Name: AST 114 Date: THE DEEP SKY

Size: px
Start display at page:

Download "Name: AST 114 Date: THE DEEP SKY"

Transcription

1 Name: AST 114 Date: THE DEEP SKY The purpose of this lab is to familiarize the student with the use of the planisphere, sky atlas, and coordinate systems for the night sky and introduce the student to the variety of objects visible at night. The goals of this lab include determining the positions of astronomical objects using the celestial coordinate system and finding these objects among the constellations of the night sky. INTRODUCTION Look up into the night sky and the first thing you are likely to notice is the stars. They are bright, colorful, and their patterns have always fascinated people. While the stars are, in one sense, the building blocks of the Universe, there is more to the night sky and the Universe than the stars. Look up into the night sky from a dark location and you will see the Milky Way arching overhead. Hidden within the Milky Way s glowing band are nebulas and star clusters too faint for the unaided eye to see. A pair of binoculars or small telescope will reveal countless stars spread across the Milky Way punctuated by dense clusters of stars and glowing clouds of gas. The relatively starless regions on either side of the Milky Way are the realm of the galaxies. The Andromeda Galaxy is the closest large neighbor to the Milky Way and the only distant galaxy beyond our home Milky Way that is easily visible to the unaided eye. Observing even more distant galaxies requires a telescope and dark skies. USING A PLANISPHERE (or STARWHEEL) There are a variety of computer programs and websites that provide accurate maps of the Moon and planets, stars, constellations, star clusters, nebulas, galaxies, and other deep sky objects. Planetarium software is useful, but carrying a computer with you out under the night sky can be inconvenient. A planisphere (also known as a starwheel) provides a compact, convenient alternative. A planisphere displays the stars and constellations on a flat, round map with the days of the year printed along the edge of the map. A second panel labeled with the hours of the day is attached on top of the star map. By rotating the upper panel, you can match the date with the time and view the portion of the starry sky that is visible at that time and date. Constellations are labeled in ALL CAPITALS (e.g. AQUILA) and star names are Capitalized (e.g. Altair). 1) Set the planisphere to 10pm on February 1. In the circle on the next page, sketch and label the following prominent constellations: Auriga, Canis Major, Gemini, Leo, and Orion. You do not need to include every star of each constellation, but be sure to draw each constellation with the correct size and position on the sky relative to the horizon. 1

2 NORTH EAST WEST SOUTH 1) Carefully examine the stars visible at 10pm on February 1. Name 3 bright stars and their constellations visible at this time and date. 2) Which bright, familiar constellation is near the northeastern horizon at this time and date? 3) Which constellation is almost exactly overhead at 10pm on February 1? 2

3 4) Now set your starwheel for 10 pm on March 1. What has happened to the positions of the large constellations you sketched for February 1? Have they moved east or west? 5) At what time are the constellations Gemini and Orion visible during September? Are the constellations visible at night in February and March always visible in the night sky? 6) The Sun and Earth during 12 months of the year are shown in the diagram above. Identify the constellation Scorpius on the diagram above. What time of year is Scorpius visible in the night sky? What prevents us from seeing Scorpius 6 months later? 7) Are the stars and constellations visible in one month of the year necessarily visible every night of the year? What celestial object prevents us from seeing these constellations? 3

4 CELESTIAL COORDINATES To locate a position on Earth s surface, two coordinates are used: latitude and longitude. Latitude is measured north or south of Earth s equator. Longitude is measured east or west of the prime meridian. While Earth s equator is situated halfway between the north and south poles, the prime meridian of zero longitude was chosen for historical reasons to run through Greenwich, England. Latitude & longitude are measured in degrees (east & north positive, west & south negative): Any location on the Equator has a latitude of zero degrees The North Pole has a latitude of +90 degrees or 90 degrees north The South Pole has a latitude of 90 degrees or 90 degrees south Greenwich, England: (longitude, latitude) = (0.0 degrees, 51.5 degrees north) Mesa Community College: (longitude, latitude) = (111.9 degrees west, 33.4 degrees north) Sydney, Australia: (longitude, latitude) = (151.0 degrees east, 33.8 degrees south) Astronomers use similar coordinates to locate objects on the sky: the celestial coordinate system. The celestial equator is the projection of Earth s equator onto the sky. If you stand on Earth s equator, the celestial equator passes directly overhead and intersects the horizon due east and due west. The north celestial pole and south celestial pole are the projections of the north and south ends of Earth s rotation axis onto the sky. If you stand on one of Earth s poles, one of the celestial poles is directly overhead. Declination is exactly equivalent to latitude; it is the angle measured north or south from the celestial equator. Both declination and latitude are measured in degrees and both are positive for locations north of the equator and negative for locations south of the equator. (Declination and latitude are often displayed as degrees, arcminutes, and arcseconds. One arcminute is 1/60 th of a degree and 1 arcsecond is 1/60 th of an arcminute.) Right Ascension is equivalent to longitude, but there are differences. Longitude is measured east or west, but right ascension is measured eastward only. Longitude is measured in degrees, but right ascension is measured in hours, minutes, & seconds. There are 24 hours of right ascension in a complete circuit around the celestial equator. 4

