollusca The Mollusks Phylum Mollusca Mollusks- Latin molluscus = soft Coelomates Exhibit cephalization Many mollusks have larval stage- trochophore Hatch from egg case Easily dispersed by ocean currents and tides

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Characteristics of Animals multicellular Except for sponges, animal cells are arranged into tissues. Tissues are necessary to produce organs and organ systems. Tissues, organs,

More information

Notes - Porifera and Cnideria

Notes - Porifera and Cnideria Notes - Porifera and Cnideria - Animals exist on every continent on the planet. Most people consider animals to be the most important kingdom as we are considered animals. But, what is an animal? What

More information

Chapter 7. Marine Animals Without a Backbone

Chapter 7. Marine Animals Without a Backbone Chapter 7 Marine Animals Without a Backbone General Characteristics of Animals Multicellular, diploid organisms with tissues, organs or organ systems in most Heterotrophic Require oxygen for aerobic

More information

Name Class Date. After you read this section, you should be able to answer these questions:

Name Class Date. After you read this section, you should be able to answer these questions: CHAPTER 14 3 Invertebrates SECTION Introduction to Animals BEFORE YOU READ After you read this section, you should be able to answer these questions: What structures and systems perform basic life functions

More information

Arthropoda ARTHRO JOINTED PODA FEET

Arthropoda ARTHRO JOINTED PODA FEET Arthropoda ARTHRO JOINTED PODA FEET The arthropods are a group of animals which has attained the greatest biological success largest number of species and individuals and occupy the greatest number of

More information

Invertebrate Zoology- Fall 2008 FINAL EXAM- First Hour (midterm 3)

Invertebrate Zoology- Fall 2008 FINAL EXAM- First Hour (midterm 3) Invertebrate Zoology- Fall 2008 FINAL EXAM- First Hour (midterm 3) 1 You have one hour to complete this portion of the exam. After one hour your paper will be collected and you will be given the second

More information

Characteristics of Animals

Characteristics of Animals Characteristics of Animals Multicellular Cellular Organization What is this? Heterotrophic Adaptations CHAPTER 9 Cellular Organization 4 Major Functions of Animals Obtain food and water Sustain metabolism

More information

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges.

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges. College Biology - Problem Drill 15: The Evolution of Animal Diversity Question No. 1 of 10 1. Which is not a feature of the phyla porifera- sponges? Question #01 (A) Most are marine animals. (B) They have

More information

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen What Is an Animal? Section 25.1 Typical Animal Characteristics Biology II Mrs. Michaelsen I. Characteristics of Animals A. All animals are eukaryotic, multicellular, have ways of moving to reproduce, obtain

More information

Chapter 8-9 Intro to Animals. Image from:

Chapter 8-9 Intro to Animals. Image from: Chapter 8-9 Intro to Animals Image from: http://animaldiversity.ummz.umich.edu/index.html Zoology Definition: the scientific study of the behavior, structure, physiology, classification, and distribution

More information

Kingdom Animalia. Zoology the study of animals

Kingdom Animalia. Zoology the study of animals Kingdom Animalia Zoology the study of animals Summary Animals are multicellular and eukaryotic. consume and digest organic materials thereby being heterotrophs. Most are motile at some time in their lives.

More information

Introduction to Animal Kingdom. Invertebrates and Vertebrates

Introduction to Animal Kingdom. Invertebrates and Vertebrates Introduction to Animal Kingdom Invertebrates and Vertebrates Introduction To Animals Vertebrate animal with a backbone. Invertebrate animal without a backbone; includes more than 95% of all animal species

More information

An Introduction to the Invertebrates (part 4?!) Annelida & Nematoda. Reference: Chapter 33.3, 33.4

An Introduction to the Invertebrates (part 4?!) Annelida & Nematoda. Reference: Chapter 33.3, 33.4 An Introduction to the Invertebrates (part 4?!) Annelida & Nematoda Reference: Chapter 33.3, 33.4 More Relationships Slime molds Tubulinids Entamoebas Nucleariids Fungi Choanoflagellates Animals Excavata

