Supplemental Information. Systematic Revision of Symbiodiniaceae Highlights. the Antiquity and Diversity of Coral Endosymbionts

Size: px
Start display at page:

Download "Supplemental Information. Systematic Revision of Symbiodiniaceae Highlights. the Antiquity and Diversity of Coral Endosymbionts"

Transcription

1 Current Biology, Volume 28 Supplemental Information Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts Todd C. LaJeunesse, John Everett Parkinson, Paul W. Gabrielson, Hae Jin Jeong, James Davis Reimer, Christian R. Voolstra, and Scott R. Santos

2 Figure S1. Molecular clock calibrations for Symbiodiniaceae. Relates to Figures 1, S2, S3, and S4, and to STAR Methods Section 4: Quantification and Statistical Analysis. Calibrations using paleontological evidence, plate-tectonic events, and biogeographic data to establish an rdna-based molecular clock for estimating times of origination and divergence among Symbiodiniaceae clades.

3 Figure S2. Calibration times for the radiation of symbiotic dinoflagellates specialized for soritid foraminifera. Relates to Figures 1, S1, S3, and S4, and to STAR Methods Section 4: Quantification and Statistical Analysis. (A) The major adaptive radiation of large foraminifera, including Soritoidea, occurred during the Eocene Climactic Optimum. Timing of the Paleocene Eocene Thermal Maximum (PETM) is indicated. (B) The Eocene occurrence and ecology of Orbitolites, the adaptive radiation of Soritoidea, and new molecular clock estimates for Sorites place the most likely time of origin for these symbiont lineages in the early Eocene. Solid lines are based on paleontological evidence, which defines the latest possible time of origin. The dashed portion of each line indicates earlier times of emergence likely predate estimates based on available fossil evidence. Times of origination and extinctions (cross symbol) were obtained from BouDagher-Fadel [S1].

4 Figure S3. Proposed calibration time of two distantly related lineages previously grouped together and subjectively designated as Clade D based on RFLP digestions of small subunit ribosomal DNA (SSU rdna). Relates to Figures 1, S1, S2, and S4, and to STAR Methods Section 4: Quantification and Statistical Analysis. One lineage is common to various cnidarians, including stony and soft corals, and is known for exhibiting high thermal tolerances. The other lineage is specific to soritid foraminifera and hence designated here as Foraminifera Clade D.

5 Figure S4. Phylogeny of the diversity of Clade H from the Pacific and Atlantic Oceans inferred by Maximum Parsimony (MP). Relates to Figures 1, S1, S2, and S3, and to STAR Methods Section 4: Quantification and Statistical Analysis. Sequences used by Pochon et al. [S2] are specified and contrasted with sequences identified to be more appropriate for molecular clock calibrations based on the geological separation of Pacific and Atlantic Ocean biota.

6 Cell Length (µm) Cell Width (µm) Sym. Genus* Species Ref. N Mean SD Mean SD Clade A Symbiodinium linucheae DM A Symbiodinium microadriaticum [S3] A Symbiodinium natans DM A Symbiodinium necroappetens [S4] A Symbiodinium pilosum DM A Symbiodinium tridacnidorum [S3] B Symbiodinium aenigmaticum [S5] B Symbiodinium antillogorgium [S5] B Symbiodinium endomadracis [S5] B Symbiodinium minutum [S6] B Symbiodinium pseudominutum [S5] B Symbiodinium psygmophilum [S6] C Symbiodinium goreaui DM C Symbiodinium thermophilum DM D Symbiodinium boreum [S7] D Symbiodinium eurythalpos [S7] D Symbiodinium glynnii [S8] D Symbiodinium trenchii [S7] E Symbiodinium voratum [S9] F Symbiodinium kawagutii DM G Symbiodinium endoclionum [S10] G Symbiodinium spongiolum [S10] 1 NA N/A Ansanella granifera [S11] 2 NA N/A Asulcocephalium miricentonis [S12] 2 NA N/A Biecheleria baltica [S13] 2,3 NA N/A Biecheleria brevisulcata [S14] 2,3 NA N/A Biecheleria cincta [S15] 2 NA N/A Biecheleria halophila [S16] 3 NA N/A Biecheleria natalensis [S17] 2,3 NA N/A Biecheleria pseudopalustris [S18] 2,3 NA N/A Biecheleriopsis adriatica [S19] NA N/A Leiocephalium pseudosanguineum [S12] 2 NA N/A Pelagodinium beii [S20] NA N/A Polarella gracialis [S21] 2 NA N/A Protodinium corii [S15] 2 NA N/A Protodinium simplex [S15] 2 NA N/A Yihiella yeosuensis [S22] NA * Genus Symbiodinium to be retained only for Clade A. 1 Supplemented with additional measurements that may not have appeared in the original publication. 2 Sizes were reported as ranges, mean was inferred as the average of the extremes and SD as half of the range. 3 Only length was reported, width was inferred to be identical. Table S1. Suessiales cell size measurements. Relates to Figure 2 and to STAR Methods Section 3: Method Details. Morphological measurements (cell length and width) for each Symbiodiniaceae species, and other related dinoflagellates, included in this study. N = number of independent in vitro cultures or in hospite tissue samples measured (>40 cells each); DM = direct measurement; SD = standard deviation; NA = not applicable.

7 Clade A (Symbiodinium) Clade A (Temperate) Clade B (Breviolum) Clade C (Cladocopium) Clade D (Durusdinium) Clade A (Symbiodinium) 0.03 Clade A (Temperate) Clade B (Breviolum) Clade C (Cladocopium) Clade D (Durusdinium) Clade D (Foraminifera) Clade E (Effrenium) Clade Fr Clade Fr Clade Fr Clade Fr5 (Fugacium) Clade G (Foraminifera) Clade G (Gerakladium) Clade H Clade I Clade D (Foraminifera) Clade E (Effrenium) Clade Fr2 Clade Fr3 Clade Fr4 Clade Fr5 (Fugacium) Clade G (Foraminifera) Clade G (Gerakladium) Clade H Clade I Table S2. Genetic distances of LSU rdna between Symbiodiniaceae. Relates to Figures 3A and 4 and to STAR Methods Section 4: Quantification and Statistical Analysis. Corrected pairwise genetic distances among LSU rdna sequences from new genera and genus-level groups of Symbiodiniaceae. Values were generated under the General Time Reversible model of evolution, with a proportion of invariable sites and rate variation among sites (i.e. GTR+I+G) estimated from the data, and averaged over all sequences within each genus/group. Shaded values on the diagonal represent the within-genus divergence among species. Estimates <0.01 were rounded up to this minimum value.

8 Clade A (Symbiodinium) Clade B (Breviolum) Clade C (Cladocopium) Clade D (Durusdinium) Clade E (Effrenium) Clade Fr5 (Fugacium) Clade G (Gerakladium) Clade A (Symbiodinium) 0.01 Clade B (Breviolum) Clade C (Cladocopium) Clade D (Durusdinium) Clade E (Effrenium) NA Clade Fr5 (Fugacium) Clade G (Gerakladium) Table S3. Genetic distances of mitochondrial cob between Symbiodiniaceae. Relates to Figure 3B and to STAR Methods Section 4: Quantification and Statistical Analysis. Corrected pairwise genetic distances among mitochondrial cob sequences from new genera and genus-level groups of Symbiodiniaceae. Values were generated under the General Time Reversible model of evolution, with a proportion of invariable sites and rate variation among sites (i.e. GTR+I+G) estimated from the data, and averaged over all sequences within each genus/group. Shaded values on the diagonal represent the within-genus divergence among species. Estimates <0.01 were rounded up to this minimum value. NA = not applicable (for genera represented by one species).