5 While the longitude of zero degrees was chosen for historical reasons, the right ascension of zero hours was chosen for astronomical reasons. Zero hours right ascension is the location where the ecliptic (the Sun s annual path) crosses the celestial equator moving from south to north. This definition means the Sun has a right ascension of zero hours on the first day of northern spring. A location on Earth s surface has latitude and longitude coordinates that do not change. In the same way, distant objects like stars, nebulas, and galaxies have right ascension and declination coordinates that do not change (or only slowly over decades or centuries). This makes each coordinate system useful since the coordinates you look up one year are accurate the next year. 8) The star Polaris is known as the North Star because it lies very close to the north celestial pole. Based on the definition on the previous page, estimate the declination of Polaris. 9) The stars that form the belt of Orion straddle the celestial equator. What is the approximate declination of these stars? 10) Because of Earth s orbital motion around the Sun, the Sun s position appears to change relative to the background stars. Are the right ascension & declination of the Sun the same from one day to the next? 11) Which other celestial objects are close enough to Earth that their changing positions are noticeable relative to the background stars over periods of days, months, or years? 12) Do the right ascension & declination of this group of objects remain the same over time? 13) Explain why planispheres do not display the positions of the Moon or the planets. 5

6 SIMBAD: AN ASTRONOMICAL DATABASE With the invention of the World Wide Web, large amounts of astronomical data have become easy to browse. A major astronomical resource is the SIMBAD database located at Visit this website and click basic search under Queries. Enter Polaris into the search field and press enter or click the SIMBAD search button. A page of information about the star Polaris will be displayed. The right ascension and declination of Polaris are labeled ICRS coord. Pointing the mouse cursor at these coordinates will reveal that right ascension is given in hours, minutes, and seconds and declination is given in degrees, minutes, and seconds. 14) Record the right ascension and declination of Polaris. Compare the declination of Polaris with your estimate in Question #8. Was your estimate accurate? Next search SIMBAD for Mintaka, the western-most belt star of Orion. 15) Record the ICRS right ascension and declination for this star. Compare the declination of Mintaka to your estimate in Question #9. Was your estimate accurate? Search for Betelgeuse, the bright red supergiant north-east of Mintaka in Orion s shoulder. 16) Record the ICRS right ascension and declination for this star. Compare the coordinates of Betelgeuse to the coordinates of Mintaka. How can you tell by looking at the coordinates of these two stars that Betelgeuse is north and east of Mintaka? 6

7 THE SKY ATLAS Before computers had revolutionized astronomy, finding celestial objects in the sky required the careful use of a sky atlas. Just as a geographic atlas of Earth s surface shows the natural features (lakes, rivers, mountain ranges) and artificial features (cities, roads, borders) of a landscape, a sky atlas shows the positions of the objects in the night sky. In this lab course, you will be using the Sky & Telescope s Pocket Sky Atlas. In this atlas, the entire sky has been broken into multiple charts. These charts are numbered with large blue numbers in the upper corners of the pages. These are not page numbers! The small, blue, numbered triangles at the edges of the pages indicate which chart lies in each direction. The inside of the back cover of the atlas also provides a map for all of the charts relative to prominent constellations. Turn to Chart 2. Notice that lines of constant declination cross the page from left to right and lines of constant right ascension cross the page from top to bottom. 17) Estimate the right ascension and declination of the star Mirfak in the constellation Perseus. You may notice that many of the brighter stars (shown with larger dots) are labeled with small letters. These Greek letters were assigned by German astronomer Johann Bayer around This system generally places the stars of each constellation in order of brightness, with the brightest star labeled alpha (α), second brightest labeled beta (β), third gamma (γ), and so on. The letters of the Greek alphabet are: α alpha ι iota ρ rho β beta κ kappa σ sigma γ gamma λ lambda τ tau δ delta µ mu υ upsilon ε epsilon ν nu φ phi ζ zeta ξ xi χ chi η eta ο omicron ψ psi θ theta π pi ω omega Look again at Chart 2 in the Pocket Sky Atlas. Notice a small α (alpha) next to the star Mirfak: the Bayer designation for the star Mirfak is alpha Persei or α Persei. The name literally means the first of Perseus and uses the Latin genitive form of the name Perseus: Persei. You may find that astronomy texts use the Bayer name for a star if that star has no commonly used name. 18) Using the table above, what is the Bayer name for the 2 nd brightest star in Perseus? 7

8 19) Find this star on Chart 2 in the Pocket Sky Atlas. What is this star s common name? Visit 20) What is the Bayer designation of the brightest star in Canis Major (the big dog)? 21) Turn to Chart 27 of the Pocket Sky Atlas. What is the common name of this star? Flip to Chart 6 7 of the Pocket Sky Atlas. 22) What kind of non-stellar object is most numerous in this part of the sky? The page facing Chart 1 and Chart 11 is a Chart Legend showing the types of objects plotted. 23) What constellations are shown on Chart 6 7? 24) Give the common name and Bayer name of two bright stars shown on Chart 6 7. Examine Chart 62 in the Pocket Sky Atlas. Flip back one page to find a Chart Legend. 25) What 3 types of non-stellar objects are common in this part of the sky? 26) What is the common name and Bayer name of the brightest star in Cygnus? 8

