List of Code Challenges. About the Textbook Meet the Authors... xix Meet the Development Team... xx Acknowledgments... xxi

Size: px
Start display at page:

Download "List of Code Challenges. About the Textbook Meet the Authors... xix Meet the Development Team... xx Acknowledgments... xxi"

Transcription

1 Contents List of Code Challenges xvii About the Textbook xix Meet the Authors xix Meet the Development Team xx Acknowledgments xxi 7 Which Animal Gave Us SARS? 2 The Fastest Outbreak... 3 Trouble at the Metropole Hotel... 3 The evolution of SARS... 3 Transforming Distance Matrices into Evolutionary Trees... 5 Constructing a distance matrix from coronavirus genomes... 5 Evolutionary trees as graphs... 7 Distance-based phylogeny construction Toward An Algorithm for Distance-Based Phylogeny Construction A quest for neighboring leaves Computing limb lengths Additive Phylogeny Trimming the tree Attaching a limb An algorithm for distance-based phylogeny construction Constructing an evolutionary tree of coronaviruses Using Least Squares to Construct Approximate Distance-Based Phylogenies. 22 Ultrametric Evolutionary Trees The Neighbor-Joining Algorithm Transforming a distance matrix into a neighbor-joining matrix x

2 Analyzing coronaviruses with the neighbor-joining algorithm Limitations of distance-based approaches to evolutionary tree construction 33 Character-Based Tree Reconstruction Character tables From anatomical to genetic characters How many times has evolution invented insect wings? The Small Parsimony Problem The Large Parsimony Problem Epilogue: Evolutionary Trees Fight Crime Detours When did HIV jump from primates to humans? Searching for a tree fitting a distance matrix The four point condition Did bats give us SARS? Why does the neighbor-joining algorithm find neighboring leaves? Computing limb lengths in the neighbor-joining algorithm Giant panda: bear or raccoon? Where did humans come from? Bibliography Notes How Did Yeast Become a Wine Maker? 68 An Evolutionary History of Wine Making How long have we been addicted to alcohol? The diauxic shift Identifying Genes Responsible for the Diauxic Shift Two evolutionary hypotheses with different fates Which yeast genes drive the diauxic shift? Introduction to Clustering Gene expression analysis Clustering yeast genes The Good Clustering Principle Clustering as an Optimization Problem Farthest First Traversal k-means Clustering Squared error distortion k-means clustering and the center of gravity The Lloyd Algorithm xi

3 From centers to clusters and back again Initializing the Lloyd algorithm k-means++ Initializer Clustering Genes Implicated in the Diauxic Shift Limitations of k-means Clustering From Coin Flipping to k-means Clustering Flipping coins with unknown biases Where is the computational problem? From coin flipping to the Lloyd algorithm Return to clustering Making Soft Decisions in Coin Flipping Expectation maximization: the E-step Expectation maximization: the M-step The expectation maximization algorithm Soft k-means Clustering Applying expectation maximization to clustering Centers to soft clusters Soft clusters to centers Hierarchical Clustering Introduction to distance-based clustering Inferring clusters from a tree Analyzing the diauxic shift with hierarchical clustering Epilogue: Clustering Tumor Samples Detours Whole genome duplication or a series of duplications? Measuring gene expression Microarrays Proof of the Center of Gravity Theorem Transforming an expression matrix into a distance/similarity matrix Clustering and corrupted cliques Bibliography Notes How Do We Locate Disease-Causing Mutations? 120 What Causes Ohdo Syndrome? Introduction to Multiple Pattern Matching Herding Patterns into a Trie Constructing a trie xii

4 Applying the trie to multiple pattern matching Preprocessing the Genome Instead Introduction to suffix tries Using suffix tries for pattern matching Suffix Trees Suffix Arrays Constructing a suffix array Pattern matching with the suffix array The Burrows-Wheeler Transform Genome compression Constructing the Burrows-Wheeler transform From repeats to runs Inverting the Burrows-Wheeler Transform A first attempt at inverting the Burrows-Wheeler transform The First-Last Property Using the First-Last property to invert the Burrows-Wheeler transform. 144 Pattern Matching with the Burrows-Wheeler Transform A first attempt at Burrows-Wheeler pattern matching Moving backward through a pattern The Last-to-First mapping Speeding Up Burrows-Wheeler Pattern Matching Substituting the Last-to-First mapping with count arrays Getting rid of the first column of the Burrows-Wheeler matrix Where are the Matched Patterns? Burrows and Wheeler Set Up Checkpoints Epilogue: Mismatch-Tolerant Read Mapping Reducing approximate pattern matching to exact pattern matching BLAST: Comparing a sequence against a database Approximate pattern matching with the Burrows-Wheeler transform Charging Stations Constructing a Suffix Tree Solving the Longest Shared Substring Problem Partial Suffix Array Construction Detours The reference human genome Rearrangements, insertions, and deletions in human genomes The Aho-Corasick algorithm xiii