More information

Invertebrates. Invertebrate Characteristics. Body Symmetry

Invertebrates. Invertebrate Characteristics. Body Symmetry 3 Invertebrates Key Concept Invertebrates do not have backbones, but they do have other structures to perform their life functions. What You Will Learn Invertebrates have many specialized structures that

More information

Chapter 24 Introduction to Animals

Chapter 24 Introduction to Animals 1 Chapter 24 Introduction to Animals I. Animal characteristics A. General Animal Features Multicellular B. Feeding and Digestion a. acquire nutrients from various sources obtaining nutrients unique to

More information

The Animal Kingdom: The Protostomes. Protostomes 4/16/2012. Chapter 30

The Animal Kingdom: The Protostomes. Protostomes 4/16/2012. Chapter 30 Porifera Acoelomates ates The Animal Kingdom: The Protostomes Chapter 30 Protostome Bilateral Protostomes Acoelomates ates Characterized by spiral cleavage determinate cleavage (fixed fate of cells) of

More information

Brief Introduction to the Animal Kingdom

Brief Introduction to the Animal Kingdom Brief Introduction to the Animal Kingdom Vocabulary Vertebrate Invertebrate Detritivore Asymmetry Bilateral symmetry Radial symmetry Cephalization Coelum Pseudocoelum Acoelomates Blastula Blastophore Protosome

More information

Invertebrate Zoology Midterm Exam 3- Fall Part I. Answer nine (9) of the following twelve (12) questions: (18 points; 2 points each)

Invertebrate Zoology Midterm Exam 3- Fall Part I. Answer nine (9) of the following twelve (12) questions: (18 points; 2 points each) 1 Invertebrate Zoology Midterm Exam 3- Fall 2015 You have one hour to complete this portion of the exam. After one hour your paper will be collected and you will be given the second, comprehensive essay

More information

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved.

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved. Chapter Presentation Visual Concepts Transparencies Standardized Test Prep Introduction to Animals Table of Contents Section 2 Animal Body Systems Objectives Identify the features that animals have in

More information

Invertebrate Zoology- Fall 2010 FINAL EXAM- First Hour (midterm 3)

Invertebrate Zoology- Fall 2010 FINAL EXAM- First Hour (midterm 3) 1 Invertebrate Zoology- Fall 2010 FINAL EXAM- First Hour (midterm 3) You have one hour to complete this portion of the exam. After one hour your paper will be collected and you will be given the second

More information

Chapter 32 Intro to Animals. Image from:

Chapter 32 Intro to Animals. Image from: Chapter 32 Intro to Animals Image from: http://animaldiversity.ummz.umich.edu/index.html Animals Invertebrates (animals without a backbone) Porifera Cnidaria Worms Mollusks Echinoderms Arthropods Animals

More information

Module 4: Marine Invertebrates I. Kingdom Animalia

Module 4: Marine Invertebrates I. Kingdom Animalia Module 4: Marine Invertebrates I Kingdom Animalia Kingdom Animalia Contains the largest number of species We will split them into 2 large groups Invertebrates- Animals w/o a backbone Vertebrates- Animals

More information

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals Introduction to Animals Table of Contents Objectives Identify four important characteristics of animals. List two kinds of tissues found only in animals. Explain how the first animals may have evolved

More information

Revision Based on Chapter 25 Grade 11

Revision Based on Chapter 25 Grade 11 Revision Based on Chapter 25 Grade 11 Biology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A cell that contains a nucleus and membrane-bound organelles

More information

Chapter 8. Sponges Phylum Porifera Basic characteristics: simple asymmetric sessile