9 Supplemental References S1. BouDagher-Fadel, M.K. (2008). Chapter 6: The Cenozoic larger benthic foraminifera: the Palaeogene. 21, S2. Pochon, X., Montoya-Burgos, J.I., Stadelmann, B., and Pawlowski, J. (2006). Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol. Phylogenet. Evol. 38, S3. Lee, S.Y., Jeong, H.J., Kang, N.S., Jang, T.Y., Jang, S.H., and LaJeunesse, T.C. (2015). Symbiodinium tridacnidorum sp nov., a dinoflagellate common to Indo-Pacific giant clams, and a revised morphological description of Symbiodinium microadriaticum Freudenthal, emended Trench & Blank. Eur. J. Phycol. 50, S4. LaJeunesse, T.C., Lee, S.Y., Gil-Agudelo, D.L., Knowlton, N., and Jeong, H.J. (2015). Symbiodinium necroappetens sp nov (Dinophyceae): an opportunist 'zooxanthella' found in bleached and diseased tissues of Caribbean reef corals. Eur. J. Phycol. 50, S5. Parkinson, J.E., Coffroth, M.A., and LaJeunesse, T.C. (2015). New species of Clade B Symbiodinium (Dinophyceae) from the greater Caribbean belong to different functional guilds: S. aenigmaticum sp. nov., S. antillogorgium sp. nov., S. endomadracis sp. nov., and S. pseudominutum sp. nov. J. Phycol. 51, S6. LaJeunesse, T.C., Parkinson, J.E., and Reimer, J.D. (2012). A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (dinophyceae), two dinoflagellates symbiotic with cnidaria. J. Phycol. 48, S7. LaJeunesse, T.C., Wham, D.C., Pettay, D.T., Parkinson, J.E., Keshavmurthy, S., and Chen, C.A. (2014). Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia 53, S8. Wham, D.C., Ning, G., and LaJeunesse, T.C. (2017). Symbiodinium glynnii sp. nov., a species of stresstolerant symbiotic dinoflagellates from pocilloporid and montiporid corals in the Pacific Ocean. Phycologia 56, S9. Jeong, H.J., Lee, S.Y., Kang, N.S., Yoo, Y.D., Lim, A.S., Lee, M.J., Kim, H.S., Yih, W., Yamashita, H., and LaJeunesse, T.C. (2014). Genetics and morphology characterize the dinoflagellate Symbiodinium voratum, n. sp., (Dinophyceae) as the sole representative of Symbiodinium Clade E. J. Eukaryot. Microbiol. 61, S10. Ramsby, B.D., Hill, M.S., Thornhill, D.J., Steenhuizen, S.F., Achlatis, M., Lewis, A.M., and LaJeunesse, T.C. (2017). Sibling species of mutualistic Symbiodinium Clade G from bioeroding sponges in the western Pacific and western Atlantic Oceans. J. Phycol. 53, S11. Jeong, H.J., Jang, S.H., Moestrup, Ø., Kang, N.S., Lee, S.Y., Potvin, É., and Noh, J.H. (2014). Ansanella granifera gen. et sp. nov. (Dinophyceae), a new dinoflagellate from the coastal waters of Korea. Algae 29, 75. S12. Takahashi, K., Moestrup, Ø., Jordan, R.W., and Iwataki, M. (2015). Two new freshwater woloszynskioids Asulcocephalium miricentonis gen. et sp. nov. and Leiocephalium pseudosanguineum gen. et sp. nov. (Suessiaceae, Dinophyceae) lacking an apical furrow apparatus. Protist 166, S13. Kremp, A., Elbrächter, M., Schweikert, M., Wolny, J.L., and Gottschling, M. (2005). Woloszynskia halophila (Biecheler) comb. nov.: a bloom-forming cold-water dinoflagellate co-ocurring with Scripsiella hangoei (Dinophyceae) in the Baltic Sea. J. Phycol. 41, S14. Takahashi, K., Sarai, C., and Iwataki, M. (2014). Morphology of two marine woloszynskioid dinoflagellates, Biecheleria brevisulcata sp. nov. and Biecheleriopsis adriatica (Suessiaceae, Dinophyceae), from Japanese coasts. Phycologia 53, S15. Siano, R., Kooistra, W.H., Montresor, M., and Zingone, A. (2009). Unarmoured and thin-walled dinoflagellates from the Gulf of Naples, with the description of Woloszynskia cincta sp. nov. (Dinophyceae, Suessiales). Phycologia 48, S16. Biecheler, B. (1952). Recherches sur les Péridiniens, Volume 36, (Laboratoire d'évolution des êtres organisés.). S17. Horiguchi, T., and Pienaar, R. (1994). Gymnodinium natalense sp. nov.(dinophyceae), a new tide pool dinoflagellate from South Africa. Japanese Journal of Phycology 42, S18. Moestrup, Ø., Lindberg, K., and Daugbjerg, N. (2009). Studies on woloszynskioid dinoflagellates IV: The genus Biecheleria gen. nov. Phycol. Res. 57,

10 S19. Moestrup, Ø., Lindberg, K., and Daugbjerg, N. (2009). Studies on woloszynskioid dinoflagellates V. Ultrastructure of Biecheleriopsis gen. nov., with description of Biecheleriopsis adriatica sp. nov. Phycol. Res. 57, S20. Siano, R., Montresor, M., Probert, I., Not, F., and de Vargas, C. (2010). Pelagodinium gen. nov. and P. béii comb. nov., a dinoflagellate symbiont of planktonic foraminifera. Protist 161, S21. Montresor, M., Procaccini, G., and Stoecker, D.K. (1999). Polarella glacialis, gen. nov., sp. nov. (Dinophyceae): Suessiaceae are still alive! J. Phycol. 35, S22. Jang, S.H., Jeong, H.J., Moestrup, Ø., Kang, N.S., Lee, S.Y., Lee, K.H., and Seong, K.A. (2017). Yihiella yeosuensis gen. et sp. nov. (Suessiaceae, Dinophyceae), a novel dinoflagellate isolated from the coastal waters of Korea. J. Phycol. 53, S23. Guiry, M.D., and Andersen, R.A. (2018). Validation of the generic name Symbiodinium (Dinophyceae, Suessiaceae) revisited and the reinstatement of Zooxanthella K.Brandt. Notulae algarum, 1-5. S24. McNeill, J., Barrie, F.R., Buck, W.R., Demoulin, V., Greuter, W., Hawksworh, D.L., Herendeen, P.S., Knapp, S., Marhold, K., Prado, J., et al. (2012). International Code of Nomenclature for Algae, Fungi, and Plants (Melbourne Code). In Regnum Veg, Volume 154. (Koenigstein: ARG Gantner Verlag). S25. Daugbjerg, N., Hansen, G., Larsen, J., and Moestrup, O. (2000). Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rdna sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39, S26. Banaszak, A.T., LaJeunesse, T.C., and Trench, R.K. (2000). The synthesis of mycosporine-like amino acids (MAAs) by cultured, symbiotic dinoflagellates. J. Exp. Mar. Biol. Ecol. 249, S27. LaJeunesse, T.C. (2001). Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a "species" level marker. J. Phycol. 37, S28. Taylor, D.L. (1971). Ultrastructure of the Zooxanthella Endodinium Chattonii in situ*. J. Mar. Biol. Assoc. U.K. 51, S29. Loeblich III, A.R., and Sherley, J.L. (1979). Observations on the theca of the motile phase of free-living and symbiotic isolates of Zooxanthella microadriatica (Freudenthal) comb. nov. J. Mar. Biol. Assoc. U.K. 59, S30. Blank, R.J., and Huss, A.R. (1989). DNA divergency and speciation in Symbiodinium (Dinophyceae). Plant Syst. Evol. 163, S31. Banaszak, A.T., Iglesias-Prieto, R., and Trench, R.K. (1993). Scrippsiella vellae sp. nov. (Peridiniales) and Gloeodinium viscum sp. nov (Phytodiniales), dinoflagellate symbionts of two hydrozoans (Cnidaria). J. Phycol. 29, S32. LaJeunesse, T.C., Loh, W., and Trench, R.K. (2009). Do introduced endosymbiotic dinoflagellates take to new hosts? Biol. Invasions 11, S33. Banaszak, A.T., Barba Santos, M.G., LaJeunesse, T.C., and Lesser, M.P. (2006). The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican Caribbean. J. Exp. Mar. Biol. Ecol. 337, S34. Iglesias-Prieto, R., and Trench, R.K. (1994). Acclimation and adaptation to irradiance in symbiotic dinoflagellates. I. Responses of photosynthetic unit to changes in photon flux density. Mar. Ecol. Prog. Ser. 113, S35. LaJeunesse, T.C. (2017). Validation and description of Symbiodinium microadriaticum, the type species of Symbiodinium (Dinophyta). J. Phycol. 53, S36. Lesser, M.P., Stat, M., and Gates, R.D. (2013). The endosymbiotic dinoflagellates (Symbiodinium sp.) of corals are parasites and mutualists. Coral Reefs 32, S37. Toller, W., Rowan, R., and Knowlton, N. (2001). Repopulation of zooxanthellae in the caribbean corals Montastrea annularis and M. faveolata following experimental and disease-associated bleaching. Biol. Bull. 201, S38. Grottoli, A.G., Warner, M.E., Levas, S.J., Aschaffenburg, M.D., Schoepf, V., McGinley, M., Baumann, J., and Matsui, Y. (2014). The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, S39. Lee, M.J., Jeong, H.J., Jang, S.H., Lee, S.Y., Kang, N.S., Lee, K.H., Kim, H.S., Wham, D.C., and LaJeunesse, T.C. (2016). Most low-abundance "background" Symbiodinium spp. are transitory and have minimal functional significance for symbiotic corals. Microb. Ecol. 71, S40. Takabayashi, M., Adams, L.M., Pochon, X., and Gates, R.D. (2011). Genetic diversity of free-living Symbiodinium in surface water and sediment of Hawai i and Florida. Coral Reefs 31,

