L ia D am ayanti. D epartm ent of H istology Faculty of M edicine University of I ndonesia

Size: px
Start display at page:

Download "L ia D am ayanti. D epartm ent of H istology Faculty of M edicine University of I ndonesia"

Transcription

1 L ia D am ayanti D epartm ent of H istology Faculty of M edicine University of I ndonesia 1

2 Introduction M uscle tissue One of the four basic tissues Properties Contractility Converting chemical energy into mechanical work 2

3 Introduction The main function of skeletal muscle Positioning of the skeleton M ovement of the skeleton M uscle tissue attach firmly to related bone M uscle contraction moves the skeletons 3

4 through skeletal muscle contraction that produce muscle tension 4

5 D evelopment D erived from mesoderm Somatic mesoderm Splanchnic mesoderm Skeletal muscle Smooth muscle Splanchnopleuric mesoderm Cardiac muscle 5

6 Terminology in muscle Sarcolemma Sarcoplasm Smooth endoplasmic reticulum in the muscle cell Sarcosomes Cytoplasm of muscle cell Sarcoplasmic reticulum M uscle cell membrane The mitochondria of muscle cell M uscle fiber M uscle cell L onger than wide L iving entity 6

7 M uscle types 3 types of muscle: Skeletal muscle Smooth muscle Cardiac muscle 7

8 S keletal M uscle Striated muscle Regular alterantinf light and dark cross striations M ost of voluntary muscle mass of the body 8

9 S keletal M uscle Organization A n anatomically named muscle A group of muscle bundles or fascicles Surrounded by epimysium (connective tissue) Fascicle (muscle bundle) Consists of a variable number muscle fibers D elineated or surrounded by perimysium The connective tissue of epimysium that extend inward, surrounding the muscle bundle 9

10 S keletal M uscle M uscle fiber The basic structural unit A long, cylindrical and multinucleate structure Surrounded by endomysium The connective tissue of perimysium that extend inward, surrounding the muscle fiber 10

11 Light M icroscopy Appearance M uscle fiber A long, cylindrical and multinucleated structure The nuclei L ocated in the periphery of the muscle fiber Contact with sarcolemma In the HE Staining L ight and dark transverse crossbands D ark stained bands: A bands L ight stained bands: I bands 11

12 S k eleta l M us c le U nit Organization unit Sarcolemma Conduction of nerve impulse to the muscle fibers Sarcoplasmic reticulum Control movement of skeletal muscle M yofibriles Contraction of skeletal muscle Contractile unit Sarcomere Region of myofibril between 2 successive Z disk 12

13 Ultrastructure Sarcolemma Similar to other cell with some differences Continued within skeletal muscle fiber as T tubules T-tubule: A long tubule extending inward from the sarcolemma L ie at the junction of the A and I bands (2 sets of T-tubule in each sarcomere) Facilitate the conduction of waves of depolarization along the sarcolemma 13

14 Ultrastructure Sarcoplasmic reticulum A membrane bounded tubules forms a continuous network Occupying the narrow spaces between the myofibrils forms a meshwork around each myofibril and display dilated terminal cisternae at each A -I junction A triad T tubule is flanked by two cisternae A wave of depolarization will spread from the surface of sarcolemma throughout the T-tubule reaching the terminal cisternae which has the voltage-gated Ca2+ release channel 14

15 Ultrastructure M itochondria located just deep to the sarcoplasm numerous M yofibril held in register with each other by the intermediate filament desmin and vimentin the bundles of myofibril attached to the cytoplasmic aspect of the sarcolemma by various protein including dystrophin 15

16 M yofibril The arrangement of thick and thin filament A specific and constan relationship Each thick filament is surrounded by six thin filaments arranged in hexagonal pattern 16

17 O rganization of M yofibril Thick Filament 15 nm in diameter and 1.5 um long Form parallel arrays interdigitating with the thin filament Composed of myosin Consists of myosin molecules bundle together One half of the molecules have their heads pointing toward the opposite end This arrangement result in a bare zone in the center of the A band where there are no myosin heads 17

18 Thick Filament Composed of two identical heavy chain and two pairs of light chains 18

19 Thick Filament Heavy chains Two golf clubs Rod like polypeptide chains wrapped around each other in an α helix Rod like tail light meromyosin Cleaved by trypsin Heavy meromyosin Can be cleaved by papain Two globular subfragment Binds ATP Function in the formation of cross-bridges between thick and thin myofilaments A short helical rod like subfragment 19

20 Thick Filament Heavy chains Has two hinges Junction of the L M M and HM M The neck region near the two globular heads Each heavy chain has two light chains L ight chains Two type One of each associated with the S1 sub-fragment 20

21 O rganization of M yofibril Thin Filament 7 nm in diameter and 1.0 um long originate at Z disk, project toward the center of the two adjacent sarcomeres, thus pointing in opposite directions Composed by Primarily of F-actin A polymer of globular G-actin unit The plus end is bound to the Z disk by α actinin The minus end extends toward the center of the sarcomere 21

22 Thin Filament Each G-actin molecule contains an active site where the head region (S1 subfragment) of myosin binds Has the shallow grooves along the length of the F-actin double helix Occupied by pencil shape like tropomyosin molecules M asks the active sites Two chains of F-actin are wound around each other in a tight helix like two strands of pearls 22