Chapter 8. Sponges Phylum Porifera Basic characteristics: simple asymmetric sessile Chapter 8 Key Concepts Sponges are asymmetric, sessile animals that filter food from the water circulating through their bodies. Sponges provide habitats for other animals. Cnidarians and ctenophores exhibit

More information

Intro to Animals. Chapter 32

Intro to Animals. Chapter 32 Intro to Animals Chapter 32 1) Multicellular Organization (Different cells have different functions) Specialization: adaptation of a cell for a particular function Remember: cells tissues organs organ

More information

Ph. Porifera and Ph. Cnidaria

Ph. Porifera and Ph. Cnidaria I. Phylum Porifera (sponges; pore bearer ) A. General characteristics 1. simplest animals 2. asymmetric 3. aquatic habitats a. typically marine 4. live alone or in colonies a. often members of reef habitats

More information

Animal Phyla: A Summary. Danilo V. Rogayan Jr. Faculty, College of Education, Arts and Sciences Ramon Magsaysay Technological University

Animal Phyla: A Summary. Danilo V. Rogayan Jr. Faculty, College of Education, Arts and Sciences Ramon Magsaysay Technological University Animal Phyla: A Summary Danilo V. Rogayan Jr. Faculty, College of Education, Arts and Sciences Ramon Magsaysay Technological University Phylum Platyhelminthes The phylum consists of four classes Turbellaria

More information

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 33 An Introduction to Invertebrates Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 33.UN08 Metazoa Eumetazoa

More information

ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS

ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS GENERAL FEATURES OF ANIMALS Heterotrophy - obtain energy and organic molecules by ingesting other organisms Multicellularity - Many have complex bodies

More information

Chapter 8. Sponges, Cnidarians, Comb Jellies, and Marine Worms

Chapter 8. Sponges, Cnidarians, Comb Jellies, and Marine Worms Chapter 8 Sponges, Cnidarians, Comb Jellies, and Marine Worms Cnidarians: Animals with Stinging Cells Phylum Cnidaria Includes hydroids, corals, and sea anemones Coelenterate: synonym Named for their cnidocytes

More information

Invertebrate Survey Lab

Invertebrate Survey Lab Answer these questions before lab. 1. What kingdom do all animals fall into? a. Protist b. Animalia c. Eukarya 2. How many phyla of invertebrates are in appendix E on pages 1074-1076? a. 9 b. 7 c. 8 3.

More information

Invertebrate Diversity

Invertebrate Diversity CHAPTER 23 Invertebrate Diversity Summary of Key Concepts Concept 23.1 Diverse animals share several key characteristics. (pp. 494 496) More than a million living species of animals are organized into

More information

The position of the ophiuroidea within the phylum Echinodermata

The position of the ophiuroidea within the phylum Echinodermata University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2005 The position of the ophiuroidea within the phylum Echinodermata Mary C. Harmon University of South Florida

More information

A Brief Study on the Development of the Purple Sea Urchin Strongylocentrotus purpuratus HEATHER L. AUSTIN 1

A Brief Study on the Development of the Purple Sea Urchin Strongylocentrotus purpuratus HEATHER L. AUSTIN 1 A Brief Study on the Development of the Purple Sea Urchin Strongylocentrotus purpuratus HEATHER L. AUSTIN 1 1University oforegon, Oregon Institute ofmarine Biology, 63466 Boat Basin Road, Charleston, OR

More information

Sponges. What is the sponge s habitat. What level of organization do sponges have? Type of symmetry?

Sponges. What is the sponge s habitat. What level of organization do sponges have? Type of symmetry? Sponges What is the sponge s habitat Marine (few freshwater species) What level of organization do sponges have? Cell level Type of symmetry? None Type of digestive system (none, complete or incomplete)?