11 S41. LaJeunesse, T.C. (2002). Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar. Biol. 141, S42. Frade, P.R., Englebert, N., Faria, J., Visser, P.M., and Bak, R.P.M. (2008). Distribution and photobiology of Symbiodinium types in different light environments for three colour morphs of the coral Madracis pharensis: is there more to it than total irradiance? Coral Reefs 27, S43. Silverstein, R.N., Correa, A.M.S., LaJeunesse, T.C., and Baker, A.C. (2011). Novel algal symbiont (Symbiodinium spp.) diversity in reef corals of Western Australia. Mar. Ecol. Prog. Ser. 422, S44. LaJeunesse, T.C., and Trench, R.K. (2000). Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol. Bull. 199, S45. LaJeunesse, T.C., Lambert, G., Andersen, R.A., Coffroth, M.A., and Galbraith, D.W. (2005). Symbiodinium (Pyrrhophyta) genome sizes (DNA content) are smallest among dinoflagellates. J. Phycol. 41, S46. Shoguchi, E., Shinzato, C., Kawashima, T., Gyoja, F., Mungpakdee, S., Koyanagi, R., Takeuchi, T., Hisata, K., Tanaka, M., Fujiwara, M., et al. (2013). Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr. Biol. 23, S47. LaJeunesse, T.C. (2005). "Species" radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol. Biol. Evol. 22, S48. Thornhill, D.J., Kemp, D.W., Bruns, B.U., Fitt, W.K., and Schmidt, G.W. (2008). Correspondence between cold tolerance and temperate biogeography in a western Atlantic Symbiodinium (Dinophyta) lineage. J. Phycol. 44, S49. Van Oppen, M.J., Mieog, J.C., Sanchez, C.A., and Fabricius, K.E. (2005). Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Mol. Ecol. 14, S50. Finney, J.C., Pettay, D.T., Sampayo, E.M., Warner, M.E., Oxenford, H.A., and LaJeunesse, T.C. (2010). The relative significance of host-habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb. Ecol. 60, S51. Goulet, T.L., LaJeunesse, T.C., and Fabricius, K.E. (2008). Symbiont specificity and bleaching susceptibility among soft corals in the 1998 Great Barrier Reef mass coral bleaching event. Mar. Biol. 154, S52. LaJeunesse, T.C., Pettay, D.T., Sampayo, E.M., Phongsuwan, N., Brown, B., Obura, D.O., Hoegh- Guldberg, O., and Fitt, W.K. (2010). Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J. Biogeogr. 37, S53. Thornhill, D.J., Xiang, Y., Pettay, D.T., Zhong, M., and Santos, S.R. (2013). Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Mol. Ecol. 22, S54. Wham, D.C., Carmichael, M., and LaJeunesse, T.C. (2014). Microsatellite loci for Symbiodinium goreaui and other Clade C Symbiodinium. Conserv. Gen. Res. 6, S55. González-Pech, R.A., Ragan, M.A., and Chan, C.X. (2017). Signatures of adaptation and symbiosis in genomes and transcriptomes of Symbiodinium. Scientific Reports 7. S56. Hume, B.C., D'Angelo, C., Smith, E.G., Stevens, J.R., Burt, J., and Wiedenmann, J. (2015). Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf. Sci. Rep. 5, S57. Thornhill, D.J., Lewis, A.M., Wham, D.C., and LaJeunesse, T.C. (2014). Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68, S58. Lien, Y.T., Fukami, H., and Yamashita, Y. (2012). Symbiodinium clade C dominates zooxanthellate corals (Scleractinia) in the temperate region of Japan. Zoolog Sci 29, S59. Macdonald, A.H.H., Sampayo, E.M., Ridgway, T., and Schleyer, M.H. (2008). Latitudinal symbiont zonation in Stylophora pistillata from southeast Africa. Mar. Biol. 154, S60. Iglesias-Prieto, R., Beltran, V.H., LaJeunesse, T.C., Reyes-Bonilla, H., and Thome, P.E. (2004). Different algal symbionts explain the vertical distribution of dominant reef corals in the Eastern Pacific. Proc. Proc. R. Soc. Lond., Ser. B: Biol. Sci. 271, S61. Berkelmans, R., and van Oppen, M.J. (2006). The role of zooxanthellae in the thermal tolerance of corals: a 'nugget of hope' for coral reefs in an era of climate change. Proc. R. Soc. Lond., Ser. B: Biol. Sci. 273,

12 S62. Warner, M.E., LaJeunesse, T.C., Robison, J.D., and Thur, R.M. (2006). The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: Potential implications for coral bleaching. Limnol. Oceanogr. 51, S63. Fitt, W.K., Gates, R.D., Hoegh-Guldberg, O., Bythell, J.C., Jatkar, A., Grottoli, A.G., Gomez, M., Fisher, P., LaJeunesse, T.C., Pantos, O., Iglesias-Prieto, R., Franklin, R., Rodrigues, D. J., Torregiani, L.J., van Woesik, J.M., and Lesser, M. P. (2009). Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. J. Exp. Mar. Biol. Ecol. 373, S64. Abrego, D., Ulstrup, K.E., Willis, B.L., and van Oppen, M.J. (2008). Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc. R. Soc. Lond., Ser. B: Biol. Sci. 275, S65. Krueger, T., and Gates, R.D. (2012). Cultivating endosymbionts - host environmental mimics support the survival of Symbiodinium C15 ex hospite. J. Exp. Mar. Biol. Ecol. 413, S66. McNaughton, S.J., and Wolf, L.L. (1970). Dominance and the niche in ecological systems. Science 167, S67. Voris, H.K. (2000). Maps of Pleistocene sea levels in Southeas Asia: shorelines, river systems and time durations. J. Biogeogr. 27, S68. Pettay, D.T., Wham, D.C., Smith, R.T., Iglesias-Prieto, R., and LaJeunesse, T.C. (2015). Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc. Natl. Acad. Sci. USA 112, S69. Jeong, H.J., Yoo, Y.D., Kang, N.S., Lim, A.S., Seong, K.A., Lee, S.Y., Lee, M.J., Lee, K.H., Kim, H.S., Shin, W., et al. (2013). Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. USA, S70. Chang, F. (1983). Winter phytoplankton and microzooplankton populations off the coast of Westland, New Zealand, N. Z. J. Mar. Freshwat. Res. 17, S71. Wolfowicz, I., Baumgarten, S., Voss, P.A., Hambleton, E.A., Voolstra, C.R., Hatta, M., and Guse, A. (2016). Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci. Rep. 6. S72. Lin, S., Cheng, S., Song, B., Zhong, X., Lin, X., Li, W., Li, L., Zhang, Y., Zhang, H., and Ji, Z. (2015). The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science 350, S73. Pawlowski, J., Holzmann, M., Fahrni, J.F., Pochon, X., and Lee, J.J. (2001). Molecular identification of algal endosymbionts in large miliolid foraminifera: 2. Dinoflagellates. J. Eukaryot. Microbiol. 48, S74. LaJeunesse, T., Thornhill, D., Cox, E., Stanton, F., Fitt, W., and Schmidt, G. (2004). High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs. S75. Yuyama, I., Hayakawa, H., Endo, H., Iwao, K., Takeyama, H., Maruyama, T., and Watanabe, T. (2005). Identification of symbiotically expressed coral mrnas using a model infection system. Biochem. Biophys. Res. Commun. 336, S76. Pochon, X., Pawlowski, J., Zaninetti, L., and Rowan, R. (2001). High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar. Biol. 139, S77. Schönberg, C.H.L., and Loh, W.K.W. (2005). Molecular identity of the unique symbiotic dinoflagelates found in the bioeroding demosponge Cliona orientalis. Mar. Ecol. Prog. Ser. 299, S78. Granados, C., Camargo, C., Zea, S., and Sanchez, J.A. (2008). Phylogenetic relationships among zooxanthellae (Symbiodinium) associated to excavating sponges (Cliona spp.) reveal an unexpected lineage in the Caribbean. Mol. Phylogenet. Evol. 49, S79. Hill, M., Allenby, A., Ramsby, B., Schönberg, C., and Hill, A. (2011). Symbiodinium diversity among host clionaid sponges from Caribbean and Pacific reefs: Evidence of heteroplasmy and putative host-specific symbiont lineages. Mol. Phylogenet. Evol. 59, S80. Bo, M., Baker, A.C., Gaino, E., Wirshing, H.H., Scoccia, F., and Bavestrello, G. (2011). First description of algal mutualistic endosymbiosis in a black coral (Anthozoa: Antipatharia). Mar. Ecol. Prog. Ser. 435, S81. Thomas, L., Kendrick, G.A., Kennington, W.J., Richards, Z.T., and Stat, M. (2014). Exploring Symbiodinium diversity and host specificity in Acropora corals from geographical extremes of Western Australia with 454 amplicon pyrosequencing. Mol. Ecol. 23,

