The purpose of this visit is to investigate lunar phases. After this lab, the students will be able to demonstrate and apply these concepts:

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "The purpose of this visit is to investigate lunar phases. After this lab, the students will be able to demonstrate and apply these concepts:"

Transcription

1 Lunar&Phases& The purpose of this visit is to investigate lunar phases. After this lab, the students will be able to demonstrate and apply these concepts: The Earth rotates from counterclockwise as you look down at the Earth from the north pole. The sun seems to rise in the east, but we know that the earth s rotation is what causes the moon, the sun and the stars to appear to move in the sky. Using a model one way scientists better understand something like this. The moon is the earth s only natural satellite. It rotates once on its axis every time it revolves once around the earth, every 28 days. Using this knowledge, we can predict when will see each phase of moon in the daytime or nighttime sky. The moon doesn t create its own light, but it half of the moon s surface is always reflecting the sun s light. Depending upon the moon s location in its orbit around the Earth, we can see none of the lighted surface (new moon), the right half of the lighted surface (1 st quarter moon), all of the lighted surface (full moon) the left half of the lighted surface (3 rd quarter moon). The terms waxing and waning refer to whether the amount of lighted surface seen is becoming greater or smaller, respectively. Crescent and gibbous are used to describe phases less than a quarter moon or more than a quarter moon, respectively. The lesson plan begins with an introduction by the Science Leader. The students will divide into as many groups as the class has volunteers, up to five groups. At the end of the lab, the Science Leader will briefly review our conclusions. Teachers: Please divide students into groups once we are in the lab and we know how many volunteers are available to help. & Volunteers: Please read this material, and arrive at the lab promptly to familiarize yourself with the experiment. Your roll will be to ensure safety and assist the students as they complete the lab presented by the Science Leader. You will not be responsible for the class presentation, but it would be helpful if you read the information provided here before coming to the lab. Suggested Introduction by the Science Leader: Welcome to the Science Force Lab. This is a special time for you and our parent volunteers to investigate the exciting things you are learning in your classroom. The experiments you do during your Science Force visits are prepared and taught by your parents, and the equipment you use in this lab is purchased using the money from PTA. (Introduce yourselves and the parent volunteers.) Brainstorm with students You are studying lots of things about astronomy. Astronomy is the very first science ever studied. We are building on discoveries made by ancient scientists. Let s see what you have learned so far. (Just pick a few of these.)

2 1. What is our closest star? (the sun) 2. What is in the middle of our solar system? (the sun) 3. How many planets orbit the sun? (now eight) Try to name them in order. 4. Which planet is the largest? (Jupiter) 5. Which former planet is now considered a planetoid? (Pluto) 6. The big planets, like Jupiter, Saturn, Uranus and Neptune are made of mostly what? (gas, we call these Jovian planets) The smaller planets are made of mostly what? (rock, we call these terrestrial planets) 7. What are two ways that the Earth moves? (Revolves and rotates) 8. How many days does it take for the Earth to make one revolution around the sun? (365 ¼) 9. How many long does it take for the Earth to make one complete rotation (24 hours) 10. Is there anything that revolves around the Earth? (moon) 11. Does anyone know how many days it take the moon to make one complete revolution? (28 days) Do you know that it makes one complete rotation in 28 days too, so the same side of the moon is always facing us. We never see the backside of the moon. Instruction: In our lab today, we are investigating the phases of the moon. Scientists use models to better understand something that is too big to visualize, and our lab today is a perfect example of using a model. - Use a clip-on light or desk lamp and a ball to show how the sun shines on half of the ball s surface. Dim the class lights for a better effect. Whether it is the moon or the Earth, one-half of its surface is always illuminated by the sun. The moon doesn t make its own light. It only reflects the sun s light. - Choose one student to be the moon, and give them a ball. (about basketball-sized) Use the model and review revolution and rotation of the earth. Have them hold the ball straight above their head. Choose another student to be the Earth. Place them in the center of the room on a standing turn-table or sit-and-spin toy. For safety, the leader will always hold onto the Earth student so that they don t fall. The Earth student puts his/her head through the hole cut in the center of a framed blank art canvas, and holds the edges of the canvas with his/her hands. The canvas is labeled with E on the east and W on the west. The leader will rotate the Earth student from east to west (to the students left). The leader will explain, You are the earth. Imagine that your nose is a person on the Earth. Discuss how you can see half of the sky at all times. Rotate the Earth student, explaining the time of day sunrise, noon, sunset, midnight. Then add in the student who is the Moon with the basketball. Start them at the position of new moon, then revolve the Moon student around the Earth student, explaining the moon phases and that it takes 28 days for one complete lunar revolution. Although it is tough for fourth graders to comprehend, mention that while the moon is revolving once in 28 days, it is also rotating once on its axis. This means that the same side of the moon always faces the Earth. Discuss the phases of the moon and its position in the sky. For example a full moon is overhead at midnight, and a full moon sets at sunrise. Why can you sometimes see the moon during the day? Use the example that a third quarter moon is overhead at sunrise. Face the third quarter moon. Now look on your eastern