23 Thin Filament Tropomyosin Polymerized to form head to tail filament that occupy the shallow grooves in the actin filaments Binding of tropomyosin masks the active sites on the actin molecules by partially overlapping them 23

24 Thin Filament Troponin nm from the beginning of each tropomyosin molecule Three globular polypeptide TnT, binds the entire troponin molecule to tropomyosin TnC has a great affinity for calcium TnI binds actin, preventing the interaction between actin and myosin 24

25 T he structural organization of myofibrils is maintained by three proteins Titin Tight the thick filament precisely within the sarcomere A large, linear, elastic protein Extends from each half of a thick filament to the adjacent Z disk α A ctinin Hold the thin filament to the Z disk Rod-shape protein A component of the Z disk that can bind thin filament in parallel arrays Nebulin A long non elastic protein W rap ped around the entire length of each thin filament A nchoring the thin filament to the Z disk and ensuring the maintenance of the specific array 25

26 M uscle C ontraction and R elaxation Contraction reduces the resting length of the muscle fiber by an amount that is equal to the sum of all shortening that occur in all sarcomere of that particular muscle cell The contraction process triggered by nerve impuls, obeys the all or none law in that a single muscle fiber will either contract or not contract as a result of stimulation 26

27 M uscle C ontraction and R elaxation M uscle contraction Individual thick and thin filaments do not shorten The two Z disk are brought closer together as the thin filament slide past the thick filaments (Sliding filament theory) I band becomes narrower H band is extinguished Z disk move closer together The width of the A bands remains unaltered 27

28 M uscle C ontraction and R elaxation M uscle Contraction Sliding filament theory (Huxleys) Thin filament slide past the thick filament The sequences of action Physiology lecture 28

29 Actin M yosin C rossbridge 3D Animation S a n D ieg o S ta te U nivers ity C o lleg e of S c ienc es Based in part on Color Atlas of Physiology, Agamemnon Despopoulos, Stefan Silbernagl Thieme Medical Publishers, Inc., 1991, New York 29

30 M uscle C ontraction and R elaxation muscle contraction produces tension 30

31 M uscle C ontraction and R elaxation Relaxed muscle Thick filaments do not extend entire length of the sarcomere Thin filaments projecting from the two Z disk of sarcomere meet in the midline 31

32 M uscle C ontraction and R elaxation Clinical correlation Rigor mortis Occurs subsequently to death because the lack of A TP prevent the dissociation of actin and myosin Tetanus Force of contraction increases with summation of muscle twitches If action potentials continue to stimulate the muscle fiber repeatedly at short interval (high frequency) relaxation between contractions diminished until the muscle fiber achieves a state of maximal contraction Incomplete tetanus Complete tetanus 32

33 C lassification of skeletal muscle fiber Red muscle oxydative fibers M yoglobin (red oxygen binding pigment) >> Small diameter M any capillaries Use oxydative phosphorylation Slow twich M arathon runner 33

34 C lassification of skeletal muscle fiber White muscle glycolytic fibers M yoglobin (red oxygen binding pigment) << L arge diameter Small number of capillaries Fast twich Sprinter runner 34

35 Fiber C ontraction S peed: Fast & S low Twitch muscle fibers 35

36 R E D muscle fiber Glycogen? << Myoglobin? >> Capillary? >> Diameter? << Metabolism? Myosin ATPase activity? Time to develop max tension? Ca++-ATPase activity in SR? Contraction duration? Endurance? Use? 36

37 Glycogen? Myoglobin? Capillary? Diameter? >> << << >> Metabolism? Myosin ATPase activity? Time to develop max tension? Ca++-ATPase activity in SR? Contraction duration? Endurance? Use? Wednesday, January 13,

38 I nnerva tio n o f s k eleta l m us c le Innervation of skeletal muscle by 2 nerve fiber M otor (efferent) fiber Functions in eliciting contraction Each motor neuron and muscle fibers it controls form a motor unit Sensory (afferent) fiber Pass to the muscle spindle 38

39 I nnerva tio n o f s k eleta l m us c le Impulse transmission at the myoneural junction M otor fiber M yelinated axon or α motor neurons Pass to the muscle terminate as motor end plate A lso known as myoneural junction A n axon terminal, synaptic cleft and muscle membrane 39

40 I nnerva tio n o f s k eleta l m us c le M otor fiber A xon terminal covered by Schwann cells has the mitochondria, smooth endoplasmic reticulum, synaptic vesicle Function To transmit a stimulus from nerve fiber to the skeletal muscle 40

41 I nnerva tio n o f s k eleta l m us c le Sequence events 41

42 I nnerva tio n o f s k eleta l m us c le Clinical Correlation Botulism Caused by ingestion of improperly preserved canned foods Clostridium botulinum Prevent the binding of acetyl choline to the receptor in post synaptic membrane Paralysis of the muscle 42

43 I nnerva tio n o f s k eleta l m us c le Clinical correlation M yasthenia gravis A n autoimune disease in which the antibodies attach to the acetyl choline receptor blocking their availability to acetylcholine Paralysis of the muscle Neurotoxins B ungaratoxin of some poisonous snakes 43

44 I nnerva tio n o f s k eleta l m us c le When the muscle is stretch Undergoes reflex contraction known as the Strecth reflex Preventing the tearing of muscle fibers This protection response is initiated by muscle spindle 44