13 S82. Granados-Cifuentes, C., Neigel, J., Leberg, P., and Rodriguez-Lanetty, M. (2015). Genetic diversity of free-living Symbiodinium in the Caribbean: the importance of habitats and seasons. Coral Reefs 34,

Manipulating the coral-algal holobiont

Manipulating the coral-algal holobiont Manipulating the coral-algal holobiont Todd C. LaJeunesse Interventions to Increase the Resilience of Coral Reefs (May 31, 2018) Preface Skipping over most of the details to get the punch lines. My perspectives

More information

Most scleractinian corals and octocorals host a single symbiotic zooxanthella clade

Most scleractinian corals and octocorals host a single symbiotic zooxanthella clade MARINE ECOLOGY PROGRESS SERIES Vol. 335: 243 248, 2007 Published April 16 Mar Ecol Prog Ser REPLY COMMENT Most scleractinian corals and octocorals host a single symbiotic zooxanthella clade Tamar L. Goulet*

More information

MITOCHONDRIAL DNA PHYLOGENY OF THE SYMBIOTIC DINOFLAGELLATES (SYMBIODINIUM, DINOPHYTA) 1. Misaki Takabayashi 2. Scott R. Santos. and Clayton B.

MITOCHONDRIAL DNA PHYLOGENY OF THE SYMBIOTIC DINOFLAGELLATES (SYMBIODINIUM, DINOPHYTA) 1. Misaki Takabayashi 2. Scott R. Santos. and Clayton B. J. Phycol. 40, 160 164 (2004) r 2004 Phycological Society of America DOI: 10.1046/j.1529-8817.2004.03097.x NOTE MITOCHONDRIAL DNA PHYLOGENY OF THE SYMBIOTIC DINOFLAGELLATES (SYMBIODINIUM, DINOPHYTA) 1

More information

A historical list of growth media that has been employed in zooxanthellae culturing.

A historical list of growth media that has been employed in zooxanthellae culturing. A historical list of growth media that has been employed in zooxanthellae culturing. Name of Medium Formulation by: Employed by: ASP-8A Ahles 1967 Schoenberg and Trench 1980a Fitt et al. 1981 Colley and

More information

FLEXIBILITY AND SPECIFICITY IN CORAL-ALGAL SYMBIOSIS: Diversity, Ecology, and Biogeography of Symbiodinium

FLEXIBILITY AND SPECIFICITY IN CORAL-ALGAL SYMBIOSIS: Diversity, Ecology, and Biogeography of Symbiodinium Annu. Rev. Ecol. Evol. Syst. 2003. 34:661 89 doi: 10.1146/annurev.ecolsys.34.011802.132417 Copyright c 2003 by Annual Reviews. All rights reserved First published online as a Review in Advance on August

More information

JOURNAL OF ENVIRONMENTAL SCIENCES 66 (2018) Available online at ScienceDirect.

JOURNAL OF ENVIRONMENTAL SCIENCES 66 (2018) Available online at   ScienceDirect. JOURNAL OF ENVIRONMENTAL SCIENCES 66 (2018) 246 254 Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/jes Identification of a marine woloszynskioid dinoflagellate Biecheleriopsis

More information

Tenacious D: Symbiodinium in clade D remain in reef corals at both high and low temperature extremes despite impairment

Tenacious D: Symbiodinium in clade D remain in reef corals at both high and low temperature extremes despite impairment First posted online on 20 January 2017 as 10.1242/jeb.148239 J Exp Biol Advance Access Online the most Articles. recent version First at posted http://jeb.biologists.org/lookup/doi/10.1242/jeb.148239 online

More information

Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates

Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates rspb.royalsocietypublishing.org Research Cite this article: Díaz-Almeyda EM, Prada C, Ohdera AH, Moran H, Civitello DJ, Iglesias- Prieto R, Carlo TA, LaJeunesse TC, Medina M. 7 Intraspecific and interspecific

More information

Host symbiont recombination versus natural selection in the response of coral dinoflagellate symbioses to environmental disturbance

Host symbiont recombination versus natural selection in the response of coral dinoflagellate symbioses to environmental disturbance Host symbiont recombination versus natural selection in the response of coral dinoflagellate symbioses to environmental disturbance Todd C. LaJeunesse 1, *, Robin Smith 2, Mariana Walther 3, Jorge Pinzón

More information

Tamar L. Goulet 1 Department of Biology, University of Mississippi, University, Mississippi 38677

Tamar L. Goulet 1 Department of Biology, University of Mississippi, University, Mississippi 38677 Limnol. Oceanogr., 50(5), 2005, 1490 1498 2005, by the American Society of Limnology and Oceanography, Inc. Effect of short-term exposure to elevated temperatures and light levels on photosynthesis of

More information

Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific

Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific Received 20 November 2003 Accepted 25 March 2004 Published online 20 July 2004 Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific R. Iglesias-Prieto

More information

A peer-reviewed version of this preprint was published in PeerJ on 20 May 2014.

A peer-reviewed version of this preprint was published in PeerJ on 20 May 2014. A peer-reviewed version of this preprint was published in PeerJ on 20 May 2014. View the peer-reviewed version (peerj.com/articles/394), which is the preferred citable publication unless you specifically

More information

1359 This journal is q 2008 The Royal Society

1359 This journal is q 2008 The Royal Society Downloaded from rspb.royalsocietypublishing.org on January 9, 13 Proc. R. Soc. B (8) 7, 139 13 doi:1.198/rspb.8.9 Published online 18 March 8 A community change in the algal endosymbionts of a scleractinian

More information

Stability of an octocoral-algal symbiosis over time and space

Stability of an octocoral-algal symbiosis over time and space MARINE ECOLOGY PROGRESS SERIES Vol. 250: 117 124, 2003 Published March 26 Mar Ecol Prog Ser Stability of an octocoral-algal symbiosis over time and space Tamar L. Goulet 1, 2, *, Mary Alice Coffroth 1

More information

Review article Evolution of the soritids-symbiodinium symbiosis

Review article Evolution of the soritids-symbiodinium symbiosis SYMBIOSIS (2006) 42, 77 88 2006 Balaban, Philadelphia/Rehovot ISSN 0334-5114 Review article Evolution of the soritids-symbiodinium symbiosis Xavier Pochon * and Jan Pawlowski Department of Zoology and

More information

Speciation mechanisms. Pavel Škaloud, Algal speciation & evolution lab Charles University, Prague Czech Republic

Speciation mechanisms. Pavel Škaloud, Algal speciation & evolution lab Charles University, Prague Czech Republic Speciation mechanisms Pavel Škaloud, Algal speciation & evolution lab Charles University, Prague Czech Republic Species concepts What are the general causes of protist speciation? 1. Allopatric / sympatric

More information

Bleaching of the fire corals Millepora

Bleaching of the fire corals Millepora Bleaching of the fire corals Millepora William K. Fitt 1 1 Odum School of Ecology, University of Georgia, Athens, Georgia 30602 USA Corresponding author: fitt@uga.edu Abstract. The physiology of bleached

More information

McIlroy, SE; Gillette, P; Cunning, R; Klueter, A; Capo, T; Baker, AC; Coffroth, MA. Citation Journal of Phycology, 2016, v. 52 n. 6, p.