More information

3. Choanoflagellates resemble what? What is the significance of this resemblance?

3. Choanoflagellates resemble what? What is the significance of this resemblance? I. Animal Diversity 1. What are some basic characteristics of the animal kingdom? What characteristics make them different from plants? - Eukaryotic, heterotrophic (we don t make our own food), we store

More information

09/12/2012. Classification. Characteristics. Learning Outcome G2. Student Achievement Indicators. Phylum Porifera The Sponges

09/12/2012. Classification. Characteristics. Learning Outcome G2. Student Achievement Indicators. Phylum Porifera The Sponges Learning Outcome G2 Analyse the increasing complexity of the Phylum Porifera and the Phylum Cnidaria Learning Outcome G2 Phylum Porifera & Phylum Cnidaria Student Achievement Indicators Students who have

More information

Antarctic Undersea Foodweb

Antarctic Undersea Foodweb Details Completion Time: 2-3 hours Permission: Download, Share, and Remix Antarctic Undersea Foodweb Overview Using photos from a variety of websites, including the PolarTREC and SCINI websites, students

More information

Blastocoelomates. General Features. General Features. Phylogenetic Relationships. Phylogenetic Relationships

Blastocoelomates. General Features. General Features. Phylogenetic Relationships. Phylogenetic Relationships General Features Blastocoelomates 1. A large and heterogeneous group. a. also known as "Aschelminthes" - cavity worms. General Features b. Nearly any source you consult will have a different arrangement

More information

adaptation a structure, feature, or behavior that helps an organism survive and/or reproduce (IG)

adaptation a structure, feature, or behavior that helps an organism survive and/or reproduce (IG) FOSS Living Systems Module Glossary 3 rd Edition 2012 adaptation a structure, feature, or behavior that helps an organism survive and/or reproduce (IG) algae a large plantlike group of water organisms

More information

- found in bryozoans (moss animals), brachiopods (lamp shells) and phoronids (horseshoe worms)

- found in bryozoans (moss animals), brachiopods (lamp shells) and phoronids (horseshoe worms) Chapter 33 Protostome Animals - insects the phylum Arthropoda include the insects, crusraceans and myriapods and make up 40% of the total mass of organisms present 33.1 An Overview of Protostome Evolution

More information

What is a Cnidarian?

What is a Cnidarian? Invertebrate What is a Cnidarian? 9000 species of jellyfishes, corals, sea anemones, hydras Mostly marine animals Radially symmetrical One body opening Two layers of cells organized into tissues with specific

More information

Primitively there is a pair of ganglia per body segment but there has been progressive fusion of ganglia both within and between segments.

Primitively there is a pair of ganglia per body segment but there has been progressive fusion of ganglia both within and between segments. Multicellular organisms contain systems of organs that carry out specialised functions that enable them to survive and reproduce examining the specialised cells and tissues involved in structure and function

More information

Lab 7: Echinoderms. Geos 223 Introductory Paleontology Spring Name: Section:

Lab 7: Echinoderms. Geos 223 Introductory Paleontology Spring Name: Section: Geos 223 Introductory Paleontology Spring 2006 Lab 7: Echinoderms Name: Section: AIMS: This lab will introduce you to echinoderms, a very diverse deuterostome phylum with an excellent fossil record. You

More information

Are these organisms. animals or not?

Are these organisms. animals or not? 1 2 3 4 5 Are these organisms 6 7 8 animals or not? 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 Typical Animal Characteristics Eukaryotic Multicellular Ability to move Reproduce Obtain food (heterotrophic)

More information

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification?

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? Animals What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? What synapomorphies unite Animals Multicellular Heterotrophs (Metazoans)?

More information

The Radiata-Bilateria split. Second branching in the evolutionary tree

The Radiata-Bilateria split. Second branching in the evolutionary tree The Radiata-Bilateria split Second branching in the evolutionary tree Two very important characteristics are used to distinguish between the second bifurcation of metazoans Body symmetry Germinal layers

More information

Porifera Sponges Features:

Porifera Sponges Features: Porifera Sponges The Phylum Porifera consists only of sponges, which is unique since these animals are entirely aquatic; with 98% found only in marine environments and a small percentage found in freshwater

More information

Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1)

Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1) Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1) A) They are multicellular eukaryotes. B) They are heterotrophs. C) Their cells are supported

More information

1/30/2009. Copyright The McGraw Hill Companies, Inc. Permission required for reproduction or display.