45 I nnerva tio n o f s k eleta l m us c le M uscle spindle A n encapsulated sensory receptor located among the muscle cells Composed of Connective tissue capsule Intrafusal muscle fiber Sensory nerve fiber form 45

46 M uscle regeneration Satellite cells L ying beneath the basement membrane next to sarcolemma Reserve muscle precursor cells Normally quiescent A ctivated only in response to growth or muscle damage 46

47 R epair/regeneration of S keletal M uscle Traditional view A dult muscle cells post-mitotic Regeneration is very limited Injury repair fibrous scar formation Satellite cells have minimal contribution especially in severe muscle trauma Cardiac muscle do not have any satellite cells Lack of regeneration 47

48 R epair/regeneration of S keletal M uscle New perspective A ctivated of: satellite cells and other precursor cells M yonucleus M ultipotential cells (interstitial mesenchyme cells) Skeletal muscle M oderate regeneration potential Cardiac muscle have regeneration potential 48

49 49

50 50

51 S mooth M uscle The repeating of light and dark cross-bands or striations is absent Involuntary L ocation: Widely distributed throughout the digestive tube Tubular portions of many organs Walls of blood vessel 51

52 52

53 53

54 54

Muscle tissue. Types. Functions. Cardiac, Smooth, and Skeletal

Muscle tissue. Types. Functions. Cardiac, Smooth, and Skeletal Types Cardiac, Smooth, and Skeletal Functions movements posture and body position Support soft tissues Guard openings body temperature nutrient reserves Muscle tissue Special Characteristics of Muscle

More information

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 2 Chapter 9 Muscles and Muscle Tissue Overview of Muscle Tissue types of muscle: are all prefixes for muscle Contractility all muscles cells can Smooth & skeletal

More information

Our patient for the day...

Our patient for the day... Muscles Ch.12 Our patient for the day... Name: Eddy Age: Newborn Whole-body muscle contractions No relaxation Severe difficulty breathing due to inadequate relaxation of breathing muscles Diagnosed with

More information

UNIT 6 THE MUSCULAR SYSTEM

UNIT 6 THE MUSCULAR SYSTEM UNIT 6 THE MUSCULAR SYSTEM I. Functions of Muscular System A. Produces Movement Internal vs. External «locomotion & manipulation «circulate blood & maintain blood pressure «move fluids, food, baby B. Maintaining

More information

According to the diagram, which of the following is NOT true?

According to the diagram, which of the following is NOT true? Instructions: Review Chapter 44 on muscular-skeletal systems and locomotion, and then complete the following Blackboard activity. This activity will introduce topics that will be covered in the next few

More information

Lecture 13, 05 October 2004 Chapter 10, Muscle. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Lecture 13, 05 October 2004 Chapter 10, Muscle. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a. Lecture 13, 05 October 2004 Chapter 10, Muscle Vertebrate Physiology ECOL 437 University of Arizona Fall 2004 instr: Kevin Bonine t.a.: Nate Swenson Vertebrate Physiology 437 18 1. Muscle A. Sarcomere

More information

Membrane Potential. 1. Resting membrane potential (RMP): 2. Action Potential (AP):

Membrane Potential. 1. Resting membrane potential (RMP): 2. Action Potential (AP): Membrane Potential 1. Resting membrane potential (RMP): 2. Action Potential (AP): Resting Membrane Potential (RMP) It is the potential difference across the cell membrane. If an electrode of a voltmeter

More information

TISSUE. A) Types. (i)

TISSUE. A) Types. (i) MUSCLES & MUSCLE TISSUE I. OVERVIEW - Muscle ( little mouse ) - tissue designed to cause movementt thru contraction ( shortening ). A) Types - There are some SIMILARITIES between muscle types: (i) All

More information

Muscles and Muscle Tissue: Part A

Muscles and Muscle Tissue: Part A PowerPoint Lecture Slides prepared by Janice Meeking, Mount Royal College CHAPTER 9 Muscles and Muscle Tissue: Part A Warm Up 12/12/16 Describe the major differences between cardiac, skeletal and smooth

More information

NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below.

NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below. Anatomy & Physiology Nervous System Part I 2/26/16 NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below. 1. 2. 3. 5. 4. 6. Part

More information

the axons of the nerve meet with the muscle cell.

the axons of the nerve meet with the muscle cell. Steps to Contraction 1. A nerve impulse travels to the neuromuscular junction on a muscle cell. The neuromuscular junction is the point where the axons of the nerve meet with the muscle cell. 2. Ach is

More information

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc.