9 OBSERVING THE STARRY SKY IN THE PLANETARIUM Set a planisphere for 8pm during the first week of May and find the bright stars and prominent constellations listed below. Briefly describe where on the sky you should look to find each item (for example, high overhead? near the horizon? north? south? east? west?). Orion and the star Betelgeuse: Gemini and the stars Castor and Pollux: Bootes and the star Arcturus: Virgo and the star Spica: Ursa Major and the Big Dipper: Leo and the star Regulus: Once you have indentified the stars and constellations on your planispheres, head into the planetarium. The stars visible at 8pm during the first week of May are projected onto the planetarium dome. Relative to your seated position, the north celestial pole is at the back of the planetarium dome about 30 degrees up from the dome edge (the horizon ). 27) Which direction are you facing when you sit in the planetarium seats? 28) Which direction is to your left? To your right? 29) Based on your answers to the previous 3 questions, how should you hold the planisphere to match the directions on the planisphere with the directions on the planetarium dome? Practice with a planisphere until you can identify the bright stars and prominent constellations listed on the previous page. Identifying several of these stars and constellations will be part of the lab quiz next week. The stars and constellations you identified on the dome are easy to find on the sky, even through the light pollution of the city. 9

10 Throughout the semester go outside and practice! Use a planisphere, the pages in the back of the textbook, or a planetarium program to guide you. Recognizing the stars and constellations takes practice, but it s a lot of fun and it s easy to do! You will also be given time during the lab period to practice. Make use of this time to practice, too. At the end of the semester, you will be given a Constellation Quiz to test your knowledge. A series of bright stars, prominent constellations, and the bright planets will be displayed for you in the planetarium. You will be asked to identify 20 of them. To help you study, your instructor will provide you a handout of possible objects in a few weeks. If you have questions about the Constellation Quiz, be sure to ask your instructor! It is an important part of your astronomy lab grade. 10

OBSERVING THE NIGHT SKY I

OBSERVING THE NIGHT SKY I 29:50 Astronomy Lab Evening Sections Stars, Galaxies, and the Universe Fall 2010 Name Date Grade /10 OBSERVING THE NIGHT SKY I INTRODUCTION In this session we will observe the night sky. The idea is to

More information

Local Coordinates. These are centered upon you, the observer.

Local Coordinates. These are centered upon you, the observer. Astronomy 30, Observing #3 Name: Lab Partners: Date: Materials: This lab, with the star chart completed from the pre-lab. Some sheets of paper for sketches. A pencil with eraser. A small flashlight, ideally

More information

Winter Observing at Anderson Mesa Spring Semester

Winter Observing at Anderson Mesa Spring Semester Coconino Community College Astronomy PHYS 180 Name: Telescope No. Winter Observing at Anderson Mesa Spring Semester Weather permitting; we will be able to view a number of different constellations and

More information

Stars and Galaxies Phys1403 Lab - Constellations

Stars and Galaxies Phys1403 Lab - Constellations Stars and Galaxies Phys1403 Lab - Constellations Instructions: You can work in a group of 2 or 3 students. Part 1: Using the Charts in the Planetarium Table 1 has a list of constellations showing its stick

More information

WHAT ARE THE CONSTELLATIONS

WHAT ARE THE CONSTELLATIONS CONSTELLATIONS WHAT ARE THE CONSTELLATIONS In popular usage, the term constellation is used to denote a recognizable grouping of stars. Astronomers have redefined the constellations as 88 regions of the

More information

Astronomy 101 Lab Manual. Victor Andersen Community College of Aurora

Astronomy 101 Lab Manual. Victor Andersen Community College of Aurora Astronomy 101 Lab Manual Victor Andersen Community College of Aurora victor.andersen@ccaurora.edu January 8, 2013 2 Contents 1 Angular Measures 5 1.1 Introduction............................ 5 1.1.1 Degrees,

More information

BOY SCOUT ASTRONOMY MERIT BADGE WORKSHOP

BOY SCOUT ASTRONOMY MERIT BADGE WORKSHOP Feb2018 BOY SCOUT ASTRONOMY MERIT BADGE WORKSHOP The session is from 8:00am-12:30pm. All pre-requisite questions must be done on your own or with your troop BEFORE 8am on workshop day. Name Troop Leader

More information

The Sky. Day sky: the Sun, occasionally the Moon. Night Sky: stars, and sometimes the Moon

The Sky. Day sky: the Sun, occasionally the Moon. Night Sky: stars, and sometimes the Moon The Sky Day sky: the Sun, occasionally the Moon Night Sky: stars, and sometimes the Moon So MANY objects.how Do We Make Sense of it ALL?? Goal How to describe the locations of objects in the sky To understand

More information

Using the Star Wheel Laboratory 2

Using the Star Wheel Laboratory 2 Objective: Using the Star Wheel Laboratory 2 This laboratory introduces the Star Wheel; which is a common tool used in backyard observing. This tool helps approximate the location of constellations and

More information

Planetarium Based Laboratory Activity Constellations

Planetarium Based Laboratory Activity Constellations Planetarium Based Laboratory Activity Constellations Instructions: You can work in a group of 2 or 3 students. Part 1: Using the Charts in the Planetarium Table 1 has a list of constellations showing its

More information

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations. Chapter 1: Discovering the Night Sky Constellations: Recognizable patterns of the brighter stars that have been derived from ancient legends. Different cultures have associated the patterns with their

More information

How Dark are your Skies?