McIlroy, SE; Gillette, P; Cunning, R; Klueter, A; Capo, T; Baker, AC; Coffroth, MA. Citation Journal of Phycology, 2016, v. 52 n. 6, p. Title Author(s) The Effects Of Symbiodinium (pyrrhophyta) Identity On Growth, Survivorship, And Thermal Tolerance Of Newly Settled Coral Recruits McIlroy, SE; Gillette, P; Cunning, R; Klueter, A; Capo,

More information

DINOFLAGELLATES are an important group of unicellular

DINOFLAGELLATES are an important group of unicellular J. Eukaryot. Microbiol., 50(6), 2003 pp. 417 421 2003 by the Society of Protozoologists Molecular Characterization of Nuclear Small Subunit (18S)-rDNA Pseudogenes in a Symbiotic Dinoflagellate (Symbiodinium,

More information

Functional diversity in coral dinoflagellate symbiosis

Functional diversity in coral dinoflagellate symbiosis Functional diversity in coral dinoflagellate symbiosis Michael Stat, Emily Morris, and Ruth D. Gates Hawaii Institute of Marine Biology/School of Ocean and Earth Science and Technology, University of Hawaii,

More information

ISSN: (Print) (Online) Journal homepage:

ISSN: (Print) (Online) Journal homepage: Animal Cells and Systems ISSN: 1976-8354 (Print) 2151-2485 (Online) Journal homepage: https://www.tandfonline.com/loi/tacs20 Two anthozoans, Entacmaea quadricolor (order Actiniaria) and Alveopora japonica

More information

A comparison of the Mitotic Index of Zooxanthellae in two species of Anthopleura

A comparison of the Mitotic Index of Zooxanthellae in two species of Anthopleura Bailey et al. 1 A comparison of the Mitotic Index of Zooxanthellae in two species of Anthopleura By Brooke Bailey, Maja Barlo, Susan Bonar, Jordan Bonnet, Riley Charlebois, Phillida Drummond, Carissa Graydon,

More information

SUMMARY INTRODUCTION. Key words: internal transcribed spacer of ribosomal DNA, Symbiodinium, symbiosis, Zoanthus, zooxanthellae.

SUMMARY INTRODUCTION. Key words: internal transcribed spacer of ribosomal DNA, Symbiodinium, symbiosis, Zoanthus, zooxanthellae. Blackwell Publishing AsiaMelbourne, AustraliaPREPhycological Research1322-08292006 Japanese Society of PhycologyDecember 20065515865Original ArticleSubclade microvariation in Symbiodinium in ZoanthusJ.

More information

Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean

Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean Limnol. Oceanogr., 48(5), 2003, 2046 2054 2003, by the American Society of Limnology and Oceanography, Inc. Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean

More information

Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae)

Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae) Molecular Ecology (2017) 26, 2640 2659 doi: 10.1111/mec.14055 INVITED REVIEWS AND SYNTHESES Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae) D. J. THORNHILL,* E. J. HOWELLS,

More information

Cohesive molecular genetic data delineate species diversity

Cohesive molecular genetic data delineate species diversity Molecular Ecology (2009) 18, 500 519 doi: 10.1111/j.1365-294X.2008.04037.x Cohesive molecular genetic data delineate species diversity Blackwell Publishing Ltd in the dinoflagellate genus Symbiodinium

More information

Prasinophyaceae Evolutionary Relict s Class of Algae

Prasinophyaceae Evolutionary Relict s Class of Algae Prasinophyaceae Evolutionary Relict s Class of Algae Teena Agrawal* School of Applied Science, Banasthali University, Rajasthan, India Review Article Received: 18/10/2017 Accepted: 22/10/2017 Published:

More information

Review Article Clade D Symbiodinium in Scleractinian Corals: A Nugget of Hope, a Selfish Opportunist, an Ominous Sign, or All of the Above?

Review Article Clade D Symbiodinium in Scleractinian Corals: A Nugget of Hope, a Selfish Opportunist, an Ominous Sign, or All of the Above? Journal of Marine Biology Volume 2011, Article ID 730715, 9 pages doi:10.1155/2011/730715 Review Article Clade D Symbiodinium in Scleractinian Corals: A Nugget of Hope, a Selfish Opportunist, an Ominous

More information

Photosymbiotic associations in planktonic foraminifera and radiolaria

Photosymbiotic associations in planktonic foraminifera and radiolaria Hydrobiologia 461: 1 7, 2001. J.D. McKenzie (ed.), Microbial Aquatic Symbioses: from Phylogeny to Biotechnology. 2001 Kluwer Academic Publishers. Printed in the Netherlands. 1 Photosymbiotic associations

More information

The role of symbiotic dinoflagellates in the temperatureinduced bleaching response of the subtropical sea anemone Aiptasia pallida

The role of symbiotic dinoflagellates in the temperatureinduced bleaching response of the subtropical sea anemone Aiptasia pallida Journal of Experimental Marine Biology and Ecology 256 (2001) 1 14 www.elsevier.nl/ locate/ jembe The role of symbiotic dinoflagellates in the temperatureinduced bleaching response of the subtropical sea

More information

Fluctuating algal symbiont communities in Acropora palifera (Scleractinia: Acroporidae) from Taiwan

Fluctuating algal symbiont communities in Acropora palifera (Scleractinia: Acroporidae) from Taiwan MARINE ECOLOGY PROGRESS SERIES Vol. 295: 113 121, 2005 Published June 23 Mar Ecol Prog Ser Fluctuating algal symbiont communities in Acropora palifera (Scleractinia: Acroporidae) from Taiwan Chaolun Allen

More information

The Adaptive Hypothesis of Bleaching

The Adaptive Hypothesis of Bleaching 24 The Adaptive Hypothesis of Bleaching Robert W. Buddemeier, Andrew C. Baker, Daphne G. Fautin, J. Rebecca Jacobs 24.1 Introduction 24.1.1 Biological Background Despite the perception that corals and

More information

Biogeography. An ecological and evolutionary approach SEVENTH EDITION. C. Barry Cox MA, PhD, DSc and Peter D. Moore PhD

Biogeography. An ecological and evolutionary approach SEVENTH EDITION. C. Barry Cox MA, PhD, DSc and Peter D. Moore PhD Biogeography An ecological and evolutionary approach C. Barry Cox MA, PhD, DSc and Peter D. Moore PhD Division of Life Sciences, King's College London, Fmnklin-Wilkins Building, Stamford Street, London

More information

National University, Seoul , Korea b Department of Biology, 327 Mueller Laboratory, Pennsylvania State University,

National University, Seoul , Korea b Department of Biology, 327 Mueller Laboratory, Pennsylvania State University, This article was downloaded by: [Pennsylvania State University] On: 15 April 2015, At: 10:23 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 107295 Registered

More information

Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion

Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion Marine Biology (2006) 148: 711 722 DOI 10.1007/s00227-005-0114-2 RESEARCH ARTICLE Daniel J. Thornhill Æ Todd C. LaJeunesse Dustin W. Kemp Æ William K. Fitt Gregory W. Schmidt Multi-year, seasonal genotypic

More information

Different zooxanthellae types in populations of the zoanthid Zoanthus sansibaricus along depth gradients in Okinawa, Japan

Different zooxanthellae types in populations of the zoanthid Zoanthus sansibaricus along depth gradients in Okinawa, Japan Mar Biodiv (2013) 43:61 70 DOI 10.1007/s12526-012-0119-2 BIODIVERSITY OF CORAL REEFS Different zooxanthellae types in populations of the zoanthid Zoanthus sansibaricus along depth gradients in Okinawa,

More information

Species Radiations of Symbiotic Dinoflagellates in the Atlantic and Indo-Pacific Since the Miocene-Pliocene Transition

Species Radiations of Symbiotic Dinoflagellates in the Atlantic and Indo-Pacific Since the Miocene-Pliocene Transition Species Radiations of Symbiotic Dinoflagellates in the Atlantic and Indo-Pacific Since the Miocene-Pliocene Transition Todd C. LaJeunesse Department of Biology, Marine Biology Program, Florida International

More information

Comparison of the photosynthetic bleaching response of four coral species common to the central GBR

Comparison of the photosynthetic bleaching response of four coral species common to the central GBR Comparison of the photosynthetic bleaching response of four coral species common to the central GBR Victor H. Beltran 1,2, Walter C. Dunlap 2,3, Paul F. Long 3,4 1 ARC Centre of Excellence for Coral Reef

More information

A Stable Association of the Stress-Tolerant Zooxanthellae, Symbiodinium Clade D, with the Low-Temperature-Tolerant Coral, Oulastrea crispata