5 From suffix trees to suffix arrays From suffix arrays to suffix trees Binary search Bibliography Notes Why Have Biologists Still Not Developed an HIV Vaccine? 178 Classifying the HIV Phenotype How does HIV evade the human immune system? Limitations of sequence alignment Gambling with Yakuza Two Coins up the Dealer s Sleeve Finding CG-Islands Hidden Markov Models From coin flipping to a Hidden Markov Model The HMM diagram Reformulating the Casino Problem The Decoding Problem The Viterbi graph The Viterbi algorithm How fast is the Viterbi algorithm? Finding the Most Likely Outcome of an HMM Profile HMMs for Sequence Alignment How do HMMs relate to sequence alignment? Building a profile HMM Transition and emission probabilities of a profile HMM Classifying proteins with profile HMMs Aligning a protein against a profile HMM The return of pseudocounts The troublesome silent states Are profile HMMs really all that useful? Learning the Parameters of an HMM Estimating HMM parameters when the hidden path is known Viterbi learning Soft Decisions in Parameter Estimation The Soft Decoding Problem The forward-backward algorithm Baum-Welch Learning xiv

6 The Many Faces of HMMs Epilogue: Nature is a Tinkerer and not an Inventor Detours The Red Queen Effect Glycosylation DNA methylation Conditional probability Bibliography Notes Was T. rex Just a Big Chicken? 234 Paleontology Meets Computing Which Proteins Are Present in This Sample? Decoding an Ideal Spectrum From Ideal to Real Spectra Peptide Sequencing Scoring peptides against spectra Where are the suffix peptides? Peptide sequencing algorithm Peptide Identification The Peptide Identification Problem Identifying peptides in the unknown T. rex proteome Searching for peptide-spectrum matches Peptide Identification and the Infinite Monkey Theorem False discovery rate The monkey and the typewriter Statistical significance of a peptide-spectrum match Spectral Dictionaries T. rex Peptides: Contaminants or Treasure Trove of Ancient Proteins? The hemoglobin riddle The dinosaur DNA controversy Epilogue: From Unmodified to Modified Peptides Post-translational modifications Searching for modifications as an alignment problem Building a Manhattan grid for spectral alignment Spectral alignment algorithm Detours Gene prediction xv

7 Finding all paths in a graph The Anti-Symmetric Path Problem Transforming spectra into spectral vectors The infinite monkey theorem The probabilistic space of peptides in a spectral dictionary Are terrestrial dinosaurs really the ancestors of birds? Solving the Most Likely Peptide Vector Problem Selecting Parameters for Transforming Spectra into Spectral Vectors Bibliography Notes Bibliography 285 Image Courtesies 291 xvi

8 List of Code Challenges Chapter 7 2 (7A) Compute Distances Between Leaves (7B) Compute Limb Lengths in a Tree (7C) Implement ADDITIVEPHYLOGENY (7D) Implement UPGMA (7E) Implement NEIGHBORJOINING (7F) Implement SMALLPARSIMONY (7G) Adapt SMALLPARSIMONY to Unrooted Trees (7H) Find the Nearest Neighbors of a Tree (7I) Implement NEARESTNEIGHBORINTERCHANGE Chapter 8 68 (8A) Implement FARTHESTFIRSTTRAVERSAL (8B) Compute the Squared Error Distortion (8C) Implement the Lloyd Algorithm for k-means Clustering (8D) Implement the Soft k-means Clustering Algorithm (8E) Implement HIERARCHICALCLUSTERING Chapter (9A) Construct a Trie from a Collection of Patterns (9B) Implement TRIEMATCHING (9C) Construct the Suffix Tree of a String (9D) Find the Longest Repeat in a String (9E) Find the Longest Substring Shared by Two Strings (9F) Find the Shortest Non-Shared Substring of Two Strings (9G) Construct the Suffix Array of a String (9H) Implement PATTERNMATCHINGWITHSUFFIXARRAY xvii

9 (9I) Construct the Burrows-Wheeler Transform of a String (9J) Reconstruct a String from its Burrows-Wheeler Transform (9K) Generate the Last-to-First Mapping of a String (9L) Implement BWMATCHING (9M) Implement BETTERBWMATCHING (9N) Find All Occurrences of a Collection of Patterns in a String (9O) Find All Approximate Occurrences of a Collection of Patterns in a String 162 (9P) Implement TREECOLORING (9Q) Construct the Partial Suffix Array of a String (9R) Construct a Suffix Tree from a Suffix Array Chapter (10A) Compute the Probability of a Hidden Path (10B) Compute the Probability of an Outcome Given a Hidden Path (10C) Implement the Viterbi Algorithm (10D) Compute the Probability of a String Emitted by an HMM (10E) Construct a Profile HMM (10F) Construct a Profile HMM with Pseudocounts (10G) Perform a Multiple Sequence Alignment with a Profile HMM (10H) Estimate the Parameters of an HMM (10I) Implement Viterbi Learning (10J) Solve the Soft Decoding Problem (10K) Implement Baum-Welch Learning Chapter (11A) Construct the Graph of a Spectrum (11B) Implement DECODINGIDEALSPECTRUM (11C) Convert a Peptide into a Peptide Vector (11D) Convert a Peptide Vector into a Peptide (11E) Sequence a Peptide (11F) Find a Highest-Scoring Peptide in a Proteome against a Spectrum (11G) Implement PSMSEARCH (11H) Compute the Size of a Spectral Dictionary (11I) Compute the Probability of a Spectral Dictionary (11J) Find a Highest-Scoring Modified Peptide against a Spectrum xviii

List of Code Challenges. Meet the Authors Meet the Development Team... xxxii Meet our Adopting Institutions... xxxiv Acknowledgments...