How Dark are your Skies? How Dark are your Skies? Introduction: Estimating Limiting Magnitude Limiting magnitude is used to evaluate the quality of observing conditions. You can be in the best and darkest sight, but you still

More information

Today in Space News: Space.com story. More info from NASA. Credit: NASA/JPL-Caltech/MSSS

Today in Space News: Space.com story. More info from NASA. Credit: NASA/JPL-Caltech/MSSS Today in Space News: Space.com story More info from NASA Credit: NASA/JPL-Caltech/MSSS Study Points (marked with *) Describe positions of stars, Moon, Sun on the sky using direction and altitude. Do this

More information

Kitt Peak Nightly Observing Program

Kitt Peak Nightly Observing Program Kitt Peak Nightly Observing Program Splendors of the Universe on YOUR Night! Many pictures are links to larger versions. Click here for the Best images of the OTOP Gallery and more information. Engagement

More information

Kitt Peak Nightly Observing Program

Kitt Peak Nightly Observing Program Kitt Peak Nightly Observing Program Splendors of the Universe on YOUR Night! Many pictures are links to larger versions. Click here for the Best images of the OTOP Gallery and more information. Winter

More information

Astronomy 1 Introductory Astronomy Spring 2014

Astronomy 1 Introductory Astronomy Spring 2014 Astronomy 1 Introductory Astronomy Spring 2014 Lab 5: Observing the Sky pt. 2 Quick overview Meet at 8 p.m. in Science Center Room 187. We will go up to the roof from there, and make several different

More information

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter.

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter. Name: Date: 1. If there are about 6000 stars in the entire sky that can be seen by the unaided human eye, about how many stars would be seen at a particular instant on a given dark night from a single

More information

Mathematics Review Exercises. (answers at end)

Mathematics Review Exercises. (answers at end) Brock University Physics 1P21/1P91 Mathematics Review Exercises (answers at end) Work each exercise without using a calculator. 1. Express each number in scientific notation. (a) 437.1 (b) 563, 000 (c)

More information

Exploring the Night Sky

Exploring the Night Sky Lincoln Hills Astronomy Group Exploring the Night Sky October 14, 2009 1 Lincoln Hills Astronomy Group Exploring the Night Sky Objectives Learn how to locate and identify objects in the night sky using

More information

Kitt Peak Nightly Observing Program

Kitt Peak Nightly Observing Program Cassiopeia Kitt Peak Nightly Observing Program Splendors of the Universe on YOUR Night! Many pictures are links to larger versions. Click here for the Best images of the OTOP Gallery and more information.

More information

Kitt Peak Nightly Observing Program

Kitt Peak Nightly Observing Program Kitt Peak Nightly Observing Program Splendors of the Universe on YOUR Night! Many pictures are links to larger versions. Click here for the Best images of the OTOP Gallery and more information. Big Dipper

More information

Kitt Peak Nightly Observing Program

Kitt Peak Nightly Observing Program Kitt Peak Nightly Observing Program Splendors of the Universe on YOUR Night! Many pictures are links to larger versions. Click here for the Best images of the OTOP Gallery and more information. Engagement

More information

AMATEUR OBSERVERS' SOCIETY INTRODUCTION TO ASTRONOMY OBSERVING PROGRAM

AMATEUR OBSERVERS' SOCIETY INTRODUCTION TO ASTRONOMY OBSERVING PROGRAM AMATEUR OBSERVERS' SOCIETY INTRODUCTION TO ASTRONOMY OBSERVING PROGRAM Introduction When you go out at night to observe the sky, whether with the help of a telescope, a pair of binoculars, or simply using

More information

What do you think? 2/3/09. Mastering Astronomy Assignment 2. Constellations the 88 semi-rectangular regions that make up the sky

What do you think? 2/3/09. Mastering Astronomy Assignment 2. Constellations the 88 semi-rectangular regions that make up the sky //09 Mastering Astronomy Assignment Due Feb 0, am Read Chapter Constellations the 88 semi-rectangular regions that make up the sky Northern constellations have Latinized Greek-mythology names: Orion, Cygnus,

More information

CHAPTER 2 A USER'S GUIDE TO THE SKY

CHAPTER 2 A USER'S GUIDE TO THE SKY CHAPTER 2 A USER'S GUIDE TO THE SKY MULTIPLE CHOICE 1. Seen from the northern latitudes (mid-northern hemisphere), the star Polaris a. is never above the horizon during the day. b. always sets directly

More information

AST-103L Spring 2001: Astronomical Motions I. The Night Sky

AST-103L Spring 2001: Astronomical Motions I. The Night Sky Early Greek observers viewed the sky as a transparent sphere which surrounded the Earth. They divided the stars into six categories of brightness with the brightest stars called first magnitude, the next

More information

Sky, Celestial Sphere and Constellations

Sky, Celestial Sphere and Constellations Sky, Celestial Sphere and Constellations Last lecture Galaxies are the main building blocks of the universe. Consists of few billions to hundreds of billions of stars, gas clouds (nebulae), star clusters,

More information

2. Descriptive Astronomy ( Astronomy Without a Telescope )

2. Descriptive Astronomy ( Astronomy Without a Telescope ) How do we locate stars in the heavens? 2. Descriptive Astronomy ( Astronomy Without a Telescope ) What stars are visible from a given location? Where is the sun in the sky at any given time? Where are

More information

OUTSIDE LAB 1: Observing the Heavens

OUTSIDE LAB 1: Observing the Heavens OUTSIDE LAB 1: Observing the Heavens OBJECTIVE: To become familiar with some of the more conspicuous constellations and to observe the motions of stars in the night sky. DISCUSSION: Most people are unfamiliar

More information

SkyGlobe Planetarium

SkyGlobe Planetarium SkyGlobe Planetarium Introduction: This exercise will simulate the night sky and demonstrate a number of principles of the celestial sphere and the motions of the Earth and planets. Getting Started: 1.