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc. Chapter 16 Cellular Movement: Motility and Contractility Lectures by Kathleen Fitzpatrick Simon Fraser University Two eukaryotic motility systems 1. Interactions between motor proteins and microtubules

More information

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement 1 Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement In the last lecture, we saw that a repeating alternation between chemical (ATP hydrolysis) and vectorial

More information

Modelling Muscle Contraction a multiscale approach

Modelling Muscle Contraction a multiscale approach Porto Ercole, M&MKT 2016 Multiscale Systems from Particles to Continuum: Modelling and Computation Modelling Muscle Contraction a multiscale approach Giovanni Naldi Dipartimento di Matematica ``F. Enriques

More information

Fundamentals of Neurosciences. Smooth Muscle. Dr. Kumar Sambamurti 613-SEI; ;

Fundamentals of Neurosciences. Smooth Muscle. Dr. Kumar Sambamurti 613-SEI; ; Fundamentals of Neurosciences Smooth Muscle Dr. Kumar Sambamurti 613-SEI; 792-4315; sambak@musc.edu 1 Smooth Muscle Structure Cells much smaller than skeletal muscle (2-5µM diam, 100-400µM long) Single

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Matthew Velkey, 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-Commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

Slide 1. Slide 2. Slide 3. Muscles general information. Muscles - introduction. Microtubule Function

Slide 1. Slide 2. Slide 3. Muscles general information. Muscles - introduction. Microtubule Function Slide 1 Muscles general information Vertebrates and many invertebrates have three main classes of muscle Skeletal muscle connect bones are are used for complex coordianted activities. Smooth muscles surround

More information

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles 1 Response Mechanism tropism Definition A growth movement of part of plant in response to a directional stimulus examples Positive:

More information

Modeling. EC-Coupling and Contraction

Modeling. EC-Coupling and Contraction Bioeng 6460 Electrophysiology and Bioelectricity Modeling of EC-Coupling and Contraction Frank B. Sachse fs@cvrti.utah.edu Overview Quiz Excitation-Contraction Coupling Anatomy Cross Bridge Binding Coupling

More information

The Molecules of Movement Musc 1 - Professor Michael Ferenczi

The Molecules of Movement Musc 1 - Professor Michael Ferenczi The Molecules of Movement Musc 1 - Professor Michael Ferenczi (m.ferenczi@imperial.ac.uk) 1. Appreciate that there are a large number of molecular motors, each with its assigned role. 2. Linear molecular

More information

(Be sure to clearly state the principles addressed in your discussion.)

(Be sure to clearly state the principles addressed in your discussion.) CELL QUESTION 1992: AP BIOLOGY A laboratory assistant prepared solutions of 0.8 M, 0.6 M, 0.4 M, and 0.2 M sucrose, but forgot to label them. After realizing the error, the assistant randomly labeled the

More information

Structure of Biological Materials

Structure of Biological Materials ELEC ENG 3BA3: Structure of Biological Materials Notes for Lecture #7 Monday, September 24, 2012 3.2 Muscle biomechanics Organization: skeletal muscle is made up of muscle fibers each fiber is a single

More information

BIOMECHANICS 3 Origins and consequences of forces in biological systems

BIOMECHANICS 3 Origins and consequences of forces in biological systems BIOMECHANICS 3 Origins and consequences of forces in biological systems MOLECULAR MECHANISMS OF BIOLOGICAL MOVEMENT AT THE LEVELOF ORGANISMS MOLECULAR BASIS OF MUSCLE CONTRACTION DR. BEÁTA BUGYI - BIOPHYSICS

More information

Nervous System Organization

Nervous System Organization The Nervous System Nervous System Organization Receptors respond to stimuli Sensory receptors detect the stimulus Motor effectors respond to stimulus Nervous system divisions Central nervous system Command

More information

CIE Biology A-level Topic 15: Control and coordination

CIE Biology A-level Topic 15: Control and coordination CIE Biology A-level Topic 15: Control and coordination Notes Neuron structure The nerve cells called neurones play an important role in coordinating communication within the nervous system. The structure

More information

Movement & Muscle Chapter 18

Movement & Muscle Chapter 18 19 th Lecture Fri 27 Feb 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh Movement & Muscle Chapter 18 1 Housekeeping, Fri 27 February 2009 Readings

More information

Movement & Muscle. 19 th Lecture Fri 27 Feb Chapter 18. Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009

Movement & Muscle. 19 th Lecture Fri 27 Feb Chapter 18. Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 19 th Lecture Fri 27 Feb 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh Movement & Muscle Chapter 18 1 Housekeeping, Fri 27 February 2009 Readings

More information

1. True or false: at this moment, some of the muscle fibers in your gluteus maximus (a whole muscle) are contracting. a. True b.

1. True or false: at this moment, some of the muscle fibers in your gluteus maximus (a whole muscle) are contracting. a. True b. Exam III ANP 213 Spring 2008 You only need to print out the last two pages. Please do not consult classmates once you have begun this exam. Multiple Choice- 1 point each (use a ScanTron) 1. True or false:

More information

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle The Nervous System and Muscle SECTION 2 2-1 Nernst Potential 2-2 Resting Membrane Potential 2-3 Axonal Action Potential 2-4 Neurons 2-5 Axonal Conduction 2-6 Morphology of Synapses 2-7 Chemical Synaptic

More information

Neurons and Nervous Systems

Neurons and Nervous Systems 34 Neurons and Nervous Systems Concept 34.1 Nervous Systems Consist of Neurons and Glia Nervous systems have two categories of cells: Neurons, or nerve cells, are excitable they generate and transmit electrical

More information

Navigation (Chapter 16)

Navigation (Chapter 16) Lecture 13, 04 Oct 2005 Chapter 16 & 17 Navigation & Muscle Function Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 Vertebrate Physiology 437 Chapter 16 1. Navigation

More information

Lecture 13, 04 Oct 2005 Chapter 16 & 17 Navigation & Muscle Function

Lecture 13, 04 Oct 2005 Chapter 16 & 17 Navigation & Muscle Function Lecture 13, 04 Oct 2005 Chapter 16 & 17 Navigation & Muscle Function Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 instr: Kevin Bonine t.a.: Kristen Potter 1

More information

Nervous System Organization

Nervous System Organization The Nervous System Chapter 44 Nervous System Organization All animals must be able to respond to environmental stimuli -Sensory receptors = Detect stimulus -Motor effectors = Respond to it -The nervous

More information

Use the word bank to match the appropriate letter to the definitions/descriptions on the next page.