List of Code Challenges. Meet the Authors Meet the Development Team... xxxii Meet our Adopting Institutions... xxxiv Acknowledgments... Contents List of Code Challenges xxv Meet the Authors xxxi Meet the Development Team............................ xxxii Meet our Adopting Institutions........................... xxxiv Acknowledgments..................................

More information

An Introduction to Bioinformatics Algorithms Hidden Markov Models

An Introduction to Bioinformatics Algorithms  Hidden Markov Models Hidden Markov Models Hidden Markov Models Outline CG-islands The Fair Bet Casino Hidden Markov Model Decoding Algorithm Forward-Backward Algorithm Profile HMMs HMM Parameter Estimation Viterbi training

More information

HIDDEN MARKOV MODELS

HIDDEN MARKOV MODELS HIDDEN MARKOV MODELS Outline CG-islands The Fair Bet Casino Hidden Markov Model Decoding Algorithm Forward-Backward Algorithm Profile HMMs HMM Parameter Estimation Viterbi training Baum-Welch algorithm

More information

An Introduction to Bioinformatics Algorithms Hidden Markov Models

An Introduction to Bioinformatics Algorithms   Hidden Markov Models Hidden Markov Models Outline 1. CG-Islands 2. The Fair Bet Casino 3. Hidden Markov Model 4. Decoding Algorithm 5. Forward-Backward Algorithm 6. Profile HMMs 7. HMM Parameter Estimation 8. Viterbi Training

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Outline 1. CG-Islands 2. The Fair Bet Casino 3. Hidden Markov Model 4. Decoding Algorithm 5. Forward-Backward Algorithm 6. Profile HMMs 7. HMM Parameter Estimation 8. Viterbi Training

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Outline CG-islands The Fair Bet Casino Hidden Markov Model Decoding Algorithm Forward-Backward Algorithm Profile HMMs HMM Parameter Estimation Viterbi training Baum-Welch algorithm

More information

Hidden Markov Models. Three classic HMM problems

Hidden Markov Models. Three classic HMM problems An Introduction to Bioinformatics Algorithms www.bioalgorithms.info Hidden Markov Models Slides revised and adapted to Computational Biology IST 2015/2016 Ana Teresa Freitas Three classic HMM problems

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Slides revised and adapted to Bioinformática 55 Engª Biomédica/IST 2005 Ana Teresa Freitas Forward Algorithm For Markov chains we calculate the probability of a sequence, P(x) How

More information

Hidden Markov Models. Ivan Gesteira Costa Filho IZKF Research Group Bioinformatics RWTH Aachen Adapted from:

Hidden Markov Models. Ivan Gesteira Costa Filho IZKF Research Group Bioinformatics RWTH Aachen Adapted from: Hidden Markov Models Ivan Gesteira Costa Filho IZKF Research Group Bioinformatics RWTH Aachen Adapted from: www.ioalgorithms.info Outline CG-islands The Fair Bet Casino Hidden Markov Model Decoding Algorithm

More information

11.3 Decoding Algorithm

11.3 Decoding Algorithm 11.3 Decoding Algorithm 393 For convenience, we have introduced π 0 and π n+1 as the fictitious initial and terminal states begin and end. This model defines the probability P(x π) for a given sequence

More information

Hidden Markov Models 1

Hidden Markov Models 1 Hidden Markov Models Dinucleotide Frequency Consider all 2-mers in a sequence {AA,AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT,TA,TC,TG,TT} Given 4 nucleotides: each with a probability of occurrence of. 4 Thus, one

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Slides revised and adapted to Bioinformática 55 Engª Biomédica/IST 2005 Ana Teresa Freitas CG-Islands Given 4 nucleotides: probability of occurrence is ~ 1/4. Thus, probability of

More information

Was T. rex Just a Big Chicken? Computational Proteomics

Was T. rex Just a Big Chicken? Computational Proteomics Was T. rex Just a Big Chicken? Computational Proteomics Phillip Compeau and Pavel Pevzner adjusted by Jovana Kovačević Bioinformatics Algorithms: an Active Learning Approach 215 by Compeau and Pevzner.

More information

Stephen Scott.