1/30/2009. Copyright The McGraw Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 9 Architectural Pattern of an Animal New Designs for Living Zoologists recognize 34 major phyla of living multicellular animals Survivors of around 100 phyla that appeared 600 million years ago

More information

Architectural Pattern of an animal. Chapter 9

Architectural Pattern of an animal. Chapter 9 Architectural Pattern of an animal Chapter 9 What is an animal? Levels of organization and organismal complexity 5 major levels of complexity Unicellular Metazoan? Tissue Organ Organ systems Levels of

More information

Invertebrate Zoology. Unit 2: Phylums: Porifera, Cnidaria, and Ctenophora

Invertebrate Zoology. Unit 2: Phylums: Porifera, Cnidaria, and Ctenophora Invertebrate Zoology Unit 2: Phylums: Porifera, Cnidaria, and Ctenophora Objective 1: Differentiate between the 3 types of Poriferians (Asconoids, Syconoids, and Leuconoids) and the three main classes

More information

From a Cell to an Organism

From a Cell to an Organism From a Cell to an Organism Levels of Organization Life s Organization All matter is made of atoms. Atoms combine and form molecules. Molecules make up cells. A large animal, such as a Komodo dragon, is

More information

Marine Invertebrates

Marine Invertebrates Name: Date: Period: Marine Invertebrates Porifera Annelida Cnidaria Mollusca Platyhelminthes Arthropoda Nematoda Echinodermata Name Class Date Section 26 2 Sponges (pages 664 667) This section explains

More information

Bilateria. Radiata. Eumetazoa. Parazoa no true tissues. Multicellularity

Bilateria. Radiata. Eumetazoa. Parazoa no true tissues. Multicellularity Quiz 1. What does porifera mean? 2. Class Hexactinellida's skeletal structure is made out of what material? 3. Characterized as large openings where water comes out 4. Cells responsible for the circulating

More information

Introduction to Animal Diversity Lecture 7 Winter 2014

Introduction to Animal Diversity Lecture 7 Winter 2014 Introduction to Animal Diversity Lecture 7 Winter 2014 Evolution of Animals 1 Prokaryotes Eukaryotes Prokaryotes No nucleus Nucleoid region Simple No membrane bound organelles Smaller (1-5 nm) Evolutionarily

More information

Learning Objectives. The Animal Kingdom: An Introduction to Animal Diversity. Sexual Reproduction

Learning Objectives. The Animal Kingdom: An Introduction to Animal Diversity. Sexual Reproduction Learning Objectives The Animal Kingdom: An Introduction to Animal Diversity Chapter 29 What characters are common to most animals? Advantages and disadvantages of different environments Searching for relationships

More information

BIOS1101 Lab Notes. Contents ANIMALS. Lab 1: Animal Diversity invertebrates. Lab 2: Animal Diversity 2 vertebrates

BIOS1101 Lab Notes. Contents ANIMALS. Lab 1: Animal Diversity invertebrates. Lab 2: Animal Diversity 2 vertebrates Contents ANIMALS Lab 1: Animal Diversity invertebrates Lab 2: Animal Diversity 2 vertebrates Lab 3: Animal Structure 1 Gross morphology Lab 4: Animal Structure 2 Histology Lab 5: The Nervous System & Sensory

More information

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya Classification The three-domains Bacteria Archaea Eukarya The six-kingdom system Bacteria Archaea Protista Plantae Fungi Animalia The traditional five-kingdom system Monera Protista Plantae Fungi Animalia

More information

Worms and Mollusks (pp )