More information

Name: Lab Day and Time: Earth and Sky Finding your way. Lab Partner 1: Lab Partner 2: Lab Partner 3: Introduction:

Name: Lab Day and Time: Earth and Sky Finding your way. Lab Partner 1: Lab Partner 2: Lab Partner 3: Introduction: 2 Lab Partner 1: Lab Partner 2: Lab Partner 3: Name: Lab Day and Time: Earth and Sky Finding your way Introduction: If you are a traveler to a new place you will generally seek a map to help you explore

More information

Section 2. Locating Astronomical Objects in the Night Sky What Do You See? What Do You See? Think About It. Investigate.

Section 2. Locating Astronomical Objects in the Night Sky What Do You See? What Do You See? Think About It. Investigate. Section 2 Locating Astronomical Objects in the Night Sky Section 2 Locating Astronomical Objects in the Night Sky What Do You See? What Do You See? Learning Outcomes In this section, you will Construct

More information

Indoor Lab #2: The Starry Sky

Indoor Lab #2: The Starry Sky 17 Indoor Lab #2: The Starry Sky Objectives: To tour the sky and explore the way in which it moves, using the sky simulation program Starry Night Pro. Check out the information sheet on SN first, and try

More information

Introduction to the sky

Introduction to the sky Introduction to the sky On a clear, moonless night, far from city lights, the night sky is magnificent. Roughly 2000 stars are visible to the unaided eye. If you know where to look, you can see Mercury,

More information

Constellations In ancient times, constellations only referred to the brightest stars that appeared to form groups, representing mythological figures.

Constellations In ancient times, constellations only referred to the brightest stars that appeared to form groups, representing mythological figures. Chapter 2: The Sky Constellations In ancient times, constellations only referred to the brightest stars that appeared to form groups, representing mythological figures. Constellations Today, constellations

More information

CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM

CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM Name Partner(s) Section Date CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM You have had the opportunity to look at two different tools to display the night sky, the celestial sphere and the star chart.

More information

It s Full of Stars! Outline. A Sky Full of Stars. Astronomy 210. lights), about how many stars can we see with

It s Full of Stars! Outline. A Sky Full of Stars. Astronomy 210. lights), about how many stars can we see with Astronomy 210 Section 1 MWF 1500-1550 134 Astronomy Building Leslie Looney Phone: 244-3615 Email: lwlw@wuiucw. wedu Office: Astro Building #218 Office Hours: MTF 10:30-11:30 a.m. or by appointment This

More information

Early history of astronomy. Early history of astronomy. Positions in the sky. Lecture 3: The Sun & Constellations

Early history of astronomy. Early history of astronomy. Positions in the sky. Lecture 3: The Sun & Constellations Lecture 3: The Sun & Constellations Professor Kenny L. Tapp Early history of astronomy Birth of modern astronomy Noted scientist Johannes Kepler (1571-1630) Ushered in new astronomy Planets revolve around

More information

Indoor Lab #1: The Celestial Sphere

Indoor Lab #1: The Celestial Sphere 11 Indoor Lab #1: The Celestial Sphere Objective: The celestial globe is a simple device but one of the best ways to develop clear ideas on how the sky works. Go slowly through sections 1 3 to make sure

More information

6/17. Universe from Smallest to Largest:

6/17. Universe from Smallest to Largest: 6/17 Universe from Smallest to Largest: 1. Quarks and Leptons fundamental building blocks of the universe size about 0 (?) importance: quarks combine together to form neutrons and protons. One of the leptons

More information

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc.

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc. Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the

More information

CELESTIAL COORDINATES

CELESTIAL COORDINATES ASTR 1030 Astronomy Lab 27 Celestial Coordinates CELESTIAL COORDINATES GEOGRAPHIC COORDINATES The Earth's geographic coordinate system is familiar to everyone - the north and south poles are defined by

More information

Phys Lab #1: The Sun and the Constellations

Phys Lab #1: The Sun and the Constellations Phys 10293 Lab #1: The Sun and the Constellations Introduction Astronomers use a coordinate system that is fixed to Earth s latitude and longitude. This way, the coordinates of a star or planet are the

More information

Physics Lab #4:! Starry Night Student Exercises I!

Physics Lab #4:! Starry Night Student Exercises I! Physics 10293 Lab #4: Starry Night Student Exercises I Introduction For today s lab, we are going to let the Starry Night software do much of the work for us. We re going to walk through some of the sample

More information

Kitt Peak Nightly Observing Program

Kitt Peak Nightly Observing Program Kitt Peak Nightly Observing Program Splendors of the Universe on YOUR Night! Many pictures are links to larger versions. Click here for the Best images of the OTOP Gallery and more information. Make Edits

More information

BU Astronomy Department AS 10X courses. Night Lab 2 What s the name of that star?