Stephen Scott. 1 / 21 sscott@cse.unl.edu 2 / 21 Introduction Designed to model (profile) a multiple alignment of a protein family (e.g., Fig. 5.1) Gives a probabilistic model of the proteins in the family Useful for

More information

Lecture 9. Intro to Hidden Markov Models (finish up)

Lecture 9. Intro to Hidden Markov Models (finish up) Lecture 9 Intro to Hidden Markov Models (finish up) Review Structure Number of states Q 1.. Q N M output symbols Parameters: Transition probability matrix a ij Emission probabilities b i (a), which is

More information

HMMs and biological sequence analysis

HMMs and biological sequence analysis HMMs and biological sequence analysis Hidden Markov Model A Markov chain is a sequence of random variables X 1, X 2, X 3,... That has the property that the value of the current state depends only on the

More information

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II)

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II) CISC 889 Bioinformatics (Spring 24) Hidden Markov Models (II) a. Likelihood: forward algorithm b. Decoding: Viterbi algorithm c. Model building: Baum-Welch algorithm Viterbi training Hidden Markov models

More information

O 3 O 4 O 5. q 3. q 4. Transition

O 3 O 4 O 5. q 3. q 4. Transition Hidden Markov Models Hidden Markov models (HMM) were developed in the early part of the 1970 s and at that time mostly applied in the area of computerized speech recognition. They are first described in

More information

Markov Chains and Hidden Markov Models. = stochastic, generative models

Markov Chains and Hidden Markov Models. = stochastic, generative models Markov Chains and Hidden Markov Models = stochastic, generative models (Drawing heavily from Durbin et al., Biological Sequence Analysis) BCH339N Systems Biology / Bioinformatics Spring 2016 Edward Marcotte,

More information

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD Department of Computer Science University of Missouri 2008 Free for Academic

More information

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010 Hidden Lecture 4: Hidden : An Introduction to Dynamic Decision Making November 11, 2010 Special Meeting 1/26 Markov Model Hidden When a dynamical system is probabilistic it may be determined by the transition

More information

BINF6201/8201. Molecular phylogenetic methods

BINF6201/8201. Molecular phylogenetic methods BINF60/80 Molecular phylogenetic methods 0-7-06 Phylogenetics Ø According to the evolutionary theory, all life forms on this planet are related to one another by descent. Ø Traditionally, phylogenetics

More information

CSCE 471/871 Lecture 3: Markov Chains and

CSCE 471/871 Lecture 3: Markov Chains and and and 1 / 26 sscott@cse.unl.edu 2 / 26 Outline and chains models (s) Formal definition Finding most probable state path (Viterbi algorithm) Forward and backward algorithms State sequence known State

More information

Hidden Markov Models for biological sequence analysis

Hidden Markov Models for biological sequence analysis Hidden Markov Models for biological sequence analysis Master in Bioinformatics UPF 2017-2018 http://comprna.upf.edu/courses/master_agb/ Eduardo Eyras Computational Genomics Pompeu Fabra University - ICREA

More information

Evolutionary Tree Analysis. Overview

Evolutionary Tree Analysis. Overview CSI/BINF 5330 Evolutionary Tree Analysis Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Backgrounds Distance-Based Evolutionary Tree Reconstruction Character-Based

More information

Dr. Amira A. AL-Hosary

Dr. Amira A. AL-Hosary Phylogenetic analysis Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic Basics: Biological

More information

CHAPTERS 24-25: Evidence for Evolution and Phylogeny

CHAPTERS 24-25: Evidence for Evolution and Phylogeny CHAPTERS 24-25: Evidence for Evolution and Phylogeny 1. For each of the following, indicate how it is used as evidence of evolution by natural selection or shown as an evolutionary trend: a. Paleontology

More information

BIOINFORMATICS: An Introduction

BIOINFORMATICS: An Introduction BIOINFORMATICS: An Introduction What is Bioinformatics? The term was first coined in 1988 by Dr. Hwa Lim The original definition was : a collective term for data compilation, organisation, analysis and

More information

Plan for today. ! Part 1: (Hidden) Markov models. ! Part 2: String matching and read mapping

Plan for today. ! Part 1: (Hidden) Markov models. ! Part 2: String matching and read mapping Plan for today! Part 1: (Hidden) Markov models! Part 2: String matching and read mapping! 2.1 Exact algorithms! 2.2 Heuristic methods for approximate search (Hidden) Markov models Why consider probabilistics

More information

Hidden Markov Models for biological sequence analysis I

Hidden Markov Models for biological sequence analysis I Hidden Markov Models for biological sequence analysis I Master in Bioinformatics UPF 2014-2015 Eduardo Eyras Computational Genomics Pompeu Fabra University - ICREA Barcelona, Spain Example: CpG Islands

More information

EVOLUTIONARY DISTANCES

EVOLUTIONARY DISTANCES EVOLUTIONARY DISTANCES FROM STRINGS TO TREES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 14 th November 2007 OUTLINE 1 STRINGS:

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 2/14/07 CAP5510 1 CpG Islands Regions in DNA sequences with increased

More information

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic analysis Phylogenetic Basics: Biological

More information

Evolutionary trees. Describe the relationship between objects, e.g. species or genes

Evolutionary trees. Describe the relationship between objects, e.g. species or genes Evolutionary trees Bonobo Chimpanzee Human Neanderthal Gorilla Orangutan Describe the relationship between objects, e.g. species or genes Early evolutionary studies The evolutionary relationships between

More information

Phylogeny: building the tree of life

Phylogeny: building the tree of life Phylogeny: building the tree of life Dr. Fayyaz ul Amir Afsar Minhas Department of Computer and Information Sciences Pakistan Institute of Engineering & Applied Sciences PO Nilore, Islamabad, Pakistan