A Stable Association of the Stress-Tolerant Zooxanthellae, Symbiodinium Clade D, with the Low-Temperature-Tolerant Coral, Oulastrea crispata Zoological Studies 42(4): 540-550 (2003) A Stable Association of the Stress-Tolerant Zooxanthellae, Symbiodinium Clade D, with the Low-Temperature-Tolerant Coral, Oulastrea crispata (Scleractinia: Faviidae)

More information

HOST SPECIFICITY AND REGIONAL ENDEMICITY IN SYMBIOTIC DINOFLAGELLATES (SYMBIODINIUM, DINOPHYTA) ASSOCIATED WITH SEA ANEMENOES IN THE GENUS AIPTASIA

HOST SPECIFICITY AND REGIONAL ENDEMICITY IN SYMBIOTIC DINOFLAGELLATES (SYMBIODINIUM, DINOPHYTA) ASSOCIATED WITH SEA ANEMENOES IN THE GENUS AIPTASIA HOST SPECIFICITY AND REGIONAL ENDEMICITY IN SYMBIOTIC DINOFLAGELLATES (SYMBIODINIUM, DINOPHYTA) ASSOCIATED WITH SEA ANEMENOES IN THE GENUS AIPTASIA Except where reference is made to the work of others,

More information

Symbiotic Relationships in Corals Maricela YIP 1, Pierre MADL 2

Symbiotic Relationships in Corals Maricela YIP 1, Pierre MADL 2 Symbiotic Relationships in Corals Maricela YIP 1, Pierre MADL 2 1 ICT&S Center, Department of Journalism and Communications, University of Salzburg, A-5020, SBG, Austria e-mail: maricela.yip@sbg.ac.at

More information

The role of zooxanthellae in the thermal tolerance of corals: a nugget of hope for coral reefs in an era of climate change

The role of zooxanthellae in the thermal tolerance of corals: a nugget of hope for coral reefs in an era of climate change 273, 235 2312 doi:1.198/rspb.26.3567 Published online 8 June 26 The role of zooxanthellae in the thermal tolerance of corals: a nugget of hope for coral reefs in an era of climate change Ray Berkelmans

More information

Variation in the genetic response to high temperature in Montastraea faveolata from the Florida Keys & Mexico

Variation in the genetic response to high temperature in Montastraea faveolata from the Florida Keys & Mexico Variation in the genetic response to high temperature in Montastraea faveolata from the Florida Keys & Mexico Nicholas R. Polato 1, Christian R. Voolstra 2, Julia Schnetzer 3, Michael K. DeSalvo 4, Carly

More information

High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii

High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii Coral Reefs (2004) 23: 596 603 DOI 10.1007/s00338-004-0428-4 REPORT Todd C. LaJeunesse Æ Daniel J. Thornhill Evelyn F. Cox Æ Frank G. Stanton Æ William K. Fitt Gregory W. Schmidt High diversity and host

More information

Topic 17 Introduction to Domain Eukarya - Organisms with nucleated cells

Topic 17 Introduction to Domain Eukarya - Organisms with nucleated cells Topic 17 Introduction to Domain Eukarya - Organisms with nucleated cells Domain Eukarya. Eukaryotes have nucleated cells. Endosymbiosis has played an important role in the evolution of the group. Both

More information

Notulae algarum No. 24 (18 May 2017 ) ISSN

Notulae algarum No. 24 (18 May 2017 ) ISSN Validation of the names Asterionellopsis lenisilicea, A. maritima, A. guyunusae and A. thurstonii (Rhaphoneidaceae, Bacillariophyta) I. Kaczmarska, Biology Department, Mount Allison University, N.B., Canada

More information

Flexibility of the coral-algal symbiosis in the face of climate change Mieog, Jos Cornelis

Flexibility of the coral-algal symbiosis in the face of climate change Mieog, Jos Cornelis University of Groningen Flexibility of the coral-algal symbiosis in the face of climate change Mieog, Jos Cornelis IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if

More information

Symbiodinium associations with diseased and healthy scleractinian corals

Symbiodinium associations with diseased and healthy scleractinian corals DOI 10.1007/s00338-008-0464-6 REPORT Symbiodinium associations with diseased and healthy scleractinian corals A. M. S. Correa Æ M. E. Brandt Æ T. B. Smith Æ D. J. Thornhill Æ A. C. Baker Received: 16 June

More information

Open Access Publishing Support Fund

Open Access Publishing Support Fund Grand Valley State University ScholarWorks@GVSU Funded Articles Open Access Publishing Support Fund 1-12-2016 Symbiont Diversity of Zooxanthellae (Symbiodinium Spp.) In Porities Astreoides and Montastraea

More information

Received 21 January 2009, revised 11 February 2009, accepted 16 February 2009.

Received 21 January 2009, revised 11 February 2009, accepted 16 February 2009. Communications The first recorded bloom of Pseudochattonella farcimen (Dictyochophyceae, Heterokonta),(Riisberg I.,2008)intheGulfof Gdańsk* OCEANOLOGIA, 51(1), 2009. pp. 139 143. C 2009,byInstituteof Oceanology

More information

The Importance of the Rare: The Role of Background Symbiodinium in the Response of Reef Corals to Environmental Change

The Importance of the Rare: The Role of Background Symbiodinium in the Response of Reef Corals to Environmental Change University of Miami Scholarly Repository Open Access Dissertations Electronic Theses and Dissertations 2012-12-11 The Importance of the Rare: The Role of Background Symbiodinium in the Response of Reef

More information

CORRESPONDENCE BETWEEN COLD TOLERANCE AND TEMPERATE BIOGEOGRAPHY IN A WESTERN ATLANTIC SYMBIODINIUM (DINOPHYTA) LINEAGE 1

CORRESPONDENCE BETWEEN COLD TOLERANCE AND TEMPERATE BIOGEOGRAPHY IN A WESTERN ATLANTIC SYMBIODINIUM (DINOPHYTA) LINEAGE 1 J. Phycol. 44, 1126 1135 (2008) Ó 2008 Phycological Society of America DOI: 10.1111/j.1529-8817.2008.00567.x CORRESPONDENCE BETWEEN COLD TOLERANCE AND TEMPERATE BIOGEOGRAPHY IN A WESTERN ATLANTIC SYMBIODINIUM

More information

Azaspiracids producing dinoflagellates

Azaspiracids producing dinoflagellates Azaspiracids producing dinoflagellates Kazuya Takahashi and Mitsunori Iwataki Univ Tokyo, Japan Azadinium spp. Found in 2009 as a producer of lipophilic polyether toxin Azaspiracids (AZAs), responsible

More information

Symbiodinium biogeography tracks environmental patterns rather than host genetics in a key Caribbean reef-builder, Orbicella annularis

Symbiodinium biogeography tracks environmental patterns rather than host genetics in a key Caribbean reef-builder, Orbicella annularis rspb.royalsocietypublishing.org Research Cite this article: Kennedy EV, Tonk L, Foster NL, Chollett I, Ortiz J-C, Dove S, Hoegh-Guldberg O, Mumby PJ, Stevens JR. 2016 Symbiodinium biogeography tracks environmental

More information

David W. Seaborn 1, A. Michelle Seaborn 2, William M. Dunstan 2, and Harold G. Marshall 1

David W. Seaborn 1, A. Michelle Seaborn 2, William M. Dunstan 2, and Harold G. Marshall 1 Virginia Journal of Science Volume 5, Number 4 Winter 1999 Growth and Feeding Studies on the Algal Feeding Stage of a Pfiesteria-like Dinoflagellate David W. Seaborn 1, A. Michelle Seaborn 2, William M.

More information

Eukarya. Eukarya includes all organisms with eukaryotic cells Examples: plants animals fungi algae single-celled animal-like protozoa

Eukarya. Eukarya includes all organisms with eukaryotic cells Examples: plants animals fungi algae single-celled animal-like protozoa Eukarya Eukarya includes all organisms with eukaryotic cells Examples: plants animals fungi algae single-celled animal-like protozoa Protists Eukaryotic; but comprises its own Kingdom Protista Algae -

More information

Spring bleaching among Pocillopora in the Sea of Cortez, Eastern PaciWc

Spring bleaching among Pocillopora in the Sea of Cortez, Eastern PaciWc DOI 10.1007/s00338-006-0189-3 NOTE Spring bleaching among Pocillopora in the Sea of Cortez, Eastern PaciWc T. C. LaJeunesse H. Reyes-Bonilla M. E. Warner Received: 5 September 2006 / Accepted: 29 November

More information

Author's personal copy

Author's personal copy Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Genomic Insights into the Biology

More information

Microbes usually have few distinguishing properties that relate them, so a hierarchical taxonomy mainly has not been possible.