Use the word bank to match the appropriate letter to the definitions/descriptions on the next page. NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE All or Nothing: A Case Study in Muscle Contraction by Ryan T. Neumann*, Collin J. Quinn*, Brittany A. Whitaker*, Sean T. Woyton*, and Breanna N. Harris

More information

Nerve and Muscle. Physiology of nerve

Nerve and Muscle. Physiology of nerve Nerve and Muscle Physiology of nerve The neuron The basic structural unit of the nervous system. Structure: The soma The dendrites: antenna like processes The axon: hillock, terminal buttons Types of nerve

More information

Dendrites - receives information from other neuron cells - input receivers.

Dendrites - receives information from other neuron cells - input receivers. The Nerve Tissue Neuron - the nerve cell Dendrites - receives information from other neuron cells - input receivers. Cell body - includes usual parts of the organelles of a cell (nucleus, mitochondria)

More information

Nervous system. 3 Basic functions of the nervous system !!!! !!! 1-Sensory. 2-Integration. 3-Motor

Nervous system. 3 Basic functions of the nervous system !!!! !!! 1-Sensory. 2-Integration. 3-Motor Nervous system 3 Basic functions of the nervous system 1-Sensory 2-Integration 3-Motor I. Central Nervous System (CNS) Brain Spinal Cord I. Peripheral Nervous System (PNS) 2) Afferent towards afferent

More information

Basic Principles of Animal Form and Function. Chapter 40

Basic Principles of Animal Form and Function. Chapter 40 Basic Principles of Animal Form and Function Chapter 40 Form and Function Anatomy- biological form of an organism. Physiology- biological function. Size and Shape Development of body plan and shape is

More information

Nervous Systems: Neuron Structure and Function

Nervous Systems: Neuron Structure and Function Nervous Systems: Neuron Structure and Function Integration An animal needs to function like a coherent organism, not like a loose collection of cells. Integration = refers to processes such as summation

More information

لجنة الطب البشري رؤية تنير دروب تميزكم

لجنة الطب البشري رؤية تنير دروب تميزكم 1) Hyperpolarization phase of the action potential: a. is due to the opening of voltage-gated Cl channels. b. is due to prolonged opening of voltage-gated K + channels. c. is due to closure of the Na +

More information

MEMBRANE POTENTIALS AND ACTION POTENTIALS:

MEMBRANE POTENTIALS AND ACTION POTENTIALS: University of Jordan Faculty of Medicine Department of Physiology & Biochemistry Medical students, 2017/2018 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Review: Membrane physiology

More information

Computational Modeling of the Cardiovascular and Neuronal System

Computational Modeling of the Cardiovascular and Neuronal System BIOEN 6900 Computational Modeling of the Cardiovascular and Neuronal System Modeling of Force Development in Myocytes Overview Recapitulation Modeling of Conduction Modeling of Force in Skeletal Muscle

More information

Neurophysiology. Danil Hammoudi.MD

Neurophysiology. Danil Hammoudi.MD Neurophysiology Danil Hammoudi.MD ACTION POTENTIAL An action potential is a wave of electrical discharge that travels along the membrane of a cell. Action potentials are an essential feature of animal

More information

Nervous Tissue. Neurons Neural communication Nervous Systems

Nervous Tissue. Neurons Neural communication Nervous Systems Nervous Tissue Neurons Neural communication Nervous Systems What is the function of nervous tissue? Maintain homeostasis & respond to stimuli Sense & transmit information rapidly, to specific cells and

More information

BIOL Anatomy and Physiology I ( version L )

BIOL Anatomy and Physiology I ( version L ) BIOL 2113 - Anatomy and Physiology I ( version 213L ) Course Title Course Development Learning Support Anatomy and Physiology I Standard No Course Description Introduces the anatomy and physiology of the

More information

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation Nervous Tissue Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation What is the function of nervous tissue? Maintain homeostasis & respond to stimuli

More information

Excitation of Skeletal Muscle: Neuromuscular Transmission and Excitation-Contraction Coupling

Excitation of Skeletal Muscle: Neuromuscular Transmission and Excitation-Contraction Coupling C H A P T E R 7 Excitation of Skeletal Muscle: Neuromuscular Transmission and Excitation-Contraction Coupling U N I T I I TRANSMISSION OF IMPULSES FROM NERVE ENDINGS TO SKELETAL MUSCLE FIBERS: THE NEUROMUSCULAR

More information

Bioelectricity Prof. Mainak Das Department of Biological Sciences, and Bioengineering Indian Institute of Technology, Kanpur.