BU Astronomy Department AS 10X courses. Night Lab 2 What s the name of that star? BU Astronomy Department AS 10X courses Night Lab 2 What s the name of that star? The objectives for this Night Lab are: To learn how to find constellations and other objects in the sky using a star chart

More information

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole Chapter 3 How Earth and Sky Work- Effects of Latitude In chapters 3 and 4we will learn why our view of the heavens depends on our position on the Earth, the time of day, and the day of the year. We will

More information

Astrochart Links: Pennsic 43: coming July 25

Astrochart Links: Pennsic 43: coming July 25 Astrochart Links: Pennsic 43: coming July 25 Here are the views of the sky each night of Pennsic XLIII, July & August 2014. Stars begin to come out half an hour after sunset, around 9 o'clock to half past,

More information

Introduction To Modern Astronomy I: Solar System

Introduction To Modern Astronomy I: Solar System ASTR 111 003 Fall 2007 Lecture 02 Sep. 10, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap. 16: Our Sun Chap. 28: Search for

More information

3 - Celestial Sphere

3 - Celestial Sphere 3 - Celestial Sphere Purpose: To construct and use a celestial sphere to show the motion of the Sun and stars in the sky. There are six questions, Q1 Q6, to answer on a separate piece of paper. Due: in

More information

INDEPENDENT PROJECT: The Autumn Night Sky

INDEPENDENT PROJECT: The Autumn Night Sky INDEPENDENT PROJECT: The Autumn Night Sky Your Name: What is the difference between observing and looking? As John Rummel said to the Madison Astronomical Society, January 11, 2002: Looking implies a passive

More information

Stellarium Walk-through for First Time Users

Stellarium Walk-through for First Time Users Stellarium Walk-through for First Time Users Stellarium is the computer program often demonstrated during our planetarium shows at The MOST, Syracuse s science museum. It is our hope that visitors to our

More information

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

Sky views October 2007 revised 10/8/07 (excerpted from Astronomy magazine, 10/2007 issue) by Barbara Wiese

Sky views October 2007 revised 10/8/07 (excerpted from Astronomy magazine, 10/2007 issue) by Barbara Wiese Sky views October 2007 revised 10/8/07 (excerpted from Astronomy magazine, 10/2007 issue) by Barbara Wiese Monthly Overview - Views by Date Definitions Overview Viewing Notes Jupiter in Ophiuchus Neptune

More information

M3 Globular Cluster Chart 6 Canes Venatici RA 13h 42.2m Dec m. Size 18 Mag 6.3 Difficulty Medium. Equipment Requires binoculars

M3 Globular Cluster Chart 6 Canes Venatici RA 13h 42.2m Dec m. Size 18 Mag 6.3 Difficulty Medium. Equipment Requires binoculars M3 Globular Cluster Chart 6 Canes Venatici RA 13h 42.2m Dec +28 23m Size 18 Mag 6.3 Difficulty Medium Requires binoculars Locate Arcturus the brightest star in Bootes Locate Cor Caroli the brightest star

More information

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky Goals: Knowing the Heavens To see how the sky changes during a night and from night to night. To measure the positions of stars in celestial coordinates. To understand the cause of the seasons. Constellations

More information

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation.

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation. 6/14 10. Star Cluster size about 10 14 to 10 17 m importance: where stars are born composed of stars. 11. Galaxy size about 10 21 m importance: provide a stable environment for stars. Composed of stars.

More information

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky Goals: Knowing the Heavens To see how the sky changes during a night and from night to night. To measure the positions of stars in celestial coordinates. To understand the cause of the seasons. Constellations

More information

Friday April 21, :30 MDT (7:30 pm) All TAAS and other new and not so new astronomers are invited. Ursa Major. Photo Courtesy of Naoyuki Kurita

Friday April 21, :30 MDT (7:30 pm) All TAAS and other new and not so new astronomers are invited. Ursa Major. Photo Courtesy of Naoyuki Kurita TAAS Fabulous Fifty Friday April 21, 2017 19:30 MDT (7:30 pm) Ursa Major Photo Courtesy of Naoyuki Kurita All TAAS and other new and not so new astronomers are invited Evening Events 7:30 pm Meet inside

More information

Kitt Peak Nightly Observing Program

Kitt Peak Nightly Observing Program Kitt Peak Nightly Observing Program Splendors of the Universe on YOUR Night! Many pictures are links to larger versions. Click here for the Best images of the OTOP Gallery and more information. Engagement

More information

Kitt Peak Nightly Observing Program

Kitt Peak Nightly Observing Program Kitt Peak Nightly Observing Program Splendors of the Universe on YOUR Night! Many pictures are links to larger versions. Click here for the Best images of the OTOP Gallery and more information. Summer

More information

Kitt Peak Nightly Observing Program

Kitt Peak Nightly Observing Program Kitt Peak Nightly Observing Program Splendors of the Universe on YOUR Night! Many pictures are links to larger versions. Click here for the Best images of the OTOP Gallery and more information. Engagement

More information

Kitt Peak Nightly Observing Program

Kitt Peak Nightly Observing Program Kitt Peak Nightly Observing Program Splendors of the Universe on YOUR Night! Many pictures are links to larger versions. Click here for the Best images of the OTOP Gallery and more information. Big Dipper

More information

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc.