Microbes usually have few distinguishing properties that relate them, so a hierarchical taxonomy mainly has not been possible. Microbial Taxonomy Traditional taxonomy or the classification through identification and nomenclature of microbes, both "prokaryote" and eukaryote, has been in a mess we were stuck with it for traditional

More information

Microbial Taxonomy. Slowly evolving molecules (e.g., rrna) used for large-scale structure; "fast- clock" molecules for fine-structure.

Microbial Taxonomy. Slowly evolving molecules (e.g., rrna) used for large-scale structure; fast- clock molecules for fine-structure. Microbial Taxonomy Traditional taxonomy or the classification through identification and nomenclature of microbes, both "prokaryote" and eukaryote, has been in a mess we were stuck with it for traditional

More information

High genetic diversity of the symbiotic dinoflagellates in the coral Pocillopora meandrina from the South Pacific

High genetic diversity of the symbiotic dinoflagellates in the coral Pocillopora meandrina from the South Pacific High genetic diversity of the symbiotic dinoflagellates in the coral Pocillopora meandrina from the South Pacific Hélène Magalon, Emmanuelle Baudry, Aurélie Husté, Mehdi Adjeroud, Michel Veuille To cite

More information

Zooxanthellae (Symbiodinium, Dinophyceae) symbioses on coral reefs

Zooxanthellae (Symbiodinium, Dinophyceae) symbioses on coral reefs Zooxanthellae (Symbiodinium, Dinophyceae) symbioses on coral reefs Madeleine JH van Oppen Australian Institute of Marine Science PMB No.3, Townsville QLD 4810 Tel (07) 4753 4370 Fax (07) 4772 5852 Email

More information

Motility of zooxanthellae isolated from the Red Sea soft coral Heteroxenia fuscescens (Cnidaria)

Motility of zooxanthellae isolated from the Red Sea soft coral Heteroxenia fuscescens (Cnidaria) Journal of Experimental Marine Biology and Ecology 298 (2004) 35 48 www.elsevier.com/locate/jembe Motility of zooxanthellae isolated from the Red Sea soft coral Heteroxenia fuscescens (Cnidaria) Tali Yacobovitch

More information

Class Webpage. Forms of Diversity. biol170/biol170syl.htm

Class Webpage. Forms of Diversity.  biol170/biol170syl.htm Class Webpage http://userwww.sfsu.edu/~efc/classes/ biol170/biol170syl.htm What is an animal? While there are exceptions, five criteria distinguish animals from other life forms. (1)Animals are multicellular,

More information

The coral holobiont 10/17/ Holosymbiont 2.Emerging diseases 3.Holobiome/Holobiont

The coral holobiont 10/17/ Holosymbiont 2.Emerging diseases 3.Holobiome/Holobiont The coral holobiont Overall model that corals exist in a multipartite symbiosis with both endosymbiotic dinoflagellate and resident microbiota (bacteria and archaea) Ainsworth et al 2010 Ainsworth et al.

More information

Treasure Coast Science Scope and Sequence

Treasure Coast Science Scope and Sequence Course: Marine Science I Honors Course Code: 2002510 Quarter: 3 Topic(s) of Study: Marine Organisms and Ecosystems Bodies of Knowledge: Nature of Science and Life Science Standard(s): 1: The Practice of

More information

Charles University in Prague, Czech Republic 2. Universitá Politecnica delle Marche, Ancona, Italy 3. Ghent University, Belgium

Charles University in Prague, Czech Republic 2. Universitá Politecnica delle Marche, Ancona, Italy 3. Ghent University, Belgium Evolving out of the water: Uncovering the hidden diversity in aerophytic green algae Pavel Škaloud 1, O. Peksa 1, F. Rindi 2, Y. Němcová 1, M. Eliáš 1, F. Leliaert 3, T. Kalina 1, J. Neustupa 1 1 Charles

More information

A comparison of the thermal bleaching responses of the zoanthid Palythoa caribaeorum from three geographically different regions in south Florida

A comparison of the thermal bleaching responses of the zoanthid Palythoa caribaeorum from three geographically different regions in south Florida Journal of Experimental Marine Biology and Ecology 335 (2006) 266 276 www.elsevier.com/locate/jembe A comparison of the thermal bleaching responses of the zoanthid Palythoa caribaeorum from three geographically

More information

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to:

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to: Chapter 8 Biogeographic Processes Chapter Objectives Upon completion of this chapter the student will be able to: 1. Define the terms ecosystem, habitat, ecological niche, and community. 2. Outline how

More information

Chronic parrotfish grazing impedes coral recovery after bleaching

Chronic parrotfish grazing impedes coral recovery after bleaching Coral Reefs (2006) 25: 361 368 DOI 10.1007/s00338-006-0120-y REPORT Randi D. Rotjan Æ James L. Dimond Daniel J. Thornhill Æ James J. Leichter Brian Helmuth Æ Dustin W. Kemp Æ Sara M. Lewis Chronic parrotfish

More information

Amoeba hunts and kills paramecia and stentor. Eukaryotic photosynthetic cells

Amoeba hunts and kills paramecia and stentor. Eukaryotic photosynthetic cells Amoeba hunts and kills paramecia and stentor Eukaryotic photosynthetic cells 1 Eukaryotic organelles are odd in many ways Organelles: membrane bound compartments in a cell Nucleus, chloroplasts, and mitochondria

More information

Name Hour. Section 4-1 The Role of Climate (pages 87-89) What Is Climate? (page 87) 1. How is weather different from climate?

Name Hour. Section 4-1 The Role of Climate (pages 87-89) What Is Climate? (page 87) 1. How is weather different from climate? Name Hour Section 4-1 The Role of Climate (pages 87-89) What Is Climate? (page 87) 1. How is weather different from climate? 2. What factors cause climate? The Greenhouse Effect (page 87) 3. Circle the

More information

Name. Ecology & Evolutionary Biology 2245/2245W Exam 2 1 March 2014

Name. Ecology & Evolutionary Biology 2245/2245W Exam 2 1 March 2014 Name 1 Ecology & Evolutionary Biology 2245/2245W Exam 2 1 March 2014 1. Use the following matrix of nucleotide sequence data and the corresponding tree to answer questions a. through h. below. (16 points)

More information

Evolutionary factors and synthetic biology

Evolutionary factors and synthetic biology Evolutionary factors and synthetic biology NAS Joint Session on Climate Change and Ecology Owain Edwards Group Leader, Environmental Synthetic Genomics, CSIRO, Perth, Australia Domain Leader, Biocontrol

More information

Community Structure Temporal Patterns

Community Structure Temporal Patterns Community Structure Temporal Patterns Temporal Patterns Seasonality Phenology study of repeated patterns in time and their relationship to physical aspects of the environment Seasonal changes that are

More information

Flexibility of the coral-algal symbiosis in the face of climate change Mieog, Jos Cornelis

Flexibility of the coral-algal symbiosis in the face of climate change Mieog, Jos Cornelis University of Groningen Flexibility of the coral-algal symbiosis in the face of climate change Mieog, Jos Cornelis IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if

More information

Protists: Algae Lecture 5 Spring 2014

Protists: Algae Lecture 5 Spring 2014 Protists: Algae Lecture 5 Spring 2014 Meet the algae 1 Protist Phylogeny Algae - Not monophyletic What unites them as a group? Range from unicellular to multicellular From phytoplankton to kelp forests

More information

Coral bleaching: the role of the host

Coral bleaching: the role of the host Opinion Coral bleaching: the role of the host Andrew H. Baird 1, Ranjeet Bhagooli 2, Peter J. Ralph 3 and Shunichi Takahashi 4 1 ARC Centre of Excellence for Coral Reef Studies, James Cook University,

More information

Longitudinal variation in algal symbionts (zooxanthellae) from the Indian Ocean zoanthid Palythoa caesia

Longitudinal variation in algal symbionts (zooxanthellae) from the Indian Ocean zoanthid Palythoa caesia MARINE ECOLOGY PROGRESS SERIES Vol. 234: 105 109, 2002 Published June 3 Mar Ecol Prog Ser Longitudinal variation in algal symbionts (zooxanthellae) from the Indian Ocean zoanthid Palythoa caesia W. J.