More information

Tree of Life iological Sequence nalysis Chapter http://tolweb.org/tree/ Phylogenetic Prediction ll organisms on Earth have a common ancestor. ll species are related. The relationship is called a phylogeny

More information

Page 1. Evolutionary Trees. Why build evolutionary tree? Outline

Page 1. Evolutionary Trees. Why build evolutionary tree? Outline Page Evolutionary Trees Russ. ltman MI S 7 Outline. Why build evolutionary trees?. istance-based vs. character-based methods. istance-based: Ultrametric Trees dditive Trees. haracter-based: Perfect phylogeny

More information

Bio nformatics. Lecture 3. Saad Mneimneh

Bio nformatics. Lecture 3. Saad Mneimneh Bio nformatics Lecture 3 Sequencing As before, DNA is cut into small ( 0.4KB) fragments and a clone library is formed. Biological experiments allow to read a certain number of these short fragments per

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Data Mining in Bioinformatics HMM

Data Mining in Bioinformatics HMM Data Mining in Bioinformatics HMM Microarray Problem: Major Objective n Major Objective: Discover a comprehensive theory of life s organization at the molecular level 2 1 Data Mining in Bioinformatics

More information

Hidden Markov Models. x 1 x 2 x 3 x K

Hidden Markov Models. x 1 x 2 x 3 x K Hidden Markov Models 1 1 1 1 2 2 2 2 K K K K x 1 x 2 x 3 x K Viterbi, Forward, Backward VITERBI FORWARD BACKWARD Initialization: V 0 (0) = 1 V k (0) = 0, for all k > 0 Initialization: f 0 (0) = 1 f k (0)

More information

Hidden Markov Models. By Parisa Abedi. Slides courtesy: Eric Xing

Hidden Markov Models. By Parisa Abedi. Slides courtesy: Eric Xing Hidden Markov Models By Parisa Abedi Slides courtesy: Eric Xing i.i.d to sequential data So far we assumed independent, identically distributed data Sequential (non i.i.d.) data Time-series data E.g. Speech

More information

8/23/2014. Phylogeny and the Tree of Life

8/23/2014. Phylogeny and the Tree of Life Phylogeny and the Tree of Life Chapter 26 Objectives Explain the following characteristics of the Linnaean system of classification: a. binomial nomenclature b. hierarchical classification List the major

More information

Alignment Algorithms. Alignment Algorithms

Alignment Algorithms. Alignment Algorithms Midterm Results Big improvement over scores from the previous two years. Since this class grade is based on the previous years curve, that means this class will get higher grades than the previous years.

More information

BMI/CS 576 Fall 2016 Final Exam

BMI/CS 576 Fall 2016 Final Exam BMI/CS 576 all 2016 inal Exam Prof. Colin Dewey Saturday, December 17th, 2016 10:05am-12:05pm Name: KEY Write your answers on these pages and show your work. You may use the back sides of pages as necessary.

More information

Stephen Scott.

Stephen Scott. 1 / 27 sscott@cse.unl.edu 2 / 27 Useful for modeling/making predictions on sequential data E.g., biological sequences, text, series of sounds/spoken words Will return to graphical models that are generative

More information

CSCE 478/878 Lecture 9: Hidden. Markov. Models. Stephen Scott. Introduction. Outline. Markov. Chains. Hidden Markov Models. CSCE 478/878 Lecture 9:

CSCE 478/878 Lecture 9: Hidden. Markov. Models. Stephen Scott. Introduction. Outline. Markov. Chains. Hidden Markov Models. CSCE 478/878 Lecture 9: Useful for modeling/making predictions on sequential data E.g., biological sequences, text, series of sounds/spoken words Will return to graphical models that are generative sscott@cse.unl.edu 1 / 27 2

More information

Pair Hidden Markov Models

Pair Hidden Markov Models Pair Hidden Markov Models Scribe: Rishi Bedi Lecturer: Serafim Batzoglou January 29, 2015 1 Recap of HMMs alphabet: Σ = {b 1,...b M } set of states: Q = {1,..., K} transition probabilities: A = [a ij ]

More information

Sara C. Madeira. Universidade da Beira Interior. (Thanks to Ana Teresa Freitas, IST for useful resources on this subject)

Sara C. Madeira. Universidade da Beira Interior. (Thanks to Ana Teresa Freitas, IST for useful resources on this subject) Bioinformática Sequence Alignment Pairwise Sequence Alignment Universidade da Beira Interior (Thanks to Ana Teresa Freitas, IST for useful resources on this subject) 1 16/3/29 & 23/3/29 27/4/29 Outline

More information

Phylogenetic inference

Phylogenetic inference Phylogenetic inference Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, March 7 th 016 After this lecture, you can discuss (dis-) advantages of different information types

More information

Hidden Markov Models. Aarti Singh Slides courtesy: Eric Xing. Machine Learning / Nov 8, 2010

Hidden Markov Models. Aarti Singh Slides courtesy: Eric Xing. Machine Learning / Nov 8, 2010 Hidden Markov Models Aarti Singh Slides courtesy: Eric Xing Machine Learning 10-701/15-781 Nov 8, 2010 i.i.d to sequential data So far we assumed independent, identically distributed data Sequential data