Worms and Mollusks (pp ) Worms and Mollusks (pp. 424 432) This section tells about the characteristics of the three main groups of worms and the main characteristics of mollusks. Use Target Reading Skills As you read, take notes

More information

Physiology. Organization of the Body. Assumptions in Physiology. Chapter 1. Physiology is the study of how living organisms function

Physiology. Organization of the Body. Assumptions in Physiology. Chapter 1. Physiology is the study of how living organisms function Introduction to Physiology and Homeostasis Chapter 1 Physiology Physiology is the study of how living organisms function On the street explanations are in terms of meeting a bodily need Physiologic explanations

More information

Chps : Animals. Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs

Chps : Animals. Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs Chps 23-26: Animals Chps. 23-27: Animals Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs Animal Characteristics Forms of symmetry: Radial Bilateral

More information

Nerve cells have many branches that help them send signals throughout the body.

Nerve cells have many branches that help them send signals throughout the body. What is your body made of? You might say that you are made of atoms or cells. You might even say you are made of organs, like skin and a heart. These answers are all correct. Each focuses on a different

More information

CHAPTER 14 Flatworms Phylum Platyhelminthes, Mesozoa, Nemertea

CHAPTER 14 Flatworms Phylum Platyhelminthes, Mesozoa, Nemertea CHAPTER 14 Flatworms Phylum Platyhelminthes, Mesozoa, Nemertea 14-1 14-2 General Features n Two major evolutionary advances n Cephalization n Concentrating sense organs in the head region n Primary bilateral

More information

Year 7 - Cells Summary Notes

Year 7 - Cells Summary Notes Year 7 - Cells Summary Notes Life Processes All living things do all seven of the life processes. Things that are not living may do some but do not do all seven of the life processes. These are: Movement

More information

What Is an Animal? Animal Characteristics

What Is an Animal? Animal Characteristics 1 What You Will Learn Animals are multicellular organisms. Animals have specialized cells, tissues, organs, and organ systems. Animals have seven basic characteristics. Why It Matters The characteristics

More information

KINGDOM ANIMALIA CHARACTERISTICS

KINGDOM ANIMALIA CHARACTERISTICS KINGDOM ANIMALIA CHARACTERISTICS EUKARYOTIC MULTICELLULAR HETEROTROPHIC (by ingestion) MOVE AT SOME POINT IN LIFE (not all - sponges are sessile) DIGEST FOOD TO GET NUTRIENTS LACK CELL WALLS CHARACTERISTICS

More information

BIOLOGY - CLUTCH CH.32 - OVERVIEW OF ANIMALS.

BIOLOGY - CLUTCH CH.32 - OVERVIEW OF ANIMALS. !! www.clutchprep.com Animals are multicellular, heterotrophic eukaryotes that feed by ingesting their food Most animals are diploid, and produce gametes produced directly by meiosis Animals lack cell

More information

Lab 2 Phylum Porifera and phylum Cnidaria. Grantia. Phylum Porifera. Kingdom :- Animalia. Phylum:- Porifera. Class:- Calcarea. Order:- Leucosolenida

Lab 2 Phylum Porifera and phylum Cnidaria. Grantia. Phylum Porifera. Kingdom :- Animalia. Phylum:- Porifera. Class:- Calcarea. Order:- Leucosolenida Lab 2 Phylum Porifera and phylum Cnidaria Phylum Porifera Adults sessile and attached Radial symmetry or asymmetrical Multi-cellular ; loose aggregation of cells Skeleton made of collagen and spicules

More information

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University The Evolution of Animal Diversity Dr. Stephen J. Salek Biology 130 Fayetteville State University Create your own animal? Start with a basic plant. Make the plant into a simple animal such as a worm. Consider:

More information

INVERTEBRATES. The Earth and Living Things. Carme Font Casanovas 1

INVERTEBRATES. The Earth and Living Things. Carme Font Casanovas 1 INVERTEBRATES Living Things. Carme Font Casanovas 1 How many animals can you see? ant rose coral snake anemone fish grass bee Living Things. Carme Font Casanovas 2 Invertebrates There are animals without