More information

Protists: Algae Lecture 5 Spring Protist Phylogeny. Meet the algae. Primary & Secondary Endosymbiosis. Endosymbiosis. Secondary Endosymbiosis

Protists: Algae Lecture 5 Spring Protist Phylogeny. Meet the algae. Primary & Secondary Endosymbiosis. Endosymbiosis. Secondary Endosymbiosis Meet the algae Protists: Algae Lecture 5 Spring 2014 Protist Phylogeny 1 Primary & Secondary Endosymbiosis 2 Algae - Not monophyletic What unites them as a group? Range from unicellular to multicellular

More information

UvA-DARE (Digital Academic Repository)

UvA-DARE (Digital Academic Repository) UvA-DARE (Digital Academic Repository) Corals through the light : phylogenetics, functional diversity and adaptive strategies of coral-symbiont associations over a large depth range Rodrigues Frade, P.

More information

SYMBIODINIUM (DINOPHYCEAE) COMMUNITY PATTERNS IN INVERTEBRATE HOSTS FROM INSHORE MARGINAL REEFS OF THE SOUTHERN GREAT BARRIER REEF, AUSTRALIA 1

SYMBIODINIUM (DINOPHYCEAE) COMMUNITY PATTERNS IN INVERTEBRATE HOSTS FROM INSHORE MARGINAL REEFS OF THE SOUTHERN GREAT BARRIER REEF, AUSTRALIA 1 J. Phycol. 53, 589 600 (2017) 2017 Phycological Society of America DOI: 10.1111/jpy.12523 SYMBIODINIUM (DINOPHYCEAE) COMMUNITY PATTERNS IN INVERTEBRATE HOSTS FROM INSHORE MARGINAL REEFS OF THE SOUTHERN

More information

Diversity of dinoflagellate symbionts in Red Sea soft corals: mode of symbiont acquisition matters

Diversity of dinoflagellate symbionts in Red Sea soft corals: mode of symbiont acquisition matters MARINE ECOLOGY PROGRESS SERIES Vol. 275: 89 95, 2004 Published July 14 Mar Ecol Prog Ser Diversity of dinoflagellate symbionts in Red Sea soft corals: mode of symbiont acquisition matters O. Barneah 1,

More information

REVIEW: Symbiosis between the Giant Clams (Bivalvia: Cardiidae) and Zooxanthellae (Dinophyceae)

REVIEW: Symbiosis between the Giant Clams (Bivalvia: Cardiidae) and Zooxanthellae (Dinophyceae) B I O D I V E R S I T A S ISSN: 1412-033X Volume 9, Nomor 1 Januari 2008 Halaman: 53-58 REVIEW: Symbiosis between the Giant Clams (Bivalvia: Cardiidae) and Zooxanthellae (Dinophyceae) UDHI EKO HERNAWAN

More information

Eukaryotic photosynthetic cells

Eukaryotic photosynthetic cells Amoeba hunts and kills paramecia and stentor Eukaryotic photosynthetic cells Eukaryotic organelles are odd in many ways Organelles: membrane bound compartments in a cell Nucleus, chloroplasts, and mitochondria

More information

Similar specificities of symbiont uptake by adults and larvae in an anemone model system for coral biology

Similar specificities of symbiont uptake by adults and larvae in an anemone model system for coral biology First posted online on 13 February 2014 as 10.1242/jeb.095679 J Exp Biol Advance Access Online the most Articles. recent version First at posted http://jeb.biologists.org/lookup/doi/10.1242/jeb.095679

More information

Microbial Taxonomy. Microbes usually have few distinguishing properties that relate them, so a hierarchical taxonomy mainly has not been possible.

Microbial Taxonomy. Microbes usually have few distinguishing properties that relate them, so a hierarchical taxonomy mainly has not been possible. Microbial Taxonomy Traditional taxonomy or the classification through identification and nomenclature of microbes, both "prokaryote" and eukaryote, has been in a mess we were stuck with it for traditional

More information

The Pennsylvania State University. The Graduate School. Eberly College of Science THE ROLE OF INTRASPECIFIC DIVERSITY

The Pennsylvania State University. The Graduate School. Eberly College of Science THE ROLE OF INTRASPECIFIC DIVERSITY The Pennsylvania State University The Graduate School Eberly College of Science THE ROLE OF INTRASPECIFIC DIVERSITY IN CORAL-ALGAL SYMBIOSIS ECOLOGY AND EVOLUTION A Dissertation in Biology by John Everett

More information

GLOBAL WARMING, CORAL REEFS, AND SYMBIONT SHUFFLING

GLOBAL WARMING, CORAL REEFS, AND SYMBIONT SHUFFLING GLOBAL WARMING, CORAL REEFS, AND SYMBIONT SHUFFLING Climate alarmists typically decry the bleaching of corals that often follows periods of anomalous warmth at various places around the globe. In doing

More information

The Microbial World. Chapter 5

The Microbial World. Chapter 5 The Microbial World Chapter 5 Viruses Non-cellular infectious agents that have two basic characteristics: Not capable of reproduction without a host cell Structure: Nucleic acid core- can be DNA or RNA

More information

Presence of Symbiodinium spp. in macroalgal microhabitats from the southern Great Barrier Reef

Presence of Symbiodinium spp. in macroalgal microhabitats from the southern Great Barrier Reef Coral Reefs (2010) 29:1049 1060 DOI 10.1007/s00338-010-0666-6 REPORT Presence of Symbiodinium spp. in macroalgal microhabitats from the southern Great Barrier Reef D. E. Venera-Ponton G. Diaz-Pulido M.

More information

Understanding the Coral Holobiont through Science and Scuba

Understanding the Coral Holobiont through Science and Scuba Understanding the Coral Holobiont through Science and Scuba Steve V. Vollmer, Andrew C. Baker, Mary- Alice Coffroth, C. Drew Harvell, and Mónica Medina ABSTRACT. Reef- building corals are a holobiont composed

More information

Microbial Taxonomy and the Evolution of Diversity

Microbial Taxonomy and the Evolution of Diversity 19 Microbial Taxonomy and the Evolution of Diversity Copyright McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display. 1 Taxonomy Introduction to Microbial Taxonomy

More information

What Are the Protists?

What Are the Protists? Protists 1 What Are the Protists? 2 Protists are all the eukaryotes that are not fungi, plants, or animals. Protists are a paraphyletic group. Protists exhibit wide variation in morphology, size, and nutritional

More information

Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes

Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes Coral Reefs (207) 36:98 985 DOI 0.007/s00338-07-589-2 NOTE Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes Carsten G. B. Grupstra,2,3 Rafel Coma 4 Marta Ribes

More information

Oceans. PPt. by, Robin D. Seamon

Oceans. PPt. by, Robin D. Seamon Oceans PPt. by, Robin D. Seamon Ocean Notes Salt water/ salinity 360 million square miles 3.5 billion years old 100,000 + species 28 degrees to 86 degrees F 7 miles down in some places Mineral composition:

More information

Biogeography expands:

Biogeography expands: Biogeography expands: Phylogeography Ecobiogeography Due to advances in DNA sequencing and fingerprinting methods, historical biogeography has recently begun to integrate relationships of populations within

More information

Title. Author(s)Horiguchi, Takeo. Issue Date Doc URL. Type. Note. File Information. Origin and Evolution of Dinoflagellates with a Diato

Title. Author(s)Horiguchi, Takeo. Issue Date Doc URL. Type. Note. File Information. Origin and Evolution of Dinoflagellates with a Diato Title Origin and Evolution of Dinoflagellates with a Diato Author(s)Horiguchi, Takeo Issue Date 2004 Doc URL http://hdl.handle.net/2115/38506 Type proceedings Note International Symposium on "Dawn of a

More information

Mixotrophy in the newly described dinoflagellate Ansanella granifera: feeding mechanism, prey species, and effect of prey concentration

Mixotrophy in the newly described dinoflagellate Ansanella granifera: feeding mechanism, prey species, and effect of prey concentration Research Article Algae 2014, 29(2): 137-152 http://dx.doi.org/10.4490/algae.2014.29.2.137 Open Access Mixotrophy in the newly described dinoflagellate Ansanella granifera: feeding mechanism, prey species,

More information

Coral Reefs Editorial Team

Coral Reefs Editorial Team Coral Reefs Editorial Team Editor in Chief Professor Rolf PM Bak works at the Royal Netherlands Institute for Sea Research and holds the chair of Tropical Marine Biology at the University of Amsterdam.

More information