More information

Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD William and Nancy Thompson Missouri Distinguished Professor Department

More information

Hidden Markov models in population genetics and evolutionary biology

Hidden Markov models in population genetics and evolutionary biology Hidden Markov models in population genetics and evolutionary biology Gerton Lunter Wellcome Trust Centre for Human Genetics Oxford, UK April 29, 2013 Topics for today Markov chains Hidden Markov models

More information

CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools. Giri Narasimhan

CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools. Giri Narasimhan CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs15.html Describing & Modeling Patterns

More information

Evolutionary trees. Describe the relationship between objects, e.g. species or genes

Evolutionary trees. Describe the relationship between objects, e.g. species or genes Evolutionary trees Bonobo Chimpanzee Human Neanderthal Gorilla Orangutan Describe the relationship between objects, e.g. species or genes Early evolutionary studies Anatomical features were the dominant

More information

What is Phylogenetics

What is Phylogenetics What is Phylogenetics Phylogenetics is the area of research concerned with finding the genetic connections and relationships between species. The basic idea is to compare specific characters (features)

More information

Tandem Mass Spectrometry: Generating function, alignment and assembly

Tandem Mass Spectrometry: Generating function, alignment and assembly Tandem Mass Spectrometry: Generating function, alignment and assembly With slides from Sangtae Kim and from Jones & Pevzner 2004 Determining reliability of identifications Can we use Target/Decoy to estimate

More information

networks in molecular biology Wolfgang Huber

networks in molecular biology Wolfgang Huber networks in molecular biology Wolfgang Huber networks in molecular biology Regulatory networks: components = gene products interactions = regulation of transcription, translation, phosphorylation... Metabolic

More information

Example: The Dishonest Casino. Hidden Markov Models. Question # 1 Evaluation. The dishonest casino model. Question # 3 Learning. Question # 2 Decoding

Example: The Dishonest Casino. Hidden Markov Models. Question # 1 Evaluation. The dishonest casino model. Question # 3 Learning. Question # 2 Decoding Example: The Dishonest Casino Hidden Markov Models Durbin and Eddy, chapter 3 Game:. You bet $. You roll 3. Casino player rolls 4. Highest number wins $ The casino has two dice: Fair die P() = P() = P(3)

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Hidden Markov Models Barnabás Póczos & Aarti Singh Slides courtesy: Eric Xing i.i.d to sequential data So far we assumed independent, identically distributed

More information

Hidden Markov Models. Main source: Durbin et al., Biological Sequence Alignment (Cambridge, 98)

Hidden Markov Models. Main source: Durbin et al., Biological Sequence Alignment (Cambridge, 98) Hidden Markov Models Main source: Durbin et al., Biological Sequence Alignment (Cambridge, 98) 1 The occasionally dishonest casino A P A (1) = P A (2) = = 1/6 P A->B = P B->A = 1/10 B P B (1)=0.1... P

More information

Hidden Markov Models (I)

Hidden Markov Models (I) GLOBEX Bioinformatics (Summer 2015) Hidden Markov Models (I) a. The model b. The decoding: Viterbi algorithm Hidden Markov models A Markov chain of states At each state, there are a set of possible observables

More information

MACHINE LEARNING 2 UGM,HMMS Lecture 7

MACHINE LEARNING 2 UGM,HMMS Lecture 7 LOREM I P S U M Royal Institute of Technology MACHINE LEARNING 2 UGM,HMMS Lecture 7 THIS LECTURE DGM semantics UGM De-noising HMMs Applications (interesting probabilities) DP for generation probability

More information

Algorithms in Bioinformatics

Algorithms in Bioinformatics Algorithms in Bioinformatics Sami Khuri Department of Computer Science San José State University San José, California, USA khuri@cs.sjsu.edu www.cs.sjsu.edu/faculty/khuri Distance Methods Character Methods

More information

"Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky

Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky MOLECULAR PHYLOGENY "Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky EVOLUTION - theory that groups of organisms change over time so that descendeants differ structurally

More information

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment Algorithms in Bioinformatics FOUR Sami Khuri Department of Computer Science San José State University Pairwise Sequence Alignment Homology Similarity Global string alignment Local string alignment Dot

More information

Hidden Markov Models. based on chapters from the book Durbin, Eddy, Krogh and Mitchison Biological Sequence Analysis via Shamir s lecture notes

Hidden Markov Models. based on chapters from the book Durbin, Eddy, Krogh and Mitchison Biological Sequence Analysis via Shamir s lecture notes Hidden Markov Models based on chapters from the book Durbin, Eddy, Krogh and Mitchison Biological Sequence Analysis via Shamir s lecture notes music recognition deal with variations in - actual sound -

More information

Hidden Markov Models and some applications

Hidden Markov Models and some applications Oleg Makhnin New Mexico Tech Dept. of Mathematics November 11, 2011 HMM description Application to genetic analysis Applications to weather and climate modeling Discussion HMM description Application to