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc. Chapter 2 Discovering the Universe for Yourself 1 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations

More information

Kitt Peak Nightly Observing Program

Kitt Peak Nightly Observing Program Kitt Peak Nightly Observing Program Splendors of the Universe on YOUR Night! Many pictures are links to larger versions. Click here for the Best images of the OTOP Gallery and more information. Engagement

More information

Chapter 2 Discovering the Universe for Yourself

Chapter 2 Discovering the Universe for Yourself Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

Kitt Peak Nightly Observing Program

Kitt Peak Nightly Observing Program Kitt Peak Nightly Observing Program Splendors of the Universe on YOUR Night! Many pictures are links to larger versions. Click here for the Best images of the OTOP Gallery and more information. Engagement

More information

Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017

Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017 Lecture 2: Motions of the Earth and Moon Astronomy 111 Wednesday August 30, 2017 Reminders Online homework #1 due Monday at 3pm Labs start next week Motions of the Earth ASTR111 Lecture 2 Observation:

More information

Boy Scout Penguins and Pajamas Sleepover

Boy Scout Penguins and Pajamas Sleepover Boy Scout Penguins and Pajamas Sleepover February 27th & March 12th, 2016 Welcome to the Morrison Planetarium at the California Academy of Sciences! The Morrison Planetarium opened its doors on Nov 6,

More information

Kitt Peak Nightly Observing Program

Kitt Peak Nightly Observing Program Kitt Peak Nightly Observing Program Splendors of the Universe on YOUR Night! Many pictures are links to larger versions. Click here for the Best images of the OTOP Gallery and more information. Canis Major

More information

Exploring the Night Sky: Star Charts and Stellarium

Exploring the Night Sky: Star Charts and Stellarium Names: Grade Exploring the Night Sky: Charts and Stellarium Pre-Lab Quiz Record you team s answer as well as your reasonings and explanations. 1. 2. 3. 4. Part 1: Using a SC001 Constellation Chart Coordinates

More information

Physics Lab #2: Learning Starry Night, Part 1

Physics Lab #2: Learning Starry Night, Part 1 Physics 10293 Lab #2: Learning Starry Night, Part 1 Introduction In this lab, we'll learn how to use the Starry Night software to explore the sky, and at the same time, you ll get a preview of many of

More information

FYI. 0 You will need to take notes this information will come in handy when going through this unit and on the cok.

FYI. 0 You will need to take notes this information will come in handy when going through this unit and on the cok. FYI 0 You will need to take notes this information will come in handy when going through this unit and on the cok. One of the best ways to get started as a backyard astronomer is to learn the constellations.

More information

Entities for Symbols and Greek Letters

Entities for Symbols and Greek Letters Entities for Symbols and Greek Letters The following table gives the character entity reference, decimal character reference, and hexadecimal character reference for symbols and Greek letters, as well

More information

Astronomy 153 & 154 Lab 2 Excel, Units and Conversions + Angles and Coordinates

Astronomy 153 & 154 Lab 2 Excel, Units and Conversions + Angles and Coordinates Astronomy 153 & 154 Lab 2 Excel, Units and Conversions + Angles and Coordinates In Astronomy lab, there are important skills and concepts that students will need to use and understand in order to complete

More information

WHAT'S UP THIS MONTH MAY 2018

WHAT'S UP THIS MONTH MAY 2018 WHAT'S UP THIS MONTH MAY 2018 THESE PAGES ARE INTENDED TO HELP YOU FIND YOUR WAY AROUND THE SKY The chart on the last page is included for printing off and use outside The chart above shows the whole night

More information

Marian Physics! Apparent Magnitude. Flat Prairie Publishing

Marian Physics! Apparent Magnitude. Flat Prairie Publishing Marian Physics! Apparent Flat Prairie Publishing Apparent Assignment Apparent Apparent The scale used in astronomy to measure the brightness of stars is steeped in history and perhaps not a whole lot of

More information

ASTRONOMY Merit Badge Requirements

ASTRONOMY Merit Badge Requirements ASTRONOMY Merit Badge Requirements 1) Do the following: A) Sketch the face of the moon, indicating on it the locations of at least five seas and five craters. B) Within a single week, sketch the position

More information

Contents. basic algebra. Learning outcomes. Time allocation. 1. Mathematical notation and symbols. 2. Indices. 3. Simplification and factorisation

Contents. basic algebra. Learning outcomes. Time allocation. 1. Mathematical notation and symbols. 2. Indices. 3. Simplification and factorisation basic algebra Contents. Mathematical notation and symbols 2. Indices 3. Simplification and factorisation 4. Arithmetic of algebraic fractions 5. Formulae and transposition Learning outcomes In this workbook

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

Goals of this course. Welcome to Stars, Galaxies & the Universe. Grading for Stars, Galaxies & Universe. Other things you need to know: Course Website

Goals of this course. Welcome to Stars, Galaxies & the Universe. Grading for Stars, Galaxies & Universe. Other things you need to know: Course Website Welcome to Stars, Galaxies & the Universe Grading for Stars, Galaxies & Universe One-hour exams (3 exams, dates on syllabus) 300 Final exam (16 December 2010) 150 Homework (10 of 12 ICON assignments) 100

More information

What is Star Hopping?

What is Star Hopping? by Daniel Herron What is Star Hopping? Using bright stars and star patterns (asterisms) as guidepost to locate objects that are too dim to be seen with the naked eye or though a finder scope. Consists

More information

Seasons & Constellations

Seasons & Constellations Name Bell Date ACTIVITY: Seasons & Constellations Seasons & Constellations * During autumn, we see the constellation Orion in the dark early morning sky. In winter, we see Orion in the night sky. In summer,

More information

The Night Sky (Part 1)

The Night Sky (Part 1) The Night Sky (Part 1) Paul Bergeron Department of Physics and Astronomy, University of Utah, Salt Lake City April 12, 2018 Today s Plan History of Astronomy Ancient Astronomy Saturday s Trip Stargazing

More information

Due to the fact that we are hurrying to get on the telescope this Tuesday, we will postpone the writing of a formal proposal.

Due to the fact that we are hurrying to get on the telescope this Tuesday, we will postpone the writing of a formal proposal. ASTRONOMY 221 SARA IMAGING EXERCISE Spring 2011 Observing Exercise 4 Introduction: The use of the SARA telescopes at Kitt Peak, Arizona and Cerro Tololo, Chile, permit us to observe fainter objects that

More information

Measuring the Sky (Spring, Night Lab)

Measuring the Sky (Spring, Night Lab) Name(s): Date: Course/Section: Grade: Measuring the Sky (Spring, Night Lab) Objectives: Students will familiarize themselves with altitude and azimuth and estimating angles in the sky. Checklist: Complete

More information

Professor Comet Report. March The Bright Comets for 2010!

Professor Comet Report. March The Bright Comets for 2010! Professor Comet Report March 2010 The Bright Comets for 2010! C/2009 K5 (McNaught) This comet is currently bright at a visual magnitude of 9.1 and expected to reach visual Mag 8.8 by 27 March 2010. Then

More information

Kitt Peak Nightly Observing Program

Kitt Peak Nightly Observing Program Kitt Peak Nightly Observing Program Splendors of the Universe on YOUR Night! Many pictures are links to larger versions. Click here for the Best images of the OTOP Gallery and more information. Little

More information

JSR Year: 2008 PX1511 & PX1512. Planetarium Notes

JSR Year: 2008 PX1511 & PX1512. Planetarium Notes Planetarium Notes Purpose I hope you ll find these notes and the visit to the Planetarium a help in identifying particular stars and features in the night sky. If you absorb some of the facts you ll be

More information

Selecting an Observing Target

Selecting an Observing Target Chapter 2: Selecting an Observing Target Selection Criteria There are several factors that must be considered when selecting a target to observe: Is the target visible from Winnipeg? For what dates is

More information

29:50 Stars, Galaxies, and the Universe First Hour Exam October 6, 2010 Form A

29:50 Stars, Galaxies, and the Universe First Hour Exam October 6, 2010 Form A 29:50 Stars, Galaxies, and the Universe First Hour Exam October 6, 2010 Form A There are 32 questions. Read through each question and all the answers before choosing. Budget your time. No whining. Walk

More information

Lab 2 Astronomical Coordinates, Time, Focal Length, Messier List and Open Clusters

Lab 2 Astronomical Coordinates, Time, Focal Length, Messier List and Open Clusters Lab 2 Astronomical Coordinates, Time, Focal Length, Messier List and Open Clusters Name: Partner(s): Boxes contain questions that you are expected to answer (in the box). You will also be asked to put

More information

Brock University. Test 1, October 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of Students: 470 Date of Examination: October 3, 2017

Brock University. Test 1, October 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of Students: 470 Date of Examination: October 3, 2017 Brock University Test 1, October 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of Students: 470 Date of Examination: October 3, 2017 Number of hours: 50 min Time of Examination: 17:00 17:50

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

drinking straw, protractor, string, and rock. observer on Earth. Sun across the sky on March 21 as seen by an

drinking straw, protractor, string, and rock. observer on Earth. Sun across the sky on March 21 as seen by an 1. The diagram below represents some constellations and one position of Earth in its orbit around the Sun. These constellations are visible to an observer on Earth at different times of the year. When

More information

Shapes in the Sky. A Planetarium Lab Lesson and Classroom Activities for Grades K-1

Shapes in the Sky. A Planetarium Lab Lesson and Classroom Activities for Grades K-1 A Planetarium Lab Lesson and Classroom Activities for Grades K-1 Students observe a geometric shape (star, or constellation patterns) for each season; how the sky changes daily and seasonally; compass

More information

5 - Seasons. Figure 1 shows two pictures of the Sun taken six months apart with the same camera, at the same time of the day, from the same location.

5 - Seasons. Figure 1 shows two pictures of the Sun taken six months apart with the same camera, at the same time of the day, from the same location. Name: Partner(s): 5 - Seasons ASTR110L Purpose: To measure the distance of the Earth from the Sun over one year and to use the celestial sphere to understand the cause of the seasons. Answer all questions

More information

The Earth and the Sky

The Earth and the Sky The Earth and the Sky In this class, we want to understand why the objects in the sky as seen from the Earth - appear as they do. Even though we haven t yet discussed the details, I am assuming that there

More information

A Sense of Scale and The Motions of Earth. The guitar player Pablo Picasso (1910)

A Sense of Scale and The Motions of Earth. The guitar player Pablo Picasso (1910) A Sense of Scale and The Motions of Earth The guitar player Pablo Picasso (1910) Announcements n Notes from the first lecture are available on the class web site (www.astro.umass.edu/~calzetti/astro100).

More information

INDEPENDENT PROJECT: The Summer Night Sky

INDEPENDENT PROJECT: The Summer Night Sky INDEPENDENT PROJECT: The Summer Night Sky What is the difference between observing and looking? As John Rummel said to the Madison Astronomical Society, January 11, 2002: Looking implies a passive exercise

More information