Bioelectricity Prof. Mainak Das Department of Biological Sciences, and Bioengineering Indian Institute of Technology, Kanpur. Bioelectricity Prof. Mainak Das Department of Biological Sciences, and Bioengineering Indian Institute of Technology, Kanpur Lecture 17 Welcome back to the bioelectricity lecture, series. So, in the last

More information

Cellular Electrophysiology and Biophysics

Cellular Electrophysiology and Biophysics BIOEN 6003 Cellular Electrophysiology and Biophysics Modeling of Force Development in Myocytes II Frank B. Sachse, University of Utah Overview Experimental Studies Sliding Filament Theory Group work Excitation-Contraction

More information

Some sensory receptors are specialized neurons while others are specialized cells that regulate neurons Figure 50.4

Some sensory receptors are specialized neurons while others are specialized cells that regulate neurons Figure 50.4 1 2 3 4 5 6 7 8 9 10 Sensory and Motor Mechanisms Chapter 50 Sensory receptors transduce stimulus energy and transmit signals to the central nervous system Sensory Pathways Sensory pathways have four basic

More information

Tissues: - A group of cells similar in structure and performing a particular function forms a tissue.

Tissues: - A group of cells similar in structure and performing a particular function forms a tissue. Plant Tissues Class- IX Tissues: - A group of cells similar in structure and performing a particular function forms a tissue. PLANT TISSUES ANIMAL TISSUES 1. Most of the plant tissues are Most of the tissues

More information

A Thesis. presented to. the Faculty of California Polytechnic State University, San Luis Obispo. In Partial Fulfillment

A Thesis. presented to. the Faculty of California Polytechnic State University, San Luis Obispo. In Partial Fulfillment IMPLEMENTATION OF MEDICINAL LEECH PREPARATION TO INVESTIGATE THE CONNECTION BETWEEN THE MOTOR NEURON AND MUSCLE FIBER VIA SHARP ELECTRODE ELECTROPHYSIOLOGY A Thesis presented to the Faculty of California

More information

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/ MEMBRANE STRUCTURE Lecture 9 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University RED BLOOD CELL MEMBRANE PROTEINS The Dynamic Nature of the Plasma Membrane SEM of human erythrocytes

More information

Solution Authoring Guidelines Version 9.4 September 2016

Solution Authoring Guidelines Version 9.4 September 2016 Solution Authoring Guidelines Version 9.4 September 2016 Subject-specific Guidelines- Biology Table of Contents B1. Technology... 3 B2. Special points/others... 3 List of changes made over Version 9.1

More information

Membrane Protein Channels

Membrane Protein Channels Membrane Protein Channels Potassium ions queuing up in the potassium channel Pumps: 1000 s -1 Channels: 1000000 s -1 Pumps & Channels The lipid bilayer of biological membranes is intrinsically impermeable

More information

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent Overview Organization: Central Nervous System (CNS) Brain and spinal cord receives and processes information. Peripheral Nervous System (PNS) Nerve cells that link CNS with organs throughout the body.

More information

1. The plasma membrane of eukaryotic cells is supported by a. actin filaments. b. microtubules. c. lamins. d. intermediate filaments.

1. The plasma membrane of eukaryotic cells is supported by a. actin filaments. b. microtubules. c. lamins. d. intermediate filaments. ANALYSIS AND MODELING OF CELL MECHANICS Homework #2 (due 1/30/13) This homework involves comprehension of key biomechanical concepts of the cytoskeleton, cell-matrix adhesions, and cellcell adhesions.

More information

MUSCLE BIOLOGY OVERVIEW OF THE SKELETAL MUSCLE CYTOSKELETON

MUSCLE BIOLOGY OVERVIEW OF THE SKELETAL MUSCLE CYTOSKELETON MUSCLE BIOLOGY OVERVIEW OF THE SKELETAL MUSCLE CYTOSKELETON Ted Huiatt, Ph.D. Associate Professor, Department of Animal Science and Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology,

More information

Biology September 2015 Exam One FORM G KEY

Biology September 2015 Exam One FORM G KEY Biology 251 17 September 2015 Exam One FORM G KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information

Biology September 2015 Exam One FORM W KEY

Biology September 2015 Exam One FORM W KEY Biology 251 17 September 2015 Exam One FORM W KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information

NATIONAL REVIEW COURSE. Cells, Tissues, and Membranes

NATIONAL REVIEW COURSE. Cells, Tissues, and Membranes NATIONAL REVIEW COURSE Cells, Tissues, and Membranes I. Cell Types A. Prokaryote bacteria cells; a cell that does not have a nucleus in which to store its genetic material. B. Eukaryote plant or animal

More information

Organization of Vertebrate Body. Organization of Vertebrate Body

Organization of Vertebrate Body. Organization of Vertebrate Body The Animal Body and Principles of Regulation Chapter 43 There are four levels of organization: 1. Cells 2. Tissues 3. Organs 4. Organ systems Bodies of vertebrates are composed of different cell types

More information

NOTES: CH 48 Neurons, Synapses, and Signaling

NOTES: CH 48 Neurons, Synapses, and Signaling NOTES: CH 48 Neurons, Synapses, and Signaling A nervous system has three overlapping functions: 1) SENSORY INPUT: signals from sensory receptors to integration centers 2) INTEGRATION: information from

More information

Form and Function. Physical Laws and Form. Chapter 40: Basic Principles of Animal Form and Function. AP Biology Fig Figs & 40.