More information

Today s Lecture: HMMs

Today s Lecture: HMMs Today s Lecture: HMMs Definitions Examples Probability calculations WDAG Dynamic programming algorithms: Forward Viterbi Parameter estimation Viterbi training 1 Hidden Markov Models Probability models

More information

Chapter 4: Hidden Markov Models

Chapter 4: Hidden Markov Models Chapter 4: Hidden Markov Models 4.1 Introduction to HMM Prof. Yechiam Yemini (YY) Computer Science Department Columbia University Overview Markov models of sequence structures Introduction to Hidden Markov

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 07: profile Hidden Markov Model http://bibiserv.techfak.uni-bielefeld.de/sadr2/databasesearch/hmmer/profilehmm.gif Slides adapted from Dr. Shaojie Zhang

More information

order is number of previous outputs

order is number of previous outputs Markov Models Lecture : Markov and Hidden Markov Models PSfrag Use past replacements as state. Next output depends on previous output(s): y t = f[y t, y t,...] order is number of previous outputs y t y

More information

Comparative Gene Finding. BMI/CS 776 Spring 2015 Colin Dewey

Comparative Gene Finding. BMI/CS 776  Spring 2015 Colin Dewey Comparative Gene Finding BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2015 Colin Dewey cdewey@biostat.wisc.edu Goals for Lecture the key concepts to understand are the following: using related genomes

More information

Pattern Matching (Exact Matching) Overview

Pattern Matching (Exact Matching) Overview CSI/BINF 5330 Pattern Matching (Exact Matching) Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Pattern Matching Exhaustive Search DFA Algorithm KMP Algorithm

More information

Phylogenetic Trees. How do the changes in gene sequences allow us to reconstruct the evolutionary relationships between related species?

Phylogenetic Trees. How do the changes in gene sequences allow us to reconstruct the evolutionary relationships between related species? Why? Phylogenetic Trees How do the changes in gene sequences allow us to reconstruct the evolutionary relationships between related species? The saying Don t judge a book by its cover. could be applied

More information

Hidden Markov Models. Hosein Mohimani GHC7717

Hidden Markov Models. Hosein Mohimani GHC7717 Hidden Markov Models Hosein Mohimani GHC7717 hoseinm@andrew.cmu.edu Fair et Casino Problem Dealer flips a coin and player bets on outcome Dealer use either a fair coin (head and tail equally likely) or

More information

Molecular phylogeny - Using molecular sequences to infer evolutionary relationships. Tore Samuelsson Feb 2016

Molecular phylogeny - Using molecular sequences to infer evolutionary relationships. Tore Samuelsson Feb 2016 Molecular phylogeny - Using molecular sequences to infer evolutionary relationships Tore Samuelsson Feb 2016 Molecular phylogeny is being used in the identification and characterization of new pathogens,

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2011 1 HMM Lecture Notes Dannie Durand and Rose Hoberman October 11th 1 Hidden Markov Models In the last few lectures, we have focussed on three problems

More information

Phylogeny and Molecular Evolution. Introduction

Phylogeny and Molecular Evolution. Introduction Phylogeny and Molecular Evolution Introduction 1 Credit Serafim Batzoglou (UPGMA slides) http://www.stanford.edu/class/cs262/slides Notes by Nir Friedman, Dan Geiger, Shlomo Moran, Ron Shamir, Sagi Snir,

More information

Modern Evolutionary Classification. Section 18-2 pgs

Modern Evolutionary Classification. Section 18-2 pgs Modern Evolutionary Classification Section 18-2 pgs 451-455 Modern Evolutionary Classification In a sense, organisms determine who belongs to their species by choosing with whom they will mate. Taxonomic

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

CSE182-L7. Protein Sequence Analysis Patterns (regular expressions) Profiles HMM Gene Finding CSE182

CSE182-L7. Protein Sequence Analysis Patterns (regular expressions) Profiles HMM Gene Finding CSE182 CSE182-L7 Protein Sequence Analysis Patterns (regular expressions) Profiles HMM Gene Finding 10-07 CSE182 Bell Labs Honors Pattern matching 10-07 CSE182 Just the Facts Consider the set of all substrings

More information

Introduction to spectral alignment

Introduction to spectral alignment SI Appendix C. Introduction to spectral alignment Due to the complexity of the anti-symmetric spectral alignment algorithm described in Appendix A, this appendix provides an extended introduction to the

More information

C3020 Molecular Evolution. Exercises #3: Phylogenetics

C3020 Molecular Evolution. Exercises #3: Phylogenetics C3020 Molecular Evolution Exercises #3: Phylogenetics Consider the following sequences for five taxa 1-5 and the known outgroup O, which has the ancestral states (note that sequence 3 has changed from

More information

BIOLOGY YEAR AT A GLANCE RESOURCE ( )

BIOLOGY YEAR AT A GLANCE RESOURCE ( ) BIOLOGY YEAR AT A GLANCE RESOURCE (2016-17) DATES TOPIC/BENCHMARKS QUARTER 1 LAB/ACTIVITIES 8/22 8/25/16 I. Introduction to Biology Lab 1: Seed Germination A. What is Biology B. Science in the real world