More information

By Sudha Vashisht P.G.G.C.G. -11 CHD

By Sudha Vashisht P.G.G.C.G. -11 CHD By Sudha Vashisht P.G.G.C.G. -11 CHD Pila is the common Apple snail which is found in ponds ditches, rivers and in watery fileds. The soft body is covered by a coiled shell. The first chamber of the shell

More information

Z361 Final Fall 2000 Multiple Choice Section

Z361 Final Fall 2000 Multiple Choice Section Name: Z361 Final Fall 2000 Multiple Choice Section Answer all 32 questions using a No. 2 pencil to fill in a scantron form provided. Except for question #32, there is only one correct answer to each question.

More information

Animal Origins and Evolution

Animal Origins and Evolution Animal Origins and Evolution Common Features of Animals multicellular heterotrophic motile Sexual reproduction, embryo Evolution of Animals All animals are multicellular and heterotrophic, which means

More information

Introduction. 1 Background Information...2 Adaptation Scavenger Hunt...3 Science Standards.. 4

Introduction. 1 Background Information...2 Adaptation Scavenger Hunt...3 Science Standards.. 4 Please arrive 30 minutes before your program. Teachers and chaperones must be present during the staff-facilitated 45-minute program. Introduction. 1 Background Information.....2 Adaptation Scavenger Hunt......3

More information

Chapter 13. Radiate Animals. Biological Contributions. Biological Contributions. Phylum Cnidaria. Definition. Position in Animal Kingdom

Chapter 13. Radiate Animals. Biological Contributions. Biological Contributions. Phylum Cnidaria. Definition. Position in Animal Kingdom Copyright The McGraw Hill Companies, Inc. Permission required for reproduction or display. Chapter 13 Radiate Animals Position in Animal Kingdom Both phyla Cnidaria and Ctenophora make up the radiate animals.

More information

Sponge and Cnidarian Review

Sponge and Cnidarian Review Name Period Date Sponge and Cnidarian Review Matching On the lines provided, write the letter of the definition that matches each term. 1. Invertebrate 2. Filter feeder 3. Asymmetry 4. Radial 5. Medusa

More information

2. Examine the external anatomy of the squid and identify the following structures: tentacles, arms, fins, siphon, mantle, eyes and collar.

2. Examine the external anatomy of the squid and identify the following structures: tentacles, arms, fins, siphon, mantle, eyes and collar. Cephalopod Anatomy As their name implies, members of the class Cephalopoda have modified head-foot which bears an array of prehensile tentacles and arms at the cranial end of the body. The visceral mass

More information

adaptation a structure, feature, or behavior that helps an organism survive and/or reproduce (IG)

adaptation a structure, feature, or behavior that helps an organism survive and/or reproduce (IG) FOSS Living Systems Module Glossary NGSS Edition 2019 adaptation a structure, feature, or behavior that helps an organism survive and/or reproduce (IG) algae a large plantlike group of water organisms

More information

What creates a coral reef? Why are corals able to form huge reefs?

What creates a coral reef? Why are corals able to form huge reefs? Marine ecosystems 5: Coral Reefs Unique features The foundation of the ecosystem is produced by living things Reef-building corals Similarities with tropical rain forests Richness and complexity 3-dimensional

More information

6 characteristics blastula

6 characteristics blastula Animals Characteristics The animal kingdom is divided into approximately 35 phyla with diverse species. However, all organisms in the animal kingdom share these 6 characteristics Eukaryotic Lack cell walls

More information

Biology 11. The Kingdom Animalia

Biology 11. The Kingdom Animalia Biology 11 The Kingdom Animalia Objectives By the end of the lesson you should be able to: Describe the 5 ways we classify animals Symmetry Germ layers Body plan Segmentation Animal Evolution Hank Video

More information