Form and Function. Physical Laws and Form. Chapter 40: Basic Principles of Animal Form and Function. AP Biology Fig Figs & 40. Chapter 40: Basic Principles of Animal Form and Function AP Biology 2013 1 Form and Function Comparative studies show that form and function are closely related Natural selection can fit the form (anatomy)

More information

A novel electrical model of nerve and muscle using Pspice

A novel electrical model of nerve and muscle using Pspice INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 36 (2003) 311 329 PII: S0022-3727(03)53900-6 A novel electrical model of nerve and muscle using Pspice W Peasgood,

More information

Neurochemistry 1. Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906

Neurochemistry 1. Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906 Neurochemistry 1 Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906 How Many Neurons Do We Have? The human brain contains ~86 billion neurons and

More information

Cell Structure and Cell Cycle

Cell Structure and Cell Cycle E X E R C I S E 4 Cell Structure and Cell Cycle Materials model or diagram of a cell compound microscopes and lens paper prepared slides of human skeletal muscle cells, pseudostratified ciliated columnar

More information

BIO 210: Anatomy and Physiology Text: Fundamentals of Anatomy and Physiology 9ed. Chapter 12 NEURAL TISSUE

BIO 210: Anatomy and Physiology Text: Fundamentals of Anatomy and Physiology 9ed. Chapter 12 NEURAL TISSUE NAME COURSE BIO 210: Anatomy and Physiology Text: Fundamentals of Anatomy and Physiology 9ed. Chapter 12 NEURAL TISSUE Like a telephone switchboard, the nervous system directs a countless number of incoming

More information

Peripheral Nerve II. Amelyn Ramos Rafael, MD. Anatomical considerations

Peripheral Nerve II. Amelyn Ramos Rafael, MD. Anatomical considerations Peripheral Nerve II Amelyn Ramos Rafael, MD Anatomical considerations 1 Physiologic properties of the nerve Irritability of the nerve A stimulus applied on the nerve causes the production of a nerve impulse,

More information

Membrane Physiology. Dr. Hiwa Shafiq Oct-18 1

Membrane Physiology. Dr. Hiwa Shafiq Oct-18 1 Membrane Physiology Dr. Hiwa Shafiq 22-10-2018 29-Oct-18 1 Chemical compositions of extracellular and intracellular fluids. 29-Oct-18 2 Transport through the cell membrane occurs by one of two basic processes:

More information

Organization of the nervous system. Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2

Organization of the nervous system. Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2 Nervous system Organization of the nervous system Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2 Autonomic and somatic efferent pathways Reflex arc - a neural pathway that

More information

Neural Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc.

Neural Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc. 12 Neural Tissue PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris An Introduction to the Nervous System The Nervous System Includes all neural tissue in the body

More information

Introduction. The study of animal form and function is integrated by the common set of problems that all animals must solve.

Introduction. The study of animal form and function is integrated by the common set of problems that all animals must solve. Introduction The study of animal form and function is integrated by the common set of problems that all animals must solve. These include how to extract oxygen from the environment, how to nourish themselves,

More information

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES.

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES. !! www.clutchprep.com K + K + K + K + CELL BIOLOGY - CLUTCH CONCEPT: PRINCIPLES OF TRANSMEMBRANE TRANSPORT Membranes and Gradients Cells must be able to communicate across their membrane barriers to materials

More information

The Nervous System. Nerve Impulses. Resting Membrane Potential. Overview. Nerve Impulses. Resting Membrane Potential

The Nervous System. Nerve Impulses. Resting Membrane Potential. Overview. Nerve Impulses. Resting Membrane Potential The Nervous System Overview Nerve Impulses (completed12/03/04) (completed12/03/04) How do nerve impulses start? (completed 19/03/04) (completed 19/03/04) How Fast are Nerve Impulses? Nerve Impulses Nerve

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES Neuron Communication Neurons are stimulated by receptors on dendrites and cell bodies (soma) Ligand gated ion channels GPCR s Neurons stimulate cells

More information

Synapses. Electrophysiology and Vesicle release

Synapses. Electrophysiology and Vesicle release Synapses Electrophysiology and Vesicle release Major point Cell theory (cells being separated) implies that cells must communicate with each other through extracellular connections most communication is

More information

Amneh Auben. Abdulrahman Jabr. Diala Abu-Hassan

Amneh Auben. Abdulrahman Jabr. Diala Abu-Hassan 21 Amneh Auben Abdulrahman Jabr Diala Abu-Hassan Matrix polysaccharides Extracellular matrix (ECM): It s a collection of components that fills the spaces outside the cell or between the cells. ---------

More information

Part One: The Chemistry of Life

Part One: The Chemistry of Life Part One: The Chemistry of Life Chemistry is the study of matter and its changes. Organisms obtain and use many chemicals The metabolism of organisms involves many chemical reactions To understand all

More information

Cells to systems. 1) Chemical Level All matter is a combination of atoms: - Oxygen - Carbon - Nitrogen - Hydrogen Make up 96% of total body chemistry

Cells to systems. 1) Chemical Level All matter is a combination of atoms: - Oxygen - Carbon - Nitrogen - Hydrogen Make up 96% of total body chemistry Cells to systems Organisation of the Human body: 1. Chemical level 2. Cellular level 3. Tissue level 4. Organ level 5. Body system level 6. Organism level 1) Chemical Level All matter is a combination

More information

Review sheet for exam III

Review sheet for exam III Review sheet for exam III WARNING: I have tried to be complete, but I may have missed something. You are responsible for all the material discussed in class. This is only a guide. NOTE: the extra material