More information

Computational Biology: Basics & Interesting Problems

Computational Biology: Basics & Interesting Problems Computational Biology: Basics & Interesting Problems Summary Sources of information Biological concepts: structure & terminology Sequencing Gene finding Protein structure prediction Sources of information

More information

Phylogenetic Tree Reconstruction

Phylogenetic Tree Reconstruction I519 Introduction to Bioinformatics, 2011 Phylogenetic Tree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Evolution theory Speciation Evolution of new organisms is driven

More information

ROBI POLIKAR. ECE 402/504 Lecture Hidden Markov Models IGNAL PROCESSING & PATTERN RECOGNITION ROWAN UNIVERSITY

ROBI POLIKAR. ECE 402/504 Lecture Hidden Markov Models IGNAL PROCESSING & PATTERN RECOGNITION ROWAN UNIVERSITY BIOINFORMATICS Lecture 11-12 Hidden Markov Models ROBI POLIKAR 2011, All Rights Reserved, Robi Polikar. IGNAL PROCESSING & PATTERN RECOGNITION LABORATORY @ ROWAN UNIVERSITY These lecture notes are prepared

More information

BIOLOGY YEAR AT A GLANCE RESOURCE ( ) REVISED FOR HURRICANE DAYS

BIOLOGY YEAR AT A GLANCE RESOURCE ( ) REVISED FOR HURRICANE DAYS BIOLOGY YEAR AT A GLANCE RESOURCE (2017-18) REVISED FOR HURRICANE DAYS DATES TOPIC/BENCHMARKS QUARTER 1 LAB/ACTIVITIES 8/21 8/24/17 I. Introduction to Biology A. What is Biology B. Science in the real

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Sequence modelling. Marco Saerens (UCL) Slides references

Sequence modelling. Marco Saerens (UCL) Slides references Sequence modelling Marco Saerens (UCL) Slides references Many slides and figures have been adapted from the slides associated to the following books: Alpaydin (2004), Introduction to machine learning.

More information

9 Forward-backward algorithm, sum-product on factor graphs

9 Forward-backward algorithm, sum-product on factor graphs Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 9 Forward-backward algorithm, sum-product on factor graphs The previous

More information

Phylogenetic Trees. What They Are Why We Do It & How To Do It. Presented by Amy Harris Dr Brad Morantz

Phylogenetic Trees. What They Are Why We Do It & How To Do It. Presented by Amy Harris Dr Brad Morantz Phylogenetic Trees What They Are Why We Do It & How To Do It Presented by Amy Harris Dr Brad Morantz Overview What is a phylogenetic tree Why do we do it How do we do it Methods and programs Parallels

More information

A PARSIMONY APPROACH TO ANALYSIS OF HUMAN SEGMENTAL DUPLICATIONS

A PARSIMONY APPROACH TO ANALYSIS OF HUMAN SEGMENTAL DUPLICATIONS A PARSIMONY APPROACH TO ANALYSIS OF HUMAN SEGMENTAL DUPLICATIONS CRYSTAL L. KAHN and BENJAMIN J. RAPHAEL Box 1910, Brown University Department of Computer Science & Center for Computational Molecular Biology

More information

Phylogenetics. BIOL 7711 Computational Bioscience

Phylogenetics. BIOL 7711 Computational Bioscience Consortium for Comparative Genomics! University of Colorado School of Medicine Phylogenetics BIOL 7711 Computational Bioscience Biochemistry and Molecular Genetics Computational Bioscience Program Consortium

More information

CONTENTS. P A R T I Genomes 1. P A R T II Gene Transcription and Regulation 109

CONTENTS. P A R T I Genomes 1. P A R T II Gene Transcription and Regulation 109 CONTENTS ix Preface xv Acknowledgments xxi Editors and contributors xxiv A computational micro primer xxvi P A R T I Genomes 1 1 Identifying the genetic basis of disease 3 Vineet Bafna 2 Pattern identification

More information

Hidden Markov Models and some applications

Hidden Markov Models and some applications Oleg Makhnin New Mexico Tech Dept. of Mathematics November 11, 2011 HMM description Application to genetic analysis Applications to weather and climate modeling Discussion HMM description Hidden Markov

More information

Computational Biology

Computational Biology Computational Biology Lecture 6 31 October 2004 1 Overview Scoring matrices (Thanks to Shannon McWeeney) BLAST algorithm Start sequence alignment 2 1 What is a homologous sequence? A homologous sequence,

More information

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma COMS 4771 Probabilistic Reasoning via Graphical Models Nakul Verma Last time Dimensionality Reduction Linear vs non-linear Dimensionality Reduction Principal Component Analysis (PCA) Non-linear methods

More information

Grundlagen der Bioinformatik, SS 09, D. Huson, June 16, S. Durbin, S. Eddy, A. Krogh and G. Mitchison, Biological Sequence

Grundlagen der Bioinformatik, SS 09, D. Huson, June 16, S. Durbin, S. Eddy, A. Krogh and G. Mitchison, Biological Sequence rundlagen der Bioinformatik, SS 09,. Huson, June 16, 2009 81 7 Markov chains and Hidden Markov Models We will discuss: Markov chains Hidden Markov Models (HMMs) Profile HMMs his chapter is based on: nalysis,

More information