3 horizon and see the sun. Why won t we ever see a full moon at noon? It is because it is on the other side of the earth. If the moon is lighted on the right side, we know that each night it will have more of its surface lighted than the previous night. (We might say that it is getting bigger; in science we call that waxing.) If the left side of the moon is lighted, we know that the next night we will see less of its surface lighted. (So it will look smaller; in science we call that waning.) Remember that when you see the right side of the moon lighted, the moon is waxing, and the next night, more visible surface will be lighted. When the left side of the moon is lighted, it is waning, and the next night, less visible surface will be lighted. Discuss waxing and waning crescent and gibbous phases Now that we have used a classroom-sized model to help understand the Earth rotation and lunar phases, we are going to split into groups and use a desktop model to reinforce what you have learned. Divide the students into as many groups as you have volunteers, up to five groups. Ideally, there would be six or fewer students per group. Lunar Phases Game Instructions for the class volunteers: On each table is a game board, showing a model of the Earth, shaded half for day and half for night. The moon s orbit path is diagrammed, showing a spot for each of the 28 days of the lunar revolution. 1. Remind the students of what they have learned: - The sun is the center of our solar system - The sun produces light and other energy, and the Earth and moon only reflect the sun s light. The moon really doesn t shine. It just reflects, like a mirror. Use the example of a mirror. Does the mirror really have a face? No, it reflects your face. Half of the moon s surface always reflects the sun s light, but we can t always see the entire lighted half of the moon s surface. Sometimes we can t even see any of it at all a new moon. - Revolve means to go around something. The moon makes one revolution around the Earth every 28 days. Rotate means to spin on axis like a top. You can remember the difference because rotate has a T in it, like Top. Revolve has no T. The Earth revolves around the sun once in a year. The Earth rotates on its axis once a day. 2. Give each student a moon as their playing piece. The objective of the game is to revolve around the Earth more times than the other player in the group by the end of the playing time. 3. Everyone places their moon in the new moon phase (closest to the sun, along the trail marked black). Everyone rolls one die to determine who will go first (with the highest roll), and then play will proceed counter-clockwise.

4 4. The first player rolls both dice, and moves his/her moon counter-clockwise the same number of days along the path of the lunar orbit. Make sure that the night and day shading of the moon-playing-piece is oriented on the board to match the diagram shown on the playing board. The lighted side of the moon should always face the sun. 5. The board may be rotated so that the player can get their eyes down to look from behind the earth toward to the moon. This is to simulate what it would look like to look into the sky from the earth, looking to the moon overhead. Now the player must tell the group what the lunar phase is: New Moon Crescent Waxing or Waning 1 st Quarter Gibbous Waxing or Waning 3 rd Quarter Full Moon Check to see if the player identified the phase correctly by lifting the phase card that is the color that matches the trail extending toward the moon. If the student is wrong, then they must move their moon back as many days as the lowest numbered die. If they get the phase correct, they get a bonus question card. The adult volunteer draws a bonus card and reads the question to the player. If they don t know the answer, they can phone-aphase-friend and ask one player for help. If the phase-friend gets the bonus question right, then the two players split the bonus reward. Once a player gets a bonus question wrong, they forfeit the phone-a-phase-friend option. If they get the bonus question correct, then they get the reward indicated on the card. If they miss the bonus question, there is no consequence. 6. At this point, the first player s turn is over and the player to the right continues. Continue playing, as every player moves their moon around the orbit. Remind them as they move that each spot represents one day in the lunar orbit. After each player completes one orbit and returns to the new moon phase, then the player receives a Popsicle stick for completing one complete 4-week revolution. The player who completes the most revolutions during the playing period is the winner!

5 Conclusion: During the last five minutes, the Science Leader will ask the students to gather to review what the students learned about lunar phases. Setup: Demonstration: Sit-n-spin toy or rotation disk (from a gyroscope demonstration) 20 x 24 blank art canvas on a wooden frame, with a head hole cut in the middle Basketball or similar sized ball Clip-on light or desk lamp for the sun Game: (up to five tables, each with these supplies) One game board Six moon playing pieces One Earth 2 dice Set of bonus cards with question, answer, and reward Phase cards, color-coded to match the board Black New Moon Orange Waxing Crescent Moon Red 1 st Quarter Moon Blue Waxing Gibbous Moon Yellow Full Moon Purple Waning Gibbous Moon Green 3 rd Quarter Moon Pink Waning Gibbous Moon Georgia Performance Standards: S4E2. Students will model the position and motion of the earth in the solar system and will explain the role of relative position and motion in determining sequence of the phases of the moon. a. Explain the day/night cycle of the earth using a model. b. Explain the sequence of the phases of the moon Vicki Templet, all rights reserved. Duplication and transmission by electronic means is permitted for single use implementation in a public school environment, but only with permission of the author. Permission is never granted to post this document or any part of it on a webpage other than that of the author Duplication or transmission by electronic means is not permitted under any other circumstance. If you choose to duplicate, transmit, and/or implement any of the material provided herein, you accept the responsibility for assuring the accuracy and the safety of the activities and content of this material. In accepting this responsibility, you must also understand that this material is provided to you at no charge. No revenue or profit should ever be required in exchange for this material. Also in accepting this responsibility, you understand that this material is a collection of many ideas from many different sources. This document may have gone through many revisions as it has been passed from school to school, and the written descriptions may have come directly from sources that are not suitably referenced. It is therefore advised that this material be used at your own risk, and that you assume complete responsibility for the single-use application of the ideas contained herein. For questions or to receive a current version of this document, please feel free to contact Vicki Templet, info [at] science-force dot com.

Astronomy 101 Lab: Lunar Phases and Eclipses

Astronomy 101 Lab: Lunar Phases and Eclipses Name: Astronomy 101 Lab: Lunar Phases and Eclipses Pre-Lab Assignment: In this week's lab, you will be using a lamp, a globe, and a ball to simulate the Sun, Earth, and the Moon. You will be able to see

More information

Lab 1. Moon Phases: Why Does the Appearance of the Moon Change Over Time in a Predictable Pattern?

Lab 1. Moon Phases: Why Does the Appearance of the Moon Change Over Time in a Predictable Pattern? Moon Phases Why Does the Appearance of the Moon Change Over Time in a Predictable Pattern? Lab Handout Lab 1. Moon Phases: Why Does the Appearance of the Moon Change Over Time in a Predictable Pattern?

More information

4 th Grade: Sun, Moon, and Earth Unit Assessment Study Guide

4 th Grade: Sun, Moon, and Earth Unit Assessment Study Guide Name: Teacher: Test Date: 4 th Grade: Sun, Moon, and Earth Unit Assessment Study Guide Vocabulary: Solar System: A group of objects that revolve around a single star. Sun: The central (and only) star in

More information

Q25: Record the wavelength of each colored line according to the scale given.

Q25: Record the wavelength of each colored line according to the scale given. C. Measurement Errors and Uncertainties The term "error" signifies a deviation of the result from some "true" value. Often in science, we cannot know what the true value is, and we can only determine estimates

More information

6 TH GRADE ACCURATE PLANET SIZES AND DISTANCE FROM THE SUN ACTIVITY

6 TH GRADE ACCURATE PLANET SIZES AND DISTANCE FROM THE SUN ACTIVITY 6 TH GRADE ACCURATE PLANET SIZES AND DISTANCE FROM THE SUN ACTIVITY Summary: Accurate planet size and distance from the Sun is studied in this lesson. Each student constructs a correctly scaled diagram

More information

Answer Questions 1 4

Answer Questions 1 4 Name Date Period Introduction: Even though the moon does not appear to turn on its own axis from the Earth s point of view, it is indeed rotating as it revolves around the Earth. In the following activity,

More information

Seeing & Explaining Patterns in the Moon s Phases

Seeing & Explaining Patterns in the Moon s Phases Seeing & Explaining Patterns in the Moon s Phases 6th grade post-sly Park Experience Activity Content Standards: NGSS MS-ESS1-1 Develop and use a model of the Earth-sun-moon system to describe cyclic pattern

More information

Earth is rotating on its own axis

Earth is rotating on its own axis Earth is rotating on its own axis 1 rotation every day (24 hours) Earth is rotating counterclockwise if you are looking at its North pole from other space. Earth is rotating clockwise if you are looking

More information

b. So at 12:00 p.m., are the shadows pointing in the direction you predicted? If they are not, you must explain this observation.

b. So at 12:00 p.m., are the shadows pointing in the direction you predicted? If they are not, you must explain this observation. Astronomy 100 Name(s): Exercise 2: Timekeeping and astronomy The following exercise illustrates some basic ideas about time, and how our position in the solar system uniquely configures the measurement

More information

Grades K 2 Education Guide

Grades K 2 Education Guide Written by Kim Small Illustrated by Audio Visual Imagineering Table of Contents Standards Checklist*..3 Lessons Checklist....4 Program Pre- and Post- Survey 5 Lesson 1 The Little Star That Could Vocabulary..9

More information

ì<(sk$m)=cdfdhh< +^-Ä-U-Ä-U

ì<(sk$m)=cdfdhh< +^-Ä-U-Ä-U Standards Preview Earth Sciences Standard Set 4. Earth Sciences 4. Objects in the sky move in regular and predictable patterns. As a basis for understanding this concept: 4.a. Students know the patterns

More information

The changing phases of the Moon originally inspired the concept of the month

The changing phases of the Moon originally inspired the concept of the month The changing phases of the Moon originally inspired the concept of the month Moon Properties The Moon is in orbit around the Earth, outside the atmosphere. The Moon shines by reflected light (12%) - mostly

More information

SPI Use data to draw conclusions about the major components of the universe.

SPI Use data to draw conclusions about the major components of the universe. SPI 0607.6.1 - Use data to draw conclusions about the major components of the universe. o Stars are huge, hot, brilliant balls of gas trillions of kilometers away. A Galaxy is a collection of billions

More information

Eclipses September 12th, 2013

Eclipses September 12th, 2013 Eclipses September 12th, 2013 Who was the favorite Star Wars character of the class? A) Obi-Wan B) Jar Jar C) Luke Skywalker D) Yoda News! Dark matter http://mcdonaldobservatory.org/news/releases/2013/09/10

More information

Go to Click on the first animation: The north pole, observed from space

Go to  Click on the first animation: The north pole, observed from space IDS 102 The Seasons on a Planet like Earth As the Earth travels around the Sun, it moves in a giant circle 300 million kilometers across. (Well, it is actually a giant ellipse but the shape is so close

More information

Inquiry (Investigating Lunar Phases)

Inquiry (Investigating Lunar Phases) Inquiry 5.1 5.3 (Investigating Lunar Phases) Directions: Write down on a sheet of note book paper the purpose and any answer to questions that are asked throughout the inquiry. Purpose: What causes Earth

More information

Explain how Earth's movement and the moon's orbit cause the phases of the moon. Explain the difference between a solar eclipse and a lunar eclipse.

Explain how Earth's movement and the moon's orbit cause the phases of the moon. Explain the difference between a solar eclipse and a lunar eclipse. Explain how Earth's movement and the moon's orbit cause the phases of the moon. Explain the difference between a solar eclipse and a lunar eclipse. The Earth- Moon System Have you ever wondered why the

More information

Why does Earth rotate and what s the evidence? (besides watching it from space ships or satellites) Week 18 January 5, 2015

Why does Earth rotate and what s the evidence? (besides watching it from space ships or satellites) Week 18 January 5, 2015 Why does Earth rotate and what s the evidence? (besides watching it from space ships or satellites) Week 18 January 5, 2015 The sun determines our solar time everywhere on earth as Earth rotates. Can you

More information

How Does Earth Move in Space? G4_EI_00008 MULTIPLE CHOICE

How Does Earth Move in Space? G4_EI_00008 MULTIPLE CHOICE How Does Earth Move in Space? G4_EI_00008 MULTIPLE CHOICE 1. Patti decided to use a basketball as a model of Earth. She placed the ball on the floor and then spun it. What was Patti demonstrating with

More information

Thank you for your purchase!

Thank you for your purchase! TM Thank you for your purchase! Please be sure to save a copy of this document to your local computer. This activity is copyrighted by the AIMS Education Foundation. All rights reserved. No part of this

More information

Descriptive Investigations. Illustrate the demonstration by drawing the position of the light hitting Earth during the demonstration.

Descriptive Investigations. Illustrate the demonstration by drawing the position of the light hitting Earth during the demonstration. Student Edition Sample Page Name Readiness Standard 5.8(C) Unit 17 Introduction Motivation Station: Mike s Cool Science Fact Earth actually takes 23 hours, 56 minutes, and 4 seconds to make one complete

More information

The reason is that the Moon s rotation takes 27.3 days the same amount of time it takes to revolve once around Earth. Because these two motions take

The reason is that the Moon s rotation takes 27.3 days the same amount of time it takes to revolve once around Earth. Because these two motions take Moon Phases 6.E.1.1 Explain how the relative motion and relative position of the sun, Earth and moon affect the seasons, tides, phases of the moon, and eclipses. Motions of the Moon Just as Earth rotates

More information

Scott Foresman Science 4.17

Scott Foresman Science 4.17 Genre Comprehension Skill Text Features Science Content Nonfiction Cause and Effect Captions Labels Diagrams Glossary Earth Cycles Scott Foresman Science 4.17 ISBN-13: 978-0-328-34240-2 ISBN-10: 0-328-34240-8

More information

EARTH S REVOLUTION -and- EARTH S ROTATION

EARTH S REVOLUTION -and- EARTH S ROTATION EARTH S REVOLUTION -and- EARTH S ROTATION Earth s Revolution Have you ever noticed that your classroom globe is tilted? This is no accident. Globes are made to be replicas, or models, of the Earth. Earth

More information

Tutoring information, as announced in class

Tutoring information, as announced in class Announcements Register for Connect, register your iclickers - Register iclickers at https://www1.iclicker.com/ or REEF account profile - Purchase the REEF polling app, create an account, register and get

More information

Studying the Phases of the Moon from a Privileged View

Studying the Phases of the Moon from a Privileged View Name Date Section ACTIVITY 4 Studying the Phases of the Moon from a Privileged View Learning Goals Understanding the phases of the Moon requires visualizing the Earth-Moon-Sun system in three dimensions.

More information

TEKS Cluster: Space. identify and compare the physical characteristics of the Sun, Earth, and Moon

TEKS Cluster: Space. identify and compare the physical characteristics of the Sun, Earth, and Moon 5.8 Earth and space. The student knows that there are recognizable patterns in the natural world and among the Sun, Earth, and Moon system. 5.8(C) 5.8(D) demonstrate that Earth rotates on its axis once

More information

The Solar System. Grade Level: 4 6

The Solar System. Grade Level: 4 6 The Solar System Grade Level: 4 6 Teacher Guidelines pages 1 2 Instructional Pages pages 3 5 Activity Pages pages 6 9 Crossword Puzzle page 10 Answer Key page 11 Classroom Procedure 1. Distribute the Address

More information

Voyage: A Journey Through Our Solar System. Grades 5-8. Lesson 4: Going through a Phase

Voyage: A Journey Through Our Solar System. Grades 5-8. Lesson 4: Going through a Phase Voyage: A Journey Through Our Solar System Grades 5-8 Lesson 4: Going through a Phase On October 17, 2001, a one to ten billion scale model of the Solar System was permanently installed on the National

More information

Explain the Big Bang Theory and give two pieces of evidence which support it.

Explain the Big Bang Theory and give two pieces of evidence which support it. Name: OBJECTIVES Correctly define: asteroid, celestial object, comet, constellation, Doppler effect, eccentricity, eclipse, ellipse, focus, Foucault Pendulum, galaxy, geocentric model, heliocentric model,

More information

Celestial Sphere & Solar Motion Lab (Norton s Star Atlas pages 1-4)

Celestial Sphere & Solar Motion Lab (Norton s Star Atlas pages 1-4) Name: Date: Celestial Sphere & Solar Motion Lab (Norton s Star Atlas pages 1-4) Italicized topics below will be covered only at the instructor s discretion. 1.0 Purpose: To understand a) the celestial

More information

Earth Science: Earth's Place in the Universe Unit 2: The Moon

Earth Science: Earth's Place in the Universe Unit 2: The Moon Slide 1 / 127 Slide 2 / 127 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use

More information

Astronomy. What is the force that pulls objects toward the center of the earth, between the earth and the moon and the earth and other planets?

Astronomy. What is the force that pulls objects toward the center of the earth, between the earth and the moon and the earth and other planets? Astronomy Essential Questions and Answers: What is the force that pulls objects toward the center of the earth, between the earth and the moon and the earth and other planets? Students: Gravity is the

More information

Name(s): Date: yourself (representing the Earth, with your nose representing the location of Las Cruces) Work in Groups of Three People!

Name(s): Date: yourself (representing the Earth, with your nose representing the location of Las Cruces) Work in Groups of Three People! Name(s): Date: 3 Phases of the Moon 3.1 Introduction You will need the following materials for this lab: small spheres (representing the Moon), with two different colored hemispheres. The dark hemisphere

More information

Unit 7: Partner Resource. Sun and Moon

Unit 7: Partner Resource. Sun and Moon Earth and Space Systems: Relative Positions of Sun, Earth and Moon, Patterns and Seasons Washington University in St. Louis Institute for School Partnership Unit 7: Partner Resource Sun and Moon Additional

More information

Planets in the Sky ASTR 101 2/16/2018

Planets in the Sky ASTR 101 2/16/2018 Planets in the Sky ASTR 101 2/16/2018 1 Planets in the Sky 2018 paths of Jupiter among stars (2017/2018) Unlike stars which have fixed positions in the sky (celestial sphere), planets seem to move with

More information

Motion of the Earth Compiled by: Nancy Volk

Motion of the Earth Compiled by: Nancy Volk Compiled by: Nancy Volk Student Reading When you go outside at night and look up, you can see millions of stars. There are so many that it is hard to count them all. Our galaxy, which is called the Milky

More information

LUNAR OBSERVING. What will you learn in this lab?

LUNAR OBSERVING. What will you learn in this lab? LUNAR OBSERVING What will you learn in this lab? The Moon is the second most noticeable object in the sky. This lab will first introduce you to observing the Moon with a telescope. You will be looking

More information

Science Grade 01 Unit 07 Exemplar Lesson 02: Investigating the Moon, the Stars, and the Sky

Science Grade 01 Unit 07 Exemplar Lesson 02: Investigating the Moon, the Stars, and the Sky Grade 1 Unit: 07 Lesson: 02 Suggested Duration: 5 days Grade 01 Unit 07 Exemplar Lesson 02: Investigating the Moon, the Stars, and the Sky This lesson is one approach to teaching the State Standards associated

More information

Transit Tracks. Activity G14. What s This Activity About? Tips and Suggestions. What Will Students Do? What Will Students Learn?

Transit Tracks. Activity G14. What s This Activity About? Tips and Suggestions. What Will Students Do? What Will Students Learn? G14 Transit Tracks Activity G14 Grade Level: 7 12 Source: This is a first version of an activity intended to be part of the Full Option Science System (FOSS) Planetary Science Course. Transit Tracks is

More information

Tilted Earth Lab Why Do We Have Seasons?

Tilted Earth Lab Why Do We Have Seasons? Name Class Tilted Earth Lab Why Do We Have Seasons? Purpose: In this investigation, you are going to figure out how the axis (or tilt) of the Earth, combined with the revolution (orbit) of Earth around

More information

Chapter 2 Discovering the Universe for Yourself

Chapter 2 Discovering the Universe for Yourself Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

Rotation and Revolution

Rotation and Revolution On Earth, each day begins at sunrise and ends at sunset. You see the Sun come up or rise in the morning and go down or set at night. When we use these phrases, what do you think they imply about the way

More information

Including Students Model Earth, Moon, Sun System

Including Students Model Earth, Moon, Sun System Including Students Model Earth, Moon, Sun System by Elysa Corin and Todd Boyette ncorporating models into classroom activities is especially useful in the study of astronomy, as the cosmic actors under

More information

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

ì<(sk$m)=beacee< +^-Ä-U-Ä-U

ì<(sk$m)=beacee< +^-Ä-U-Ä-U Space and Technology Genre Comprehension Skill Text Features Science Content by Carol Levine Nonfiction Main Idea and Details Captions Labels Diagrams Glossary Earth and Space Scott Foresman Science 6.19

More information

This clementine orange is an oblate spheroid. Earth is more rounded than this clementine, but it is still an oblate spheroid.

This clementine orange is an oblate spheroid. Earth is more rounded than this clementine, but it is still an oblate spheroid. On Earth, each day begins at sunrise and ends at sunset. You see the Sun come up or rise in the morning and go down or set at night. When we use these phrases, what do you think they imply about the way

More information

D. The Solar System and Beyond Name KEY Chapter 1 Earth, Moon, & Beyond STUDY GUIDE

D. The Solar System and Beyond Name KEY Chapter 1 Earth, Moon, & Beyond STUDY GUIDE Page1 D. The Solar System and Beyond Name KEY Chapter 1 Earth, Moon, & Beyond Date Lesson 1: How Do Earth and the Moon Compare? STUDY GUIDE A. Vocabulary Write the definition to each word below. 1. revolve

More information

Before you Sit. Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium

Before you Sit. Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium Before you Sit Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium Evening Observing Observing at the Brooks Observatory: Three different weeks

More information

Practice Exam #3. Part 1: The Circumpolar Constellations

Practice Exam #3. Part 1: The Circumpolar Constellations Practice Exam #3 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Some Comments on the Real Exam This exam covers all material related to astronomy.

More information

Astronomy Club of Asheville December 2017 Sky Events

Astronomy Club of Asheville December 2017 Sky Events December 2017 Sky Events The Planets this Month - page 2 December 13-16 Crescent Moon with Jupiter and Mars page 8 Planet Highlights - page 9 Moon Phases - page 12 December 13 th Geminid Meteor Shower

More information

Earth & Space. Learning Target:

Earth & Space. Learning Target: Earth & Space Learning Target: Most of the cycles and patterns of motion between the Earth and sun are predictable. You understand this when you know: 1) 1 Revolution of the Earth takes approximately 365

More information

The Spinning Earth Key Stage 2

The Spinning Earth Key Stage 2 The Spinning Earth Key Stage 2 Topics covered: Earth, Sun, day and night, time, angles, fractions Teacher s Notes In this activity pupils are introduced to the rotating Earth and the concept of longitude.

More information

= v = 2πr. = mv2 r. = v2 r. F g. a c. F c. Text: Chapter 12 Chapter 13. Chapter 13. Think and Explain: Think and Solve:

= v = 2πr. = mv2 r. = v2 r. F g. a c. F c. Text: Chapter 12 Chapter 13. Chapter 13. Think and Explain: Think and Solve: NAME: Chapters 12, 13 & 14: Universal Gravitation Text: Chapter 12 Chapter 13 Think and Explain: Think and Explain: Think and Solve: Think and Solve: Chapter 13 Think and Explain: Think and Solve: Vocabulary:

More information

18.2 Earth Cycles Days and years Calendars Years and days Leap years Calendars throughout human history 20,000 years ago. 7,000 BC. 4,000 BC.

18.2 Earth Cycles Days and years Calendars Years and days Leap years Calendars throughout human history 20,000 years ago. 7,000 BC. 4,000 BC. 18.2 Reading 18.2 Earth Cycles Do you ever wonder where our calendar comes from? Or why the Moon gradually changes its shape? Or why we have seasons? The answers have to do with the relative positions

More information

Astronomy 120 Winter 2005 Highlights of Astronomy. First Midterm Examination

Astronomy 120 Winter 2005 Highlights of Astronomy. First Midterm Examination Astronomy 120 Winter 2005 Highlights of Astronomy First Midterm Examination Name: MULTIPLE CHOICE: Choose the one best answer from among the five choices for each of the following 6 questions. Each correct

More information

AST 301 Introduction to Astronomy

AST 301 Introduction to Astronomy AST 301 Introduction to Astronomy John Lacy RLM 16.332 471-1469 lacy@astro.as.utexas.edu Myoungwon Jeon RLM 16.216 471-0445 myjeon@astro.as.utexas.edu Bohua Li RLM 16.212 471-8443 bohuali@astro.as.utexas.edu

More information

The Perfect Opportunity to Highlight Three-Dimensional Science Learning BY DENNIS SCHATZ AND ANDREW FRAKNOI

The Perfect Opportunity to Highlight Three-Dimensional Science Learning BY DENNIS SCHATZ AND ANDREW FRAKNOI The Perfect Opportunity to Highlight Three-Dimensional Science Learning BY DENNIS SCHATZ AND ANDREW FRAKNOI 40 On August 21, 2017, 500 million people across North America will experience one of the most

More information

Solar System Test Review

Solar System Test Review Solar System Test Review There are several planets in the solar system. What do all of these planets have in common? A.They all orbit the Sun. B. They are all close to the Moon. C.They are all called Earth.

More information

Astronomy Club of Asheville November 2017 Sky Events

Astronomy Club of Asheville November 2017 Sky Events November 2017 Sky Events The Planets this Month page 2 Close Conjunction of Venus and Jupiter page 7 Conjunction of Crescent Moon, Saturn & Mercury page 8 Planet Highlights page 9 Moon Phases page 12 November

More information

Science Grade 05 Unit 07 Exemplar Lesson 02: Day and Night Cycle

Science Grade 05 Unit 07 Exemplar Lesson 02: Day and Night Cycle Grade 05 Unit 07 Exemplar Lesson 02: Day and Night Cycle Unit: 07 Lesson: 02 Suggested Duration: 6 days This lesson is one approach to teaching the State Standards associated with this unit. Districts

More information

Free Lunar Phases Interactive Organizer

Free Lunar Phases Interactive Organizer Free Lunar Phases Interactive Organizer Created by Gay Miller Gay Miller Page 1 Lunar Phases MS-ESS1-1. Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases,

More information

What's Up, Earth? Header Insert Image 1 here, right justified to wrap. Grade Level. 3rd. Time Required: 60 minutes

What's Up, Earth? Header Insert Image 1 here, right justified to wrap. Grade Level. 3rd. Time Required: 60 minutes What's Up, Earth? Header Insert Image 1 here, right justified to wrap Image 1 ADA Description:? Caption:? Image file path:? Source/Rights: Copyright? Grade Level 3rd Time Required: 60 minutes Group Size:

More information

Grade 4 Science Content Review Notes for Parents and Students

Grade 4 Science Content Review Notes for Parents and Students Grade 4 Science Content Review Notes for Parents and Students 1st Nine Weeks 2017-2018 Note: Fourth Grade material is tested on the Fifth Grade Standards of Learning test. Released questions in this review

More information

Planets and Moons. unit overview

Planets and Moons. unit overview The Grade 4 5 kit components: Materials and equipment Each kit contains a set of high-quality materials and equipment for a class of 32 students. Consumable items are provided for two classes. Refill packages

More information

Astronomy Club of Asheville April 2017 Sky Events

Astronomy Club of Asheville April 2017 Sky Events April 2017 Sky Events The Planets this Month page 2 April 6 th - Regulus and the Gibbous Moon page 5 April 10 th -The Full Moon Joins Jupiter and Spica page 6 Planet Highlights page 7 Moon Phases page

More information

Orbital Paths. the Solar System

Orbital Paths. the Solar System Purpose To compare the lengths of the terrestrial planets orbital paths and revolution times. Process Skills Measure, form a hypothesis, predict, observe, collect data, interpret data, communicate, draw

More information

ASTRONOMY MERIT BADGE WORK SHEET BYU MERIT BADGE POWWOW

ASTRONOMY MERIT BADGE WORK SHEET BYU MERIT BADGE POWWOW ASTRONOMY MERIT BADGE WORK SHEET BYU MERIT BADGE POWWOW Revision July 2013 Scout s Name Instructor s Name Scout s Address City State Instructions 1) The Scout is to review the merit badge book before the

More information

4. What verb is used to describe Earth s

4. What verb is used to describe Earth s Name: Date: 1 Read the text and then answer the questions. No matter where on Earth you live, you have day and night. That happens because of a movement of Earth called rotation. Earth rotates, or turns,

More information

Bay Area Scientists in Schools Presentation Plan

Bay Area Scientists in Schools Presentation Plan Bay Area Scientists in Schools Presentation Plan Lesson Name: We Love Gravity! Presenter(s) Virginia Lehr, Laura Hidrobo Grade Level 5 Standards Connection(s) Solar System and Gravity Teaser: Gravity is

More information

The ecliptic and the sidereal motion of the sun Moon and the planets on it.

The ecliptic and the sidereal motion of the sun Moon and the planets on it. The ecliptic and the sidereal motion of the sun Moon and the planets on it. The following picture is a picture of the sky as it looks about noon on May 18 2012. The light of the Sun has been erased artificially

More information

Space, Gravity, and other Cool Spacey Stuff. Compiled by Bryce L Meyer

Space, Gravity, and other Cool Spacey Stuff. Compiled by Bryce L Meyer Space, Gravity, and other Cool Spacey Stuff Compiled by Bryce L Meyer Big Space Questions for Today What is Gravity? Why are planets and stars round? What are stars? What if it isn t round? What is an

More information

Save the Solar System!

Save the Solar System! Save the Solar System! (Beginner Breakout) Story: Help! An evil scientist has discovered a way to remove the Earth s magnetic field. Without a magnetic field, the moon will go out of orbit and in 40 minutes

More information

Earth rotates on a tilted axis and orbits the Sun.

Earth rotates on a tilted axis and orbits the Sun. Page of 7 KY CONCPT arth rotates on a tilted axis and orbits the Sun. BFOR, you learned Stars seem to rise, cross the sky, and set because arth turns The Sun is very large and far from arth arth orbits

More information

The Magic School Bus. A Science Chapter Book #4. Space Explorers. Lapbook. by Amy Yee. . Yee Shall Know.

The Magic School Bus. A Science Chapter Book #4. Space Explorers. Lapbook. by Amy Yee. . Yee Shall Know. The Magic School Bus A Science Chapter Book #4 Space Explorers Lapbook by Amy Yee. Yee Shall Know http:///www.yeeshallknow.com Lapbook Basics Follow the instructions in the following page(s) to complete

More information

Astronomy 101 Lab: Seasons

Astronomy 101 Lab: Seasons Name: Astronomy 101 Lab: Seasons Pre-Lab Assignment: In class, we've talked about the cause of the seasons. In this lab, you will use globes to study the relative positions of Earth and the Sun during

More information

Name EMS Study Guide. Two important objects that travel around our star are: Planets are not - they don t give off light like stars do

Name EMS Study Guide. Two important objects that travel around our star are: Planets are not - they don t give off light like stars do Name EMS Study Guide Fill in the blank. 1. A is a star and the objects that travel around it. 2. A star is a huge of hydrogen and helium gas that give off its own. 3. Think about our own solar system.

More information

Exploring Creation with Astronomy Learning Lapbook - B&W Colorable Version

Exploring Creation with Astronomy Learning Lapbook - B&W Colorable Version Exploring Creation with Astronomy Learning Lapbook - B&W Colorable Version Authors: Nancy Fileccia and Paula Winget Copyright 2010 A Journey Through Learning Pages may be copied for other members of household

More information

Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points)

Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points) Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points) Moon Phases Moon is always ½ illuminated by the Sun, and the sunlit side

More information

BROCK UNIVERSITY. Test 1: October 2014 Number of pages: 9 Course: ASTR 1P01, Section 2 Number of students: 950

BROCK UNIVERSITY. Test 1: October 2014 Number of pages: 9 Course: ASTR 1P01, Section 2 Number of students: 950 BROCK UNIVERSITY Page 1 of 9 Test 1: October 2014 Number of pages: 9 Course: ASTR 1P01, Section 2 Number of students: 950 Examination date: 3 October 2013 Time limit: 50 min Time of Examination: 20:00

More information

Homework Assignment #7: The Moon

Homework Assignment #7: The Moon Name Homework Assignment #7: The Moon 2008 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Chapter 21 Origins of Modern Astronomy Motions of the

More information

Key Concepts Solar System, Movements, Shadows Recall that Earth is one of many planets in the solar system that orbit the Sun.

Key Concepts Solar System, Movements, Shadows Recall that Earth is one of many planets in the solar system that orbit the Sun. Key Concepts Solar System, Movements, Shadows 4-3.1 Recall that Earth is one of many planets in the solar system that orbit the Sun. It is essential for students to know that Earth is a planet that orbits

More information

It is a very human trait to wonder where we are in this universe. Usually, the only hint of the vastness of the universe comes at night.

It is a very human trait to wonder where we are in this universe. Usually, the only hint of the vastness of the universe comes at night. Chapter 01 Part 1 Our Place in Space We all wonder It is a very human trait to wonder where we are in this universe. Usually, the only hint of the vastness of the universe comes at night. There seems to

More information

Solar System Scoot. At the end of the game, collect all of the question cards and review the answers with the class.

Solar System Scoot. At the end of the game, collect all of the question cards and review the answers with the class. Scoot Objective: Materials: Preparation: This game will give students an opportunity to review basic solar system facts. Grid Worksheet (one per student) Scoot Question Cards (one per desk) Place a Scoot

More information

Unit 7L The solar system and beyond. About the unit. Expectations. Science Year 7. Where the unit fits in

Unit 7L The solar system and beyond. About the unit. Expectations. Science Year 7. Where the unit fits in Science Year 7 Unit 7L The solar system and beyond About the unit In this unit pupils: consolidate their ideas about the Sun and Moon, and use models of these to explain phenomena such as eclipses and

More information

A. the spinning of Earth on its axis B. the path of the Sun around Earth

A. the spinning of Earth on its axis B. the path of the Sun around Earth stronomy 1 Packet Write answers on your own paper 1. The Sun appears to move across the sky each day. What causes this?. the spinning of Earth on its axis. the path of the Sun around Earth. the production

More information

Motion of the Sun. motion relative to the horizon. rises in the east, sets in the west on a daily basis. Basis for the unit of time, the DAY

Motion of the Sun. motion relative to the horizon. rises in the east, sets in the west on a daily basis. Basis for the unit of time, the DAY Motion of the Sun motion relative to the horizon rises in the east, sets in the west on a daily basis Basis for the unit of time, the DAY noon: highest point of Sun in sky relative to the horizon 1 altitude:

More information

Effective August 2007 All indicators in Standard / 14

Effective August 2007 All indicators in Standard / 14 8-4.1 Summarize the characteristics and movements of objects in the solar system (including planets, moons, asteroids, comets, and meteors). Taxonomy level: 2.4-B Understand Conceptual Knowledge Previous/Future

More information

7.4 Universal Gravitation

7.4 Universal Gravitation Circular Motion Velocity is a vector quantity, which means that it involves both speed (magnitude) and direction. Therefore an object traveling at a constant speed can still accelerate if the direction

More information

JOVIAN VS. TERRESTRIAL PLANETS. To begin lets start with an outline of the solar system.

JOVIAN VS. TERRESTRIAL PLANETS. To begin lets start with an outline of the solar system. JOVIAN VS. TERRESTRIAL PLANETS To begin lets start with an outline of the solar system. JOVIAN VS. TERRESTRIAL PLANETS What are Jovian and Terrestrial planets? Terrestrial planets are Earth like planets,

More information

Patterns on Earth 4.8C

Patterns on Earth 4.8C Have you ever made shadow puppets? If you put your hand between a flashlight and a wall, you will make a shadow. You might have made a rabbit shape or some other animal shape with your hands. Your hand

More information

DeAnza College Winter First Midterm Exam MAKE ALL MARKS DARK AND COMPLETE.

DeAnza College Winter First Midterm Exam MAKE ALL MARKS DARK AND COMPLETE. FAMILY NAME : (Please PRINT!) GIVEN NAME : (Please PRINT!) Signature: ASTRONOMY 4 DeAnza College Winter 2018 First Midterm Exam MAKE ALL MARKS DARK AND COMPLETE. Instructions: 1. On your Parscore sheet

More information

Day and Night. Fast Facts. Stage 1 Desired Results. Established Goals. Understandings. Essential Questions

Day and Night. Fast Facts. Stage 1 Desired Results. Established Goals. Understandings. Essential Questions Day and Night Fast Facts Curriculum Area: Science Grade Level: Grade 1 Suggested Duration: 120 minutes Stage 1 Desired Results Established Goals Science Content Standard 4: Students, through the inquiry

More information

Venus Project Book, the Galileo Project, GEAR

Venus Project Book, the Galileo Project, GEAR 1 Venus Project Book, the Galileo Project, GEAR Jeffrey La Favre November, 2013 Updated March 31, 2016 You have already learned about Galileo and his telescope. Recall that he built his first telescopes

More information

Moon, Sun, and Earth Relationships. Moon, Sun, and Earth Relationships

Moon, Sun, and Earth Relationships. Moon, Sun, and Earth Relationships Moon, Sun, and Earth Relationships Moon, Sun, and Earth Relationships Overarching Question: What happens to cause phases of the moon, eclipses, and the position of constellations? Overarching Question:

More information

Eclipses. Solar and Lunar

Eclipses. Solar and Lunar Eclipses Solar and Lunar An eclipse occurs when one body comes between the sun and a nearby body such that the shadow of one falls on the other. A total eclipse is when one body is seen completely occluded

More information

Dive into Saturn.

Dive into Saturn. Dive into Saturn http://www.pbs.org/wgbh/nova/space/death-dive-to-saturn.html Read Ch. 3 By next class time Do practice online quiz 01 Axis tilt changes directness of sunlight during the year. Why Does

More information

Student Exploration: Seasons: Earth, Moon, and Sun

Student Exploration: Seasons: Earth, Moon, and Sun Name: Date: Student Exploration: Seasons: Earth, Moon, and Sun Vocabulary: altitude, axis, azimuth, equinox, horizon, latitude, revolution, rotation, solstice Prior Knowledge Questions (Do these BEFORE

More information

1UNIT. The Universe. What do you remember? Key language. Content objectives

1UNIT. The Universe. What do you remember? Key language. Content objectives 1UNIT The Universe What do you remember? What are the points of light in this photo? What is the difference between a star and a planet? a moon and a comet? Content objectives In this unit, you will Learn

More information

Overview Students read about the structure of the universe and then compare the sizes of different objects in the universe.

Overview Students read about the structure of the universe and then compare the sizes of different objects in the universe. Part 1: Colonize the solar system Lesson #1: Structure of the Universe Time: approximately 40-50 minutes Materials: Copies of different distances (included). Text: So What All Is Out There, Anyway? Overview

More information