More information

Animal structure and function

Animal structure and function Animal structure and function The nervous system Parts of the nervous system 43C, 44B, 45D Brain structure and function Eyes Retina Neurons: How neurons communicate: Resting potential: The resting

More information

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 KEY CONCEPTS 34.1 Nervous Systems Are Composed of Neurons and Glial Cells 34.2 Neurons Generate Electric Signals by Controlling Ion Distributions 34.3

More information

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS Course Number: BIOL 132 Department: Biological Sciences Course Title: Anatomy & Physiology 1 Semester: Spring Year: 1997 Objectives/ 1. Recognize

More information

MOLECULAR ARCHITECTURE IN MUSCLE CONTRACTILE ASSEMBLIES

MOLECULAR ARCHITECTURE IN MUSCLE CONTRACTILE ASSEMBLIES MOLECULAR ARCHITECTURE IN MUSCLE CONTRACTILE ASSEMBLIES By JOHN M. SQUIRE,* HIND A. AL KHAYAT,* CARLO KNUPP,* AND PRADEEP K. LUTHER { *Biological Structure and Function Section, Biomedical Sciences Division,

More information

Human biology Cells: The Basic Units of Life. Dr. Rawaa Salim Hameed

Human biology Cells: The Basic Units of Life. Dr. Rawaa Salim Hameed Human biology Cells: The Basic Units of Life Dr. Rawaa Salim Hameed Reference Text book of human biology by John Kenneth Inglis 3 rd Ed (1985) Cells: The Basic Units of Life Cell theory Cell theory consists

More information

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p.

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. 5 Signaling in Nerve Cells p. 9 Cellular and Molecular Biology of Neurons

More information

BIO 311C Spring 2010

BIO 311C Spring 2010 BIO 311C Spring 2010 Prokaryotic cells contain structures that are very similar to structures of the eukaryotic cytoskeleton. Prokaryotic cytoskeletal elements are required for cell division, maintaining

More information

Lectures 3, 9, 10, 11: Prenatal and

Lectures 3, 9, 10, 11: Prenatal and Animal growth and development 2 nd review Lectures 3, 9, 10, 11: Prenatal and Muscle Growth and Development Development Principles similarity among species progressive causal and irreversible; ing complexity

More information

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins Advanced Higher Biology Unit 1- Cells and Proteins 2c) Membrane Proteins Membrane Structure Phospholipid bilayer Transmembrane protein Integral protein Movement of Molecules Across Membranes Phospholipid

More information

or a white muscle. G. SZEWT-GYORGYI

or a white muscle. G. SZEWT-GYORGYI 131. P R O T E I N S OF THE M Y U F l B R I L A. G. SZEWT-GYORGYI Ladies and gentlemen, I would l i k e t o review here a number of questions which involve some properties of t h e fibrous muscle proteins,

More information

World of The Cell. How big is a cell?

World of The Cell. How big is a cell? World of The Cell Chapter 4 How big is a cell? The smallest cell is a Mycoplasmas (very small bacteria are barely bigger) Bacteria are just bigger than a single organelle of a animal cell Plant and animal

More information

Human Motion Control Course (Wb 2407)

Human Motion Control Course (Wb 2407) Part 1 Human Motion Control Course (Wb 2407) Lecture 4 Muscles physiology, morphology and models Muscle morphology and physiology Morphology: fiber arrangement force-velocity relation force-length relation

More information

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling Name: AP Biology Mr. Croft Section 1 1. What is a neuron? Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling 2. Neurons can be placed into three groups, based on their location and function.

More information

Nervous Lecture Test Questions Set 2

Nervous Lecture Test Questions Set 2 Nervous Lecture Test Questions Set 2 1. The role of chloride in a resting membrane potential: a. creates resting potential b. indirectly causes repolarization c. stabilization of sodium d. it has none,

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES In Physiology Today Ohm s Law I = V/R Ohm s law: the current through a conductor between two points is directly proportional to the voltage across the

More information

Lecture 3 13/11/2018

Lecture 3 13/11/2018 Lecture 3 13/11/2018 1 Plasma membrane ALL cells have a cell membrane made of proteins and lipids. protein channel Cell Membrane Layer 1 Layer 2 lipid bilayer protein pump Lipid bilayer allows water, carbon

More information

BIOL 225 Anatomy and Physiology I

BIOL 225 Anatomy and Physiology I South Central College BIOL 225 Anatomy and Physiology I Course Outcome Summary Course Information Description Total Credits 4 Total Hours 80 Types of Instruction Instruction Type Anatomy and Physiology

More information

TABLE OF CONTENTS. Foundations of Chemistry Cells and their Membranes Homeostasis and Inheritance Bones and Joints

TABLE OF CONTENTS. Foundations of Chemistry Cells and their Membranes Homeostasis and Inheritance Bones and Joints TABLE OF CONTENTS Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Foundations of Chemistry Cells and their Membranes Homeostasis and Inheritance Bones and Joints Nerve Cells

More information

Basic Structure of a Cell

Basic Structure of a Cell Basic Structure of a Cell Prokaryotic Cells No nucleus Archaea & Eubacteria One circular chromosome Extremely small Eukaryotic Cells Has a nucleus!!! Membrane-bound organelles Plants, Animals, Fungi